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and Its Relation to TherixIoelectric Power
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A general expression for the Nernst coefficient, in terms of phenomenological parameters of the band
transport equations, is derived for a two-band semiconductor for which Boltzmann statistics may be applied
to the carrier distributions. The expression reduces to that given by Putley when his assumptions are
made. The information obtainable from experimental values of the Nernst coefficient is discussed in the
light of the expression derived in the paper. Also discussed is how this information might be supplemented
from experimental values of the thermoelectric power. An expression for the latter, in terms of the phe-
nomenological band transport parameters, is given. It reduces to that given by Johnson and Lark-Horovitz,
when their assumptions are made. It is pointed out that the phonon drag eGect should cause an anomaly
in the Nernst coefIicient corresponding to that in the thermoelectric power, and an estimate of the former
anomaly is made.

' N a recent paper' (to be referred to here as I)
~ - concerning ambipolar diffusion of the electrons and
holes down a temperature gradient in a semiconductor,
an expression was derived for the contribution of the
ambipolar fIow to the Nernst eGect. In the present
paper this calculation is extended to give an expression,
in terms of phenomenological parameters of the band
transport equations, for the complete Nernst coefficient.
This expression reduces to that given by Putley' when
his special assumptions are made. The information
obtainable from measurement of the Nernst coefficient
is discussed in the light of the expression derived here.
Also discussed is how this information might be supple-
mented by experimental values of the thermoelectric
power. An expression for the latter, in terms of the
same band transport-equation parameters, is derived.
It is a generalization of the result given by Johnson
and Lark-Horovitz. ' It is pointed out that the "phonon
drag effect"4 should cause an anomaly in the low-

temperature Nernst coefIicient comparable to that
which it causes in the thermoelectric power, and a rough
estimate of the anomaly in the former (for p-type
germanium at 50'K) is given.

thermoelectric power, Q, by Eq. (27) of Sec. 3. To find
expressions for p, R, 8, and 0, we calculate the current
density J due to an electric field and temperature
gradient acting together, and compare the result with
the solution of (1) (again, to linear terms only) for J:
pJ= E+0 gradT —p~hX E+ (cB—p~Q)hXgradT, (1')

where p~—=cR/p is the Hall mobility and h=H/c. For
a two-band semiconductor

(2)J= e(n,u, —tiiu, ),
where the rs, are the carrier concentrations and the u,
the drift velocities in the bands. The subscript labels
the band: s= 1 for electrons, s= 2 for holes. We calcu-
late the u, subject to the same assumptions' as in I
(Sec. 1). In the absence of a magnetic field,

—u, = +fi,E+D, grad(loge, )+D,r gradT,

where the upper sign applies for electrons and the lower
one for holes. (This meaning is to be given to the
symbols &, W wherever they occur in this paper,
except that in an equation applying to an extrinsic
crystal the meaning might be stated more clearly by
saying that the upper sign refers to e-type and the
lower to p-type. ) As in I, we substitute the Einstein
formula

1. THE TRANSPORT EQUATIONS

We confine ourselves to a cubic semiconductor. For
a homogeneous single cubic crystal, the relevant phe-
nomenological bulk transport equation, to terms linear
in the transport vectors and magnetic field, is

(3)D,=kTp, /e

for the diffusion coefficient, and set

D,~=y,D,/T =y,ii,k/e—.
E=pJ+RHX J—(I gradT —BHXgradT, (1) Then

where E, J, H, and T have their usual meanings. Of the u, = —fi,[&E+(kT/e) grad(loge, )
four coe%cients, p, R, and 8 are, respectively, the + (ky./e) gradT j (5).
resistivity and the Hall and Nernst coefFicients. The
fourth coefficient II can be shown to be related to the The effect of the magnetic field (in the linear limit

which we are considering) on each of the three terms
' P. J. Price, Phil. Mag. 46, 1252 (1955).'F. H. putley, proc. Phys. Soc. (London) B68, 35 (1955), 'It should be observed that for silicon (except for n type-

Table 2. extrinsic) assumption (d) should be valid only below room
'V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 92, 226 temperature, according to the estimate of 0.035 ev Lsee for

(1953). example F. Herman, Proc. Inst. Radio Engrs. 43, 1703 (1955)
4H. P. R. Frederikse, Phys. Rev. 92, 248 (1953); C. Herring, Fig. 9g for the spin-orbit splitting of the valence band at the

Phys. Rev. 96, 1163 (1954). zone center.
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n.= Td (logre—,)/I T+7 „p,=y, ()1p —fl,rr), —
0g=8p S ) (7)

substitution of (6') into (2) gives

(0 1+02)E+ (k/e) (0 1&1 0 2r22) grad T
—(02PP ~ill@)hX E
+(k/e)L~, (f,"a,+p,)+~2(l 2"~2+p2))hXg«dT. (8)

By comparison of (8) with (1') we find the standard
results

1/P —=o =01+o2, P~= (02PP—0-lyly)/0, (9)

and the further results

0= (k/e) (o.lu, o-2ns)/—o, (1o)

and Lmaking use of (9))

(k/ee)I (&1&2/& ) (Pl +@2 ) (trt+&2)
+(-~+-.~.)/-). (»)

2. NERNST COEFFICIENT

The formula (11) is conveniently written

B= (k/ec) pls 01~2/o'+ pie.l/0+ ps~2/~)

B12+B,+B2, (12)—
where

of (5) is to rotate the component normal to H by an
angle of H/e times the corresponding "mobility. " For
the first term of (5) the latter is the band Hall mobility,
p,~. For the second term it is also p,~, as was shown in
I. For the third term the "mobility" has in general a
diferent value, which we denote by the symbol X,~.
Then

u.= —fl,(aE+pphX E
+ (kT/e)Lgrad(log22, )&p,~hXgrad(log22, ))
+ (ky, /e)fgradTa)~PhXgradT)). (6)

For the concentration n, in (6) we substitute the
equilibrium value N, (T). Hence

u, = —p, f&E+pghX E
+ (k/e)((Td(iogn, )/dT+y, ) gradT

&(flpTd (logn, )/d

T+)lpga,

)h Xgrad T)) . (6')
Setting

p, = (e/222, ) (2,1),/(2, 0)„
lip= (e/2N. ) (2,2),/(2, 1)„

(14)

(15)

where 6=—t.oy
—6pg is the energy gap between the bands,

and hence'

$12——(fit +I22 )fD/kT+3+yl+y2). (12')

The term Of (12) prapartianal tO o.le2/e' (i.e. B12),
with the expression (12 ) for p12, was derived in I (it is
B Bp—, Eq. (21), there) and a comparison was made
with the formula for 8 put forward by Putley, ' which
was evidently derived by the conventional assumptions
of spherical energy surfaces and of scattering of the
carriers by Debye longitudinal lattice modes only. (For
brevity, we will refer to these assumptions as defining
"the Classical Model. ") It was noted in I that for the
ClaSSiCal mndel, SinCe llP=32rp, /8 and y, = 2, B12 re-
duced to the corresponding term of Putley's formula
Li.e., to the first term of Eq. (24) in I). The remaining
terms, Bl+B2, of (12) were not then available for
comparison with the remaining term of Putley's result.
It can be shown that for the classical model X,~=O.
(This result follows from Eq. (16) of the text: see the
discussion following Eq. (18).) With this further substi-
tution, (12) and (12') reduce to a formula for B which
is identical with Putley s formula. Thus Eq. (12), with

f12 given by (12') and the p, by (7), provides a formula
for the Nernst coeKcient, in terms of phenomenological
transport-equation parameters of the bands, for a model
more general and more realistic than the classical one.

To make clearer the relation of (12) to Putley's
formula, it may be helpful to give the expressions for
the phenomenological parameters p,„p,~, y„X,~ which
result from assuming a model of generality intermediate
between that of this paper and that of the "classical
model": namely, in which each band has spherical
energy surfaces and a carrier scattering kernel S(p,p')

sufficiently symmetrical for the transport parameters
to be expressed in terms of a relaxation time r (c) (where
v is the carrier velocity), but in which the form of the
function r(v) is not limited to that for the classical
model, r= const/e. The theory of the transport param-
eters for this "intermediate model" is outlined in the
appendix. The results are'

P12= (Pl +la2 ) (crl+&2)
= (pl +ps )LTd(logn, 222)/dT+y, +ps),

( e ) (2,0),(2,2),—(4,2),
)t II

&214) (2,0),(2,1),—(4,1),
(16)

and the P, are defined in (7). The assumptions on
which (10) and (11) depend include the assumption
that e~ and n2 are small enough for Boltzmann statistics
to be applicable. ' We then have, by Eq. (28) of Sec. 3,

221ns ——const. P' exp (—8,/k T), (13)

p This assumption (g) of I is implicit in the use of the Einstein
relation (3) between D, and p„and hence in Eq. (5). For the
"soft" semiconductors (those with a gap lt of a few tenths of an
ev or less) especially, this assumption can eR'ectively limit the
applicability of the results of the present paper.

3 (4,1),

2 (2,0},(2,1).
(17)

Here 212, is the band effective mass and (pj ).means the

7 We do not take into account here the variation with temper-
ature of the effective energy gap. See note (e) added in proof.

'The possible infmite value of X.~ implied by (16) has no
physical signi6cance, because X,~ occurs in the transport equations
only in the combination p,X, , which remains Gnite when the
denominator of (16) vanishes.
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average, over the (Maxwell-Boltzmann) distribution of
carriers in the band, of e'r, '.

(18)

For the classical model, (i,j),=(v' '), (v2,)'. Then the
numerator of (16) vanishes, and hence X@=0. The
results quoted for p,~ and y, for the classical model
follow in a similar way. From (16) and (17), we have
for the P, of (12)

3pP, (4,2), (4,1).
2 .(2,0),(2,2), (2,0),(2,1),

S= op 0 (23)

where O.p is the minimum value of 0. for the given
temperature. Then

(klec)L4P» &~ 2 (Pl P2) (1 &) + 2 ()91+02)1 (24)

By means of (20) or (24) it is possible (for the temper-
ature range in which the purest available crystals are
intrinsic or nearly so, and have coefficients pl, p2, and

' W. C. Dunlap, Phys. Rev. 79, 286 (1950), Sec. $.

It follows from (19) that if r, =const v" then the sign
of P, is the sign of r„and that if r, is independent of v

then P,=O.
From (12) it follows (subject to the same general

conditions as for the "Dunlap ellipse'": that the rele-
vant band mobilities and the forbidden gap 6, and for
our case the y, also, remain independent of doping
over the range in question) that if the conductivity is
varied at constant temperature by doping then the
curve of 8 versus p,

~ should be a parabola, with the
vertex the maximum of 8. This result was obtained in
I for 812(P~). For the complete expression (12) it still
holds, the parabola being displaced (without rotation)
by the extra terms 81+82. (See Fig. 1.) By solving
Eq. (9) for o.l/o and o.2/o and substituting the results
in (12), we obtain an expression for 8 in terms of p~.

(ec/k)( 1"+p2 )'8= —P»(p")'
++12(P2 Pl )+ (P2 Pl)(P1 +P2 )) P

++12Pl PP+ (P1P2 +P2Pl ) (Pl +P2 )] (20)

The ends of the doping curve are at the points

p"= wp, , 8= (k/ec)P, . (21)

For the parabola 812(P ), the vertex (maximum of 812)
is at the conductivity minimum, where 0.

&
——0.2. The

effect of the extra terms, 81+82, in (12) is to shift the
vertex of the new parabola 8(p~) to the point where

P12(o 1 o 2) o (Pl P2) ~ (22)

For germanium and silicon this displacement should
normally be small because the A/k 2' term of (12') makes

pls large compared with pi and p2. As an alternative to
(20), we may express (12) as a formula for 8 in terms of

FIG. j.. The Ãernst coe%cient-Hall mobility parabola. The
full curve is for the complete expression (12). (P~ and P~ have been
assumed to be negative. ) The dashed curve is for the erst term,
BI2, alone. The vertex of the latter, A', is at the conductivity
minimum. Hence OC'=(p2+ —pP)/2 and 4C'A'/D'E'=A/k2'
+3++1++2~

P» not appreciably altered from their intrinsic-state
values by the levels of impurity concentrations present)
to determine the P coefficients of (12): that is, d, being
known, the combinations yl(X1 —Pl ), y2()tp —Pp),
yl+y2 of the four unknowns yl, y2, Xl, XP." To
obtain the separate values of the latter, a fourth
independent combination must be determined. Equa-
tion (10) indicates that the thermoelectric power in-
volves the p„and therefore that there is the possibility
of obtaining the values of all four unknowns by com-
bined measurements of the Nernst coefficient and
thermoelectric power. This possibility is investigated
in the following section.

The values of 8 to be expected, according to (12),
when 8~812 (that is, when 8»))81+82) have been
discussed in I. For Ge and Si, 8~2 should be a good
approximation to 8 for intrinsic or near-intrinsic speci-
mens, s except at the highest temperatures (near the
melting points); but for the "soft" semiconductors,
such as were studied by Putley, 81+82 is never really
negligible compared to B&2. For extrinsic specimens,
on the other hand, we have

8 8, (k/ec) pl= (k/ec)yl() p—Pl—"), (n-type)
(25)

82 (k/ec)P2= (k/ec)72() 2 p2 —). (P-type)—

At the lowest temperatures, (25) may of course be taken
as an equality. To get an idea of what order of magni-

~0 It is assumed that the p,~ are known, since they may be
obtained by means of the Dunlap ellipse. (If they are not known
the p's may still be obtained by means of (24), but then the p's
still involve the p,H.) Even if p» and the pp are known accurately,
the combination pi+f2 is thereby determined with an uncer-
tainty equal to the uncertainty in b, divided by kT: this limitation
j,s likely to Qe a serious og.e in practice,
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er ——2(2prmrkT/k')& expl (i —epr)/kT],

's2=2(2~mskT/k')'* exp/(cps f)/kT],
(28)

where the eo, are the band-edge energies and the m, are
the density-of-states masses. From the product and
the quotient, respectively, of the two Eqs. (28), we
obtain Eq. (13) and the formula

2f= e+prp e+sTkI 1 go( &/tsar&)
—log (m&/m&) l]. (29)

By (10) and (7), the second term of (27) is given by

(2= (k/e) {(a.,/o)LTd(lognr)/dT+yr]
—(~s/~) I TZ(logos)/dT+ys]). (30)

u Equations (27) and (31) wi11 be derived and discussed in a
forthcoming paper (III of the series) on thermoelectricity. It
seems worth anticipating this paper with the remark that,
although of course only the difI'erence between values of Q for a
pair of substances can be measured, the expression (27) gives the
"absolute" thermoelectric power of a single substance in the
sense that it makes TdQ/dT equal to the Thomson coe%cient,
which is de6ned for a single substance. In I it was implied errone-
ously that 0 is the Thomson coeScient: the actual general relation
of the latter to 0 will be derived in the forthcoming paper.

tudes (25) predicts, we express k/ec in practical units:

k/ec=0. 862)&10 's volt' sec/cm' gauss degree. (26)

If the combination of mobilities in (25) has a (positive
or negative) value of order 10' cm'/volt sec, then we
expect

(Vrl
I BI 10 'I

I volt/gauss degree.
&y, )

Unless the phonon drag effect is important (see Sec. 4),
p& and p2 can be expected to be of order unity; so

I BI 10 in practical units. (In estimating the avail-
able voltages from this result, it must be remembered
that values of H should be less than those at which
sects quadratic in H are appreciable —that is, roughly
speaking, those at which the magnetoresistance eGect
is appreciable. )

3. THERMOELECTRIC POWER

It was concluded in Sec. 2 that the four unknown
phenomenological transport coefFicients, the y, and the
X.~, cannot be determined completely from experi-
mental values of the Nernst coefricient, but that there
is the possibility of obtaining the required additional
information from measurements of the thermoelectric
power, which should involve the y, , To investigate this
possibility, we derive an expression for the absolute
thermoelectric power, Q, of a semiconductor by means
of the general formula"

Q= or Q/e)/dT —Q(T). (27)

Here 0 is the transport coeKcient appearing in Eq. (1)
and f' is the chemical potential of the electrons (the
Fermi level, on the band model) in the substance when
it is electrically neutral and in equilibrium at tempera-
ture T. For a two band semiconductor we have, subject
to assumptions (d), (fr, (g) of I,

(or—osl ( ~ ) f'&rVt &—svs&
+3

I

—
I

2o. ) (kT ) & o )
An alternative form of this result is

k (rr (epr —i 3
Q= ——

I
-+-+v,

I

e ~kkT 2 )
0's (f cps—3

+-+~, I. (32)
okkT 2 )

This last expression for Q reduces for the classical model
to that given by Johnson and Lark-Horovitz LEq. (24)
of reference 3]. (One may see this by setting p&=ps= s
in (32), and noting that er and es in their expression
are given by (28) here and that c in their notation
stands for p,/p, .)

We are concerned here with the possibility of deter-
mining the p, empirically. We consider first the condi-
tions where the Dunlap ellipse, and the Nernst-coeS. -
cient parabola of Sec. 2, can be obtained —that is, the
temperature range where by comparing crystals with
diGerent dopings at fixed temperature an appreciable
range of conductivities, centered on the minimum value
for the temperature, can be covered. The result (31)
may be written

lk 1 (or) (or—os) t' 6
Q=- -»gl —

I

—
I I I +3+»+» I

e 2 E~s) 1 2~ )EkT )
3 &m, l (~,—~,)——»8 I

—I+- »8 I

—I+
2 (ps 4 (ms) 2

(31')

From this formula we see at once that plotting a doping
curve for Q would be useless for our purpose, since it
could determine only the combination (6/kT+3+p&
+p&) which is already given by the doping curveforB.
To obtain yr —ys (and hence, yr+ys being known, "
the y, separately) we would have to be able to deter-
mine the absotlte value of Q,

" as de6ned by (27). It
should be possible to locate the point on the doping
curve where the conductivity 0- is a minimum: then
the absolute value of Q, times —e/k, is equal to the
second square bracket of (31'). The resulting determi-
nation of y&

—p2 is, of course, still only as accurate as
the knowledge of the other two terms in the bracket
allows. In the extrinsic range we have, by (32),

Q= (k/s) L(i «.)/kT~ —h.+s)] (33)

(where s=1 or 2, according to which band is con-
ducting). Thus the appropriate y might be determined

On substituting (29) and (30) into (27), and making
use of (13), we obtain

k 1 (Br 1
3

Q=- -»gl —
I

—-»gl —
I

e 2 (es) 4 (ms)
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if the absolute value of Q could be obtained, and if the
distance of the Fermi level from the corresponding
band edge were estimated with an error small enough
compared with kT Sin. ce Eqs. (31), (32) refer to the
absolute value of Q, as defined by (27), one can hope
at best to determine experimentally the difference
between the values of the y, in the semiconductor
studied and those in reference semiconductors for
which the classical model or some other simple model
is known to be valid, so that for the latter the y, can
be assigned theoretical values. (Alternatively, one
might hope to use as a reference substance in the
thermocouple a metal so well understood theoretically
that absolute values of Q could be calculated for it.)
In spite of these disappointing conclusions, we shall
see in the following section how, in the extrinsic case
where (33) applies, the thermoelectric power can
provide information of the kind sought.

A method of determining pi+ps, independent of
that of Sec. 2 and possibly more accurate, seems worth
noting: for a p-rt junction, provided the values of the
p, are independent of conduction type and of doping, "
the thermoelectric power of the couple is, by (33),

k (epl fn)+ (f y cps)
+3+Vi+Vs (34)

e

The left-hand side of (34) is a purely experimental
quantity (being measured either directly or by com-
parison of the two semiconductor-reference metal
couples). The first term in the square bracket on the
right can be estimated if the impurity concentrations
and activation energies, and the density-of-states
masses of the bands, are known. This method of
determining pi+ps should be applicable at tempera-
tures between the transition range and the range where
the phonon drag eGect appears.

4. PHONON DRAG EFFECT'

The result (25) indicates an effect which seems not
to have been noticed so far. The Nernst coefficient in
the extrinsic range is proportional to the appropriate y
(i.e., pi for N-type, p& for p-type), and y measures the
drift velocity due to the Soret eGect: the drift caused
by a temperature gradient in itself, apart from the
diffusion caused by any resulting gradient of carrier
concentration. If, as is normally so, the relaxation
processes determining the mobility are interactions of
the carriers with a substrate (lattice plus impurities
and defects) which itself does riot deviate appreciably
from local tkcrmat equilibrium, then the Soret effect
arises entirely from the fact that carriers entering a
given element of volume from different directions
represent Maxwell distributions for diferent tempera-
tures and hence- have different mean speeds. In these

'2This condition is not satis6ed at temperatures where the
phonon drag effect is appreciable or where the effect of impurity
scattering on the mobilities is appreciable.

circumstances we may expect values of y of order
unity. [See, for example, Eq. (17).) If, however, the
substrate equilibrium is appreciably disturbed by the
temperature gradient, in that the anisotropy of the
distribution of lattice modes with which the electrons
interact" is appreciable, then the scattering kernel
S(p,p') of the carrier relaxation processes will be
anisotropic, in the sense that 5(—y, —y')NS(p, p'),
and hence there will be a net rate of transfer of mo-
mentum (in the direction of —gradT) from the sub-
strate to a Maxwell distribution of carriers. This
transfer of momentum will by itself cause a drift of
carriers down the temperature gradient, in addition to
the drift of the normal origin mentioned above, and
hence it will contribute an extra term to y. The carriers
are entrained by the Aux of lattice modes. Anomalies
observed in the low-temperature thermoelectric power
of germanium, "and more recently in those of silicon"
and of indium antimonide, "have beeninterpreted' ""
as being due to this effect, termed the "phonon drag
effect." The anomaly occurs at low temperatures be-
cause the contribution to p from the effect is essentially
proportional to the Aux of thermal energy transported
by the lattice vibration modes, and the "lattice-mode
thermal conductivity" of the single crystal increases
greatly with decreasing temperature in the range in
question. Since 8 is proportional to p, there should be
an anomaly in the former corresponding to the anomaly
in Q.'r From (25) and (33), we have

k (3 ep —g) (p~ —X~q
I~Q I

eE2 kT ] & c )
(35)

(where ep, p~, and X~ refer to the appropriate band).
Since the contribution to y due to the phonon drag
effect is evidently large compared with the value, of
order unity, to be expected normally, it seems that the
anomaly in Q and in y can be adequately estimated in
practice, from measurements on a thermocouple of the
semiconductor and a reference metal, without one' s
being able to infer the absolute value of Q from the
measurements.

For p-type germanium, enough information is avail-
able for an attempt to estimate the anomaly in 8. Let
the superscript pk denote the anomalous contribution.
From Geballe and Hull's data, as analyzed by Herring
(reference 4, Fig. 2), it appears that for a high-resistance
sample ys"" 50 at 50'K (and increases to about double
this value at 25'K). Specifically, for Geballe and Hull's
"Sample 7'"4 Herring finds Q&" 3.0 millivolts/degree.

'g Scattering of a carrier at an impurity atom, properly de-
scribed, still involves absorption or emission of lattice-vibration
quanta to take up the recoil momentum.' H. P. R. Frederikse, reference 4; T. H. Geballe and G. W.
Hull, Phys. Rev. 94, 1134 (1954)."T.H. Geballe aud G. W. Hull, Phys. Rev. 98, 940 (1955).

"H. P. R. Frederikse. and E. V. Mielczarek, Phys. Rev. 99,
1889 (1955)."P.J. Price, BulL Am. Phys. Soc. Ser. II, I, 47 (1956).
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From Morin's published data" we take @2~~6.3&(10'
cm'/volt sec at 50'K. Corresponding to (35), we have

73ps ~Qyh( ir )Hyh)/c (36)

where X &" is the galvanomagnetic mobility appro-
priate to the anomalous contribution to y. Since no
value of X2~ &" is available, some assumption about it
or estimate of it is needed. One possibility is to suppose
it equal to X&~ for the normal Soret eGect, and to set
the latter, in turn, equal to zero, the value it has on the
classical model. In this way we arrive at the estimate,
for the p-type "Sample 7" at 50'K, given in reference
17.

8"" 2X10—' volt/gauss degree. (37)

On further consideration, this assumption about
X2~ &", and the resulting estimate of 8&", seem dubious.
It is implausible that X~ should be the same for the
normal and anomalous contributions to y." Even for
the classical model, however, the calculation of P~ &"

in terms of the perturbation of the phonon distribution
proves to be complicated and delicate; and at the time
of writing no final conclusions have been reached.
(The source of the difficulty is that the effect vanishes
in the zeroth order of the ratio s/v, where s is the
velocity of sound, and derives from the first order of
this ratio: that is to say, it originates in what are
normally neglected corrections in the classical model,
from the difference between the scattering by absorption
of phonons and the scattering by emission of phonons. )
Since in any case a detailed discussion of this problem
would be inappropriate to the plan of this paper, the
subject will not be followed any further here. The
result (37) must be replaced by the weaker statement

I
8""

I
10 ' volt/gauss degi'ee (38)

(for Geballe's "Sample 7" at 50'K).
The useful voltages actually available are limited by

the restriction, mentioned at the end of Sec. 2, of the
values of II to those for which magnetoresistance and
other effects quadratic in H are negligible. A rough
criterion for the allowable fields is that (p~H)'&&cs.

That is, say,
p, H/c & t & 1, (39)

(where 1 might be a few tenths). We then have, roughly,

(40)

This criterion would limit the voltages available from
the anomalous Nernst effect to those from the anoma-
lous Seebeck eGect times 5 times the appropriate
geometrical factor. In our case, this is of order a
millivolt/degree times the geometrical factor. However,
actual measurements of the Hall eGect as a function of

is F. J. Morin, Phys. Rev. 95, 62 (1954).
» In any case the results of the classical model are.not even

approximately correct for p-type Ge, as can be seen from the
fact' that p2ir/isa varies strongly with temperature, even in the
absence of impurity scattering.

X=—(q/k T)E V log e+ (—3/2T) V'T,

Y—= (1/kT') VT.

(A3)

If we denote the right-hand side of (A2) by P, then
the solution of (A2) for fi, as far as terms linear in h, is

fi ry —rq(v——Xh) I d(v@)/dpi'. (A4)

In evaluating the second term of (A4), we make use of
the facts that Bw/Bp=v, that r=r(v), and that
w=ynv'/2 (where m is the band-edge effective mass).
Then we find

fi rfe((X—wY) ——v—(qr/m)I hX(X—wY)j v). (AS)

The drift velocity, u= J'fivd'p, according to (AS) is

u= X (rvv) Y.(wrvv)—
—(q/e)L(h&(X) (r'vv) (1XY) (wr'vv) j, (—A. 6)

where the brackets ( ) denote averages over the
equilibrium distribution. Since we are assuming spher-
ical energy surfaces, the four scalar products X (rvv),
etc. , may be replaced by X(rn')/3, etc. Then, in the
notation (18),

3u= (2,1)X—-,'m (4, 1)Y
—(q/m)hXL(2, 2)X—sm(4, 2) Yj. (A7)

On the other hand, Eq. (6) becomes, when written in
terms of X and Y,

«,=u. (kT/c) t X (y,+s)kTYafiphx—X

~(~.) F+-'1 ")kThX Yj. (A8)
~ Harman, Willardson, and Beer, Phys. Rev. 94, 1065 (1954).

field H show that for p-type Ge the criterion (39) is
not stringent enough: the Hall mobility falls oB at
much lower 6elds."At 50'K the field is limited to less
than 100 gauss, for linearity to be preserved, and this
hmits

I
Bv"

I
H to of order 100 microvolts/degree.
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APPENDIX' VALUES OF THE TRANSPORT
PARAMETERS FOR A GENERAL e(v)

%e need only consider a single band, so we drop the
subscript s. The analysis corresponds to that in I from
Eq. (16) to Eq. (19) there. Here we adopt the same
notation, except that w(p)=&(e —ep) stands for the
excitation energy of the particle relative to the band
edge. By retaining the terms in V'T and substituting

&fr= fr/& (A1)

we obtain, in place of Eq. (19) of I,

(fi/r)+q(vXh) (8fr/Bp) = fov LX—w Yj, (A2)

where again h—=H/c, and
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Comparing coefficients of (A7) and (A8), remembering
q= We, and substituting

3kT= tie (2,0),

we arrive at the results (14)—(17).
Votes added its proof (a.)—The effect predicted in

Sec. 4 has been demonstrated by Geballe" in his
measurements of the low-temperature Nernst coeScient
of germanium. The experimental work is now concen-
trated on further developments, such as the interesting
and important question of the effect of strong magnetic
6elds. Dr. Herring is conducting a detailed analysis
of the Sell Laboratories results.

(b) The difficulty, mentioned in the passage between
Eqs. (37) and (38), over the calculation of the Hall
angle for the phonon drag effect has been clarified, in a
discussion with Dr. Herring and on further study, as
follows: The various phonon drag effects are propor-
tional, for given relaxation rates, to the square of the
velocity of the lattice modes involved. The difFiculty
explained in the paper appears when one tries to calcu-
late the Seebeck and Nernst effects, because this
velocity factor then introduces itself through the elec-
tron energy change" in electron-lattice collisions, which
cannot be neglected but rather is the origin of the effects.
If, however, one calculates instead the Peltier and
Ettinghausen effects (which are equivalent to the two
former effects, by the Kelvin and Bridgman formulas
respectively), thus considering the energy transported
with an electric current rather than the current induced
by a temperature gradient, then this velocity-of-sound
factor appears in the effect of collisions with electrons
on the lattice mode distribution, in a way that does not
cause mathematical difhculty. I was trying to work
by the former method, while Herring used the latter
one. By the latter method, the Hall angle corresponding
to the "phonon drag" contribution to the Ettinghausen
effect may be readily calculated for the classical model.
If the resulting formula for ) & on the classical model
is combined with Geballe's results, it appears that the
low-energy phonon relaxation time is proportional
approximately to the square of the phonon wave-
length. It seems not worthwhile to give this calculation

~' C. Herring and T. H. Geballe, Bull. Am. Phys. Soc. Ser. II. 1,
117 (1956).This discovery, which was made independently of my
work, was brieQy communicated to me by Dr. Herring while the
manuscript of the present paper was in the 6nal stages of prepara-
tion. I thought it best to complete the latter without reference
to the experimental work, adding this note instead of modifying
the text.

~'It is convenient here to use the word "electron" to mean
either conduction electron or hole.

and formula, since the real interest is now in the actual
departure from the classical model, and since my result
is contained in the far more advanced work of Herring
on the latter question. It should be mentioned, how-
ever, that the formulas for the anomalous contributions
to the Seebeck and Nernst eGects which I obtained
"the hard way" for the classical model do not agree
with those for the Peltier and Ettinghausen effects
obtained "the easy way. " It has been pointed out by
Sondheimer" that the deviations of the phonon and
electron distribution functions from equilibrium are
actually given by two colptsd equations such that it is
incorrect to solve for one deviation by assuming the
other to be as if the photon drag effect were absent
(which is what has been done so far, except in the
calculation. by Herring mentioned below). This criticism
is quite correct, and bears equally on both kinds of
calculation described above: on further examination,
however, it turns out that the present disagreement
between them is not thereby accounted for. The order
of magnitude of the necessary correction to the results
of calculations of the phonon drag effects is the pro-
portion of relaxation events, for the low-energy phonons,
which are collisions mith ue electron. This is normally
negligible, except for high electron concentrations. The
existence of this correction was pointed out by Herring
in his paper (reference 4, the beginning of Sec. VII),
where he makes an estimate of the correction, as a
function of electron concentration, for the thermo-
electric power of germanium. I am indebted to Geballe
and Herring for communicating and discussing their
work.

(c) Reference 8 might usefully be amplified. What
happens in the circumstance referred to is that the
component of the Soret drift parallel to the temperature
gradient vanishes, while the component normal to the
temperature gradient does not. This is an interesting
situation, though not evidently of any deep signi6cance. -

(d) A theory in some respects comparable to, and in
some respects supplementing, the present one has been
published by Bass and Tzidilkovski. '4

(e) The results given in Secs. 2 and 3, and Eq. (35),
depend on the assumption that the band energies are
independent of temperature. Generalizations to include
a temperature variation are given in a forthcoming
paper (III of this series) on thermoelectricity. See the
paragraph containing Eqs. (47)—(49), Sec. 2, there.

"E. H. Sondheimer, Proc. Roy. Soc. (London) A234, 391
(1956).' F. G. Bass and I. M. Tzidilkovski, J.Kxpertl. Theoret. Phys.
U.S.S.R. 28, 312 (1955) LSoviet Phys. —JETP 1, 267 (1955)j.


