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dsp configuration have as parents a'Q 6 terms of the dp TABLE III. Variation of parameters in the isoelectronic sequence.

con6gur ation.
The total correction therefore will be of the form Sc rr Ti rrr Crv
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This may be transformed into the form
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x(L(L+1)—L'(L'+1)—l„(l„+1))
+y{5(S+1)—5'(S'+1)—s, (s +1))
+s(L'(L'+1) —2ld(id+1) )

=xL(L+1)+yS(5+1)+(s—x)L'(L'+1)
—2x—fy —12s—yS' (S'+1).

L, 5 refer to the d'p terms and L', S' refer to the parent
terms of the core. Since we are interested only in the
relative positions of the terms, we may include the
constant part (—2x—4y —12s) of the correction in the
parameter A. The part —yS'(5'+1) may be included
in the parameter C because the coeKcient of C in all
the known terms of d'p has the form 5'(S'+1).

The final correction to each term d'(S'L')pSL is
therefore

ctL(L+1)+PS(5+1)+yL'(L'+ 1);
(a=a, p=y, p=s —x).

In Table I are listed the results of fitting our formulas
to the terms of Ti n and Xi u by the method of least
squares. The mean deviations are 140 cm ' in Ti u and
130 cm ' in Ni n. In Table II are listed the values of
the corresponding parameters.

We also fitted the set of parameters Iio, F2 6] 63,
x, y, to the experimentally known terms of the dp con-
figuration of the Ca x isoelectronic sequence. The
results are listed in Table III. We found a regular
variation of Y with the degree of ionization. The param-
eter x remained almost constant except for a jump at
Sc rr. It is worth noting that the dp interaction param-
eters of Ti xx are much nearer to those of Sc n than to
those of Ti m.

Lastly I wish to thank Professor G. Racah for sug-
gesting this problem to me and for his constant help
and advice throughout all the stages of the work.

P H YSI CAL REVI EW VOLUM E 102, NUM 8 ER 5 JUNE 1, 1956

Unrestricted Hartree-Fock Method*

GEORGE W. PRATT, JR.
Liucolu Laboratory, Massachusetts Irtststute of Techuology, Lexsugtou, Massachusetts

(Received December 16, 1955)

The unrestricted Hartree-Pock method is based upon the use of a single-determinant total wave function
in which orbitals of the same n, l, and ml values but different m, values are regarded as being independent.
The differences which arise between such orbitals are discussed. It is shown, using the Li atom as an example,
that these differences are not merely a result of using a single determinant which has improper symmetry,
but arise when the full spin-degeneracy problem is carried through. Conclusions for Li are generalized to
more complicated systems. The inHuence of the unrestricted Hartree-Fock method on the calculation of
magnetic form factors, its influence on hyperfine interactions, and its bearing on antiferromagnetism is

pointed out.

INTRODUCTION

HE quantum-mechanical description of atomic
structure is based upon the representation -of a

many-electron system by the one-electron approxima-
tion in which the total state is described as a linear
combination of determinants of one-electron functions.
These orbitals are labeled by four quantum numbers

and it is generally assumed that functions of the same

e and l are related by the I.+, 1. , S+, and S operators.
Nesbet' has introduced the term equivalence restriction

*The research in this document was supported jointly by the
United States Army, Navy, and Air Force under contract with
the Massachusetts Institute of Technology.

' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955}.
A number of writers have mentioned the possibility of using

to which the above assumption belongs. It is the
purpose of this paper erst to point out that the best
one-electron functions may not necessarily be those
for which all functions of the same e, l, and ms~ are
aheuys related by the 5 step-up and step-down oper-
ators, and secondly to compare various methods of
handling the problem when the equivalence restriction
is relaxed. The case of the Li atom is taken as an
example; for this case it is shown that the variational
equations do not imply the equality of any pair of
one-electron functions. Arguments are given which

different orbitals for different spins when the total wave function
is a single determinant. See, for example, P. 0. Lowdin, Phys.
Rev. 97, 1509 (1955) and references cited there
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indicate that the best one-electron functions obtained
from an unrestricted treatment will not be very different
from those found from the restricted method. If these
small differences are neglected in diagonalizing L' and
5', one arrives at the unrestricted Hartree-Fock
method. It is shown for Li that an approximate treat-
ment of L' and 5' does not lead to serious error and in
less favorable cases corrections could be made by
perturbation theory.

The result for I.i can be generalized to the case of E
electrons of the same spin outside an M-electron core.
Two orbitals of the 3f-electron core I; and I which
have the same g, l, and m~ values and which are treated
as being independent are found to have difrerent
exchange interactions with the S outer electrons. This
is interpreted as an exchange polarization of the inner
M electrons by the outer electrons. It is shown that
these terms arise when the full spin-degeneracy problem
is treated, in which no spatial orbital is associated with
any particular spin but all associations are used. This
leads to the important conclusion that the differences
in orbitals associated parametrically with different
spins, which arise from the unrestricted Hartree-Fock
method for systems of nonzero spin, are not merely a
result of disregarding the spin degeneracy problem but
are of a fundamental nature.

Important changes in the total energy and one-
electron charge densities are to be expected in a system
of large net spin and an improvement over the equiva-
lence restriction is anticipated. These corrections may
be of importance in getting better agreement with
magnetic form factors as found by neutron diffraction, "
fine structure, and hyperfine structure splittings. The
exchange polarization effect may play an important
role in antiferromagnetic substances, as pointed out by
Slater. 5 In another paper a self-consistent field calcu-
lation is reported for the Fe atom, in which the one-
electron functions having different parametric spin
dependence in a single determinant state are varied
separately.

STATEMENT OF THE PROBLEM

In order to find the best one-electron functions for a
many-electron system, one finds the average energy of
the system with respect to some approximate many-
electron wave function P which is made up of one-
electron orbitals I;. This average energy is varied with
respect to the m;, resulting in a set of coupled integro-
differential equations. The solution of these equations
gives the best e; consistent with the form of the starting
total wave function. If f is simply a product of the I;,
the variational equations are known as the Hartree
equations. If iJ is a single determinant of the e;, the

s Shull, Strauser, and Wollan, Phys. Rev. 83, 333 (1951).
s D. R. Hartree, Proc. Cambridge Phil. Soc. 51, 126 (1954).
4 Abragam, Horowitz, and Pryce, Proc. Roy. Soc. (London)

A230, 169 (1955).
s J. C. Slater, Phys. Rev. 82, 538 (1951).

variational equations are known as the Hartree-Fock
equations.

There are certain requirements which the form of the
total wave function must satisfy according to the
Hamiltonian P of the problem. The first is that P be
antisymmetric with respect to the interchange of the
labels of any two particles; this requirement is satisled
by the Hartree-Fock method. If the total L' and 5'
commute with H, then f must be an eigenfunction of
these operators. This last requirement is usually taken
to hold for atomic systems, but it can only be satisfmd
by a single determinant in special cases.

The restricted Hartree-Fock approach consists of
writing down a single determinant of the g;, where i
stands for a set of four one-electron quantum numbers
e, I, m&, and nz, . One now varies the average energy
only with respect to those I's with different e and l
values. This involves the implicit assumption that all
functions which have the same n and / quantum
numbers but different mg and m, values are not inde-
pendent, but are related by the L+, L, 5+, and 5
operators. The unrestricted Hartree-Fock method drops
this assumption and one now separately varies all of
the orbitals u; with different i. If we are interested
mainly in spin effects, we couM regard all of the orbitals
with the same e, l, and m, values as being related by
the L+ and L operators, but drop the 5+ and 5
relationship.

Now suppose that the unrestricted Hartree-Fock
approach has been adopted, except that the L+ and L
relationships are assumed to apply to all orbitals. The
starting P is a single determinant in which all I's with
different m, t, or ns, values are assumed to be inde-
pendent. If the total M, /0, the variational equations
for orbitals associated with 0. spin will have a different
appearance from those equations for orbitals of P spin.
The differences arise in the exchange terms, for now
these summations only over orbitals of parallel spin
will have different forms for the two spin directions.
The question which this paper attempts to answer is
whether the differences which come from such a treat-
ment have any physical signi6cance or whether they
are simply the result of neglecting the spin degeneracy
problem. These remarks are best illustrated by the
example of the Li atom.

THE LITHIUM ATOM

According to the prescription of the unrestricted
Hartree-Pock method, the starting P for the Li atom
would be

/= A {si&,ntst, PNs, n), (~)

where A is the antisymmetrizing operator and all of
the m's are to be varied separately. Since there is no
exchange interaction between is' and the other orbitals,
it will have a different type of variational equation
than the orbitals associated with n spin. Therefore, 1s
and is' are not related by the 5 and 5 operators and
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we are led to different charge densities due to the 1s
and 1s' orbitals. It is to be noted that in taking the N's

to be eigenfunctions of the one-electron 5, operator,
the n's must have the form of a product of a space
function and a spin function. By only considering one
determinant in the starting f, a parametric spin
dependence is introduced into the spatial part of the
N's, because 1s is always associated with n spin and
1s' with p spin.

Now the question is whether or not the difference in
charge densities of 1s and 1s' has any real meaning,
i.e., whether the difference arises simply from the fact
that in our total wave function we have neglected the
two other possible determinants,

The average energy corresponding to (6) is

&~, s=&o, —:=2('Ii)+2('iIij)
i iQ j

+(IAi'I —IA&'I){(1s1s'I1s'1s)

——', (1s 2s
I
2s 1s)—-', (1s' 2s

I
2s 1s')}

+{Ai*A2+AiA2*}{(1s2sI2s 1s)

—(1s'2sI2s 1s')}+other terms due to

nonorthogonality of the u's. (8)

The symbol (i Ii) is the average of Ho(q;) defined in
(7) with respect to the ith orbital. The symbol (ij I

kl) is

A {uigPuig~au28Q}

A {ui~nui3~Qu28p} . Without even considering the terms due to non-
orthogonality in (8), it will be seen that each of the
three one-electron functions appears in Eo, ; in a different
way. In particular the 1s and 1s' orbitals have a
different exchange interaction with N2„as is shown in
the last term of (8). The variational equations for the
N's will each be of different form and will in general
have distinct solutions. Therefore, it is seen that the
full spin-degeneracy treatment does lead to diferent
1s and 1s' orbitals. This different exchange interaction
of the 1s and 1s' electrons is referred to as exchange
polarization of these orbitals by the 2s function. Of
course, by allowing the 1s and 1s' orbitals to be inde-
pendent an additional degree of variation is introduced
and a lower total energy may well be achieved.

If these determinants are mixed into the starting P so
as to have an eigenfunction of S', the parametric spin
dependence will disappear and perhaps the difference
between 1s and 1s' along with it.

The answer to this question can be had by going
through the complete treatment of the spin degeneracy
problem for Li, which we will now proceed to do. The
one-electron orbitals will be denoted by Nl„gl, , and
u&, . They are assumed to be normalized, independent,
but not necessarily orthogonal. The branching diagram
indicates that there are two linearly independent states
of S'=4 and one state of S'=15/4. Only the S'=-'
case is dealt with here, since this corresponds to the
ground state of Li. The two linearly independent S'= 4
states-are THE UNRESTRICTED HARTREE-FOCK

METHOD FOR Li

(2) (ij I
kl) =~"~~ u;*(q')u;*(q)H(q, q')u~(q')u;(q)dq'dq. (9)

and

Qi= A {(ulsotuis'Pu2s&) (ulsPuls'&u2s&) }t The starting point for this treatment is the single
determinant (1). The average energy with respect to
this state is

$2=A {2(ui~nui~~nu20P) (uia&ui8'Pu2s&)
—(ui~puia~eug~a) }. (5) E=g(iIi)+P(ij I ij)—(1s 2sI2s 1s), (10)

f=Aigi+A2$2, (6)

apart from correct normalization.
The Hamiltonian is taken to be

or

»= 2 Ho(q')+2 H' (q', q ).

These states are not properly normalized due to the
lack of orthogonality between the u's. The starting f
for the variational method is a linear combination of
pi and &2 with coefficients A; to be determined vari-
ationally. Thus

where ~=1 stands for Nl„ i=2 for Nl, , and v =3 for N2,
as before. It is well known that, except for the simplest
systems, it is a practical necessity to have the one-
electron functions orthonormal. This is very conven-
iently achieved in the unrestricted method. Those
orbitals with diferent parametric spin dependence are
orthogonal through spin association. Since the total
wave function is a single determinant, any linear
combination among the rows leaves the determinant
invariant. Therefore, those orbitals not orthogonal by
spin can be orthogonalized at no expense to the total
energy. These orbitals will henceforth be taken as
orthonormal without loss of generality.

We note in the average energy (10) that the 1s
orbital has an exchange interaction with N~„but that
the 1s' orbital has no such interaction because of its
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opposite parametric spin dependence. Therefore, the
charge densities for the is and 1s orbitals will again be
different. The general equation for a spatial orbital
with n-spin association coming from a single determi-
nant with 2: n spins and y p spins as well as the equation
for an orbital with P spin can easily be written. A
Slater' averaging procedure can be carried out with the
result that there is a single average potential for all
electrons of n spin and another average potential for
those of P spin. '

It is possible to estimate the extent of the differences
between orbitals of the same e and t but different ns,
which arise from the unrestricted Hartree-Fock ap-
proach. Suppose a set of orbitals has been obtained for
a system by the restricted Hartree-Fock method. The
orbitals of the unrestricted method can be expanded
in terms of these functions. Differences between orbitals
assumed to be the same in the restricted method
correspond to admixing excited configurations of the
restricted orbitals. For the inner electrons this would
involve the admission of highly excited states, which
will have a very small weight in the anal wave function.
Therefore, the inner orbitals of the same e and l but
different ns, will be very much alike while important
differences may arise for the outermost functions.

If the charge densities and energies which come from
the unrestricted Hartree-Fock method are to be of any
signi6cance, the single-determinant total wave function
must be as close to a pure state as possible. One has to
consider the mixing in of other possible determinants.
If this eGect is large, then the single-determinant
description will be unreliable and the spin-degeneracy
problem must be resolved. The unrestricted Hartree-
Fock approximation may well furnish a satisfactory
set of one-electron functions for generating all other
determinants in this case.

The consequences of not diagonalizing S' for Li must
now be examined. The state

1J 2 A(211sP——ul;ulssn)

is nearly degenerate with Q 1) (Eq. 1) and the improve-
ment in the energy obtained by mixing these states
must be calculated. Since (1) and (11) are not orthog-
onal to each other, the resulting Anal energy is

Eo+ 2 e —Lf12612 1
t (IJ12 E0~12)

1—612' (1—512')

+0~12(E01-112 +12))', (12)

where Eo =&11,H22=E0+e, and 612——Q1,$2). Assuming
that the differences in the 1s and 1s' orbitals will be
small, then 6» will be nearly minus one, e will be a
small number, and H» will be nearly equal to —H».
Neglecting the second term in the square root of (12),

' J. C. Slater, Phys. Rev. 81, 383 (1951).' G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).

we have
Es=o = (Eo—II12)/(1 —612) Eo,

(13)Ex=1= (Eo+%2)/(1+612) 0,
where E8 0 and Eq ~ are the energies corresponding to
the singlet formed by the difference of (1) and (11) and
the triplet formed by their sum respectively. Hence,
for Li there will be no important lowering of the energy
due to the neglected determinant (11) and the single-
determinant approximation is not a poor description of
the atom from this point of view.

It is apparent that if 1s and 1s' are nearly identical,
then the state (1) is nearly an eigenfunction of 52. The
average value of S2 with respect to (1) is

8 1*,5%1)= (7/4) —A» —~»-4 (14)
where

+12= ( (+lstr+ls'p+2s&) s(+1st221ls'Q212sp) j
If the equivalence restriction is invoked for Li, the

two independent 5=-2'states (4) and (5) coalesce into
a single determinant

A fwltrwlPwsn}. (15)
Since there are only two independent orbitals, there
will be only two variational equations, which are

II(q)+ )(wl*(q') H (q,q') wl(q') dq'

+ w *(q')II(q,q')w (q')dq' wl(q)

and

—
2

~
"w2*(q') JJ(q,q')wl(q')dq' w2(q)

Xllwl(q) 2)W2 W—2
—/Wlwo)ws(q), (16)

I

JJ(q)+2)~wl*(q')&(q&q') wl(q')dq' w2(q)

~w *(q')&(q,q')w (q') w (q)

)122W2(q) pw2 W2 /Wlw2)wl(q). (17)

The X;, stand for the Lagrangian parameters introduced
in order to satisfy an orthonormality constraint on the
z's which cannot, impair the energy since the total
state is a single determinant. The points of interest in
this treatment are that the 'A;; matrix cannot be diago-
nalized and that the equation for the doubly occupied
orbital m~ has a basically diBerent form from the equa-
tion for the single occupied function m2. These are
general features of the equivalence restriction. '

SUMMARY AND CONCLUSIONS

We have set out here to examine the meaning of the
unrestricted Hartree-Fock method, which leads to

L. Brillouin, Actua1ites sci. et ind. No. 159 (1934).
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different spatial functions for orbitals of the same e
and t but different spin associations. The question is
whether or not this difference is a consequence of
neglecting the spin degeneracy problem. Examination
of the complete treatment for Li indicates that the 1s
and 1s' spatial functions will not be the same. If the
differences are neglected as far as diagonalizing S', we
get the single determinant of the unrestricted method.
Since the differences in the 1s and 1s' orbitals arise
through unequal exchange interactions, this is termed
exchange polarization.

The conclusions for Li can be extended readily.
Consider an atom which under the equivalence restric-
tion would be described as having a 2M-electron core
of M doubly occupied orbita]s and with S outer elec-
trons of parallel spin. The atom is in an S'= s N (—', N+ &)

state and is here a single determinant. Consider any
two orbitals in this determinant with the same e, I, and
m~ values but with different ns, . Let the equivalence
restriction now be relaxed for these two orbitals so
that their spatial parts are independent. Then they
can be combined to form a singlet and a triplet

u(nlmt)nu(u'lm()pau(nlm()pu(e'lmt)~. (&&)

By combining these two states with the 2M 2+N—
electrons which are in an S'=-', N(-', N+1) state, we can
form two (2M+N)-electron states Pt and gs of S'
=-',N(-,'N+1). The total wave function for the system
will be a linear combination of pt and Ps analogous to
(6) in the Li case. The average total energy will contain
a matrix component of II between these states which is

diKculties. It is of course recognized that by carrying
out a sufFiciently extensive configuration interaction
based on the equivalence restriction, one can obtain as
good a description of a system as desired. The merit
of the unrestricted method is that it deals directly
with the exchange polarization effect.

There are a number of problems in which exchange
polarization may play an important part. Atomic
charge densities of paramagnetic atoms as found by
neutron diffraction do not seem to be in good agreement
with calculated densities. ' ' In the Fe calculation to be
reported in another paper, better agreement was ob-
tained. It would be interesting to see how far the
exchange polarization effect would go in explaining the
s-electron effect in hyperfine structure. Mn++ shouM.
show no hyper6ne structure if it were truly represented
by the 3s', 3d' equivalence restriction state. The observed
splitting is attributed to very small amounts of un-
paired s-electrons and an attempt has been made to
resolve this problem by a con6guration-interaction treat-
ment based on the equivalence restriction. ' "The unre-
stricted method would give the result that the magnetic
field at the nucleus due to the inner s-electrons would
not be exactly self-canceling as happens with the
equivalence restriction, resulting in a small hyper6ne
splitting. This fieM at the nucleus due to the inner
s-electrons arises not only for the single determinant,
unrestricted state but also for the state of proper spin
symmetry. The correct spin state (6) for Li gives for
the average value of the operator P';=t 8(r,)S.;, the ex-
pression

(ptH&s) = Const {(u(mimi)u,
f
u,u(elm)))

i=1
over the N

outer electrons

2f~tf'fUs (o) f'+2f~, f'{2fU, (0) f'+2fU„'(0) fs
—Us, (0) f'}+2{At*As+As*Ar}{

f Ut, '(0) f'
—

f Ut, (0) f'}+terms due to nonorthogonality.

—(u(n, 'lmt)u,
f
u,u(u'lmi)) }

+terms due to nonorthogonality. (&&)

Again we see that u(elm~) and u(n'tm~) ' have a
different exchange interaction with the outer electrons,
which implies different variational equations and solu-
tions for the orbitals. The equivalence restriction has
only been relaxed for two core orbitals to reach this
conclusion, but the result would not be impaired if the
equivalence restriction were relaxed for all core func-
tions at once. It is also clear that this exchange polar-
ization will affect the rest of the core.

The unrestricted Hartree-Fock method is an approxi-
mate treatment of the problem when the equivalence
restriction is not enforced. It not only offers a practical
escape from the very complicated spin-degeneracy
problem, but makes use of spin to avoid orthogonality

,
9 In abandoning the equivalence restriction, it has been neces-

sary to introduce an additional label for the I's which has been
a prime. Perhaps a more convenient notation would be a super-
script, e.g. , n&'&(nims).

The relation of the unrestricted Hartree-Fock
method to antiferromagnetism has been discussed by
Slater. ' The exchange potential energy of an electron
has a different periodic behavior than that of the
chemical structure and this can cause the energy bands
to split thereby changing the electrical properties of
such substances. The present paper points to the
conclusion that the different exchange potentials for
electrons of di6erent spin have a rigorous origin and
are not simply the result of an over-simplified treat-
ment. The unrestricted approach using a single averaged
potential for all electrons of 0. spin and another average
potential for all electrons of p spin appears to be a very
attractive means of discussing magnetic problems.

ACKNQWLEDGMENTS

Part of this work was done while the writer was a
member of the Solid State and Molecular Theory Group
at M.I.T. It is a pleasure to acknowledge the stimulation
received from the members of that group and especially
by its director, Professor J. C. Slater.

"M. Sachs, Phys. Rev. 90, 1058 (1953).


