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present paper is achieved. We have a starting point for
detailed calculations of the thermodynamic effects of
spin-wave interactions. Such calculations will be carried
through, and quantitative results obtained, in a
following paper.

ACKNOWLEDGMENTS

This work was done at the University of California;
the author wishes to thank the Berkeley Physics
Department for its hospitality, and Professor Kittel
for supplying the initial stimulus.

PH YSI CAL REVIEW VOL U M E 102, NUMBER 5 JUNE I, $956

Thermodynamic Behavior of an Ideal Ferromagnet*

FREEMAN J. DYSON
DePartment of Physics, University of California, Berkeley, California, end

Institute for Adeueced Study, Priecetorl; %em Jersey
(Received February 2, 1956)

The free energy of an ideal Heisenberg-model ferromagnet is
calculated as a power series in the temperature T, using the
mathematical machinery developed in an earlier paper'. The spon-
taneous magnetization in zero external field is given by

fM(T)/3f (0)g=S o(Pt' o—gttst' u—stt't' o—sS %+—O(tt'ts).

Here 8 is the temperature in dimensionless units, and cp cI c2 83
are positive numerical coeKcients which are computed for the
three types of cubic crystal lattice. The first two terms are the
result of the simple Bloch theory in which spin waves are treated
as noninteracting Bose particles with constant effective mass. The
a1 and a2 corrections come from the variation of eQ'ective mass
with velocity. The a3 term is the lowest order correction arising
from interaction between spin waves. This result is in violent

contradiction to earlier published calculations which gave inter-
action eHects proportional to T"4 and &.

The smallness of the thermodynamic e8'ects of spin-wave
interactions is discussed in physical terms, and partially ex-
plained, in the introduction of this paper. A general proof is
given that the thermodynamic effects of the "exclusion principle, "
which forbids more than (25') spin deviations to occupy the same
atom, are of order exp( —as ') and give zero contribution to any
finite power of 0. The residual dynamical interaction between 2
spin waves gives rise to a second virial coeScient b2 which is
calculated and shown to be of order T@2.The us term in the mag-
netization is proportional to b2'. EKects of interaction of 3 or
more spin waves are estimated and found to be of order 8~ or
higher.

1. INTRODUCTION

' 'N the preceding paper, ' a mathematical formalism
~ - was constructed to describe the motions of spin
waves in an ideal ferromagnetic lattice. In particular,
an exact formula (I, 157) was derived for the free energy
of such a lattice. In this paper the free energy will be
evaluated as a series expansion in powers of the tem-
perature T. The results may be expected to provide an
accurate description of the thermodynamics of the
model in the range of low temperatures, say below one
quarter of the Curie temperature. The notations and
definitions of the earlier paper will be used without
further explanation.

The quantity which is of the greatest practical
interest is the spontaneous magnetization sM(T) of
the lattice in zero external field. In the linear approxi-
mation of the Bloch spin-wave theory, ' this magnetiza-
tion is given by the formula

[M(T)/M(0) )=S—f (-')fist'. (1)

Here f(u) =gt"n is the Riemann zeta function, 5 is
the spin of each atom, and 0 is the dimensionless tem-
perature defined by Eq. (I, 108). Considerable uncer-

*Research supported by the National Science Foundation.' F. J. Dyson, preceding paper LPhys. Rev. 102, 1217 (1956)j.
This paper will be quoted as (I), and equations in it will be quoted
as (I, 157) etc' F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).

tainty has existed concerning the accuracy of this
formula. Kramers and Opechowski' have calculated
additional terms in an expansion in ascending powers
of 8, and find the next term to be of order O'. However,
Schafroth, 4 using the spin-wave formalism of Holstein
and Primakoff, ' finds a term in 0')" with a positive co-
efricient, which would interfere seriously with the 0"'
term in the temperature range of current experiments. '
Van Kranendonk' by another method arrives at a term
in 07I with a diGerent coefFicient. There is a clear
disagreement between these three published results.
The starting point of the present investigation was an
attempt to decide which of them is correct.

The Bloch formula (1) is obtained by assuming that
spin waves do not interact with one another, and that
the energy of a spin wave is proportional to X ', where
X is the wavelength. The theoretical deviations arise
from three causes: (a) deviation of the energy spectrum
from the X ' law; (b) true dynamical interaction be-
tween spin waves; (c) kinematical interaction between
spin waves due to the fact that a single atom cannot
carry more than 2S units of reversed spin simultane-

3H. A. Kramers, Commun. Kamerlingh Onnes Lab. Univ.
Leiden, 22, Suppl. No. 83 (1936);W. Opechowski, Physics 4, 715
(~937).

e M. R. Schafroth, Proc. Phys. Soc. (London) A67, 33 (1954);
T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).' L. Noel, J. phys. radium 15, 74S (1954).' J. Van Kranendonk, Physica 21, Sj., 749 and 925 {1955).
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ously. The exact definitions of dynamical and kine-
matical interaction are given in Sec. (I, 3). Effect (a) is
simple to calculate and adds to Eq. (1) terms in
0'~' 0"' - . which are exhibited in Sec. 5 of this paper.
ERect (b) is also straightforward and is calculated in
Secs. 6—9; the leading term is given by Eq. (122) and
is of order 84. The major difficulty of the problem lies
in the treatment of (c).

Ke shall prove in Secs. 2—4 that the contribution of
(c) to the free energy is less than expL —aT./T$, where
T', is the Curie temperature' and u is a numerical co-
eNcient of the order of unity and independent of tem-
perature. The eRects of (c), although they are certainly
important in the neighborhood of the Curie point, give
rigorously zero contribution to the coeKcients in the
low-temperature expansion of the free energy in powers
of e. The lowest order correction to Eq. (1) arising
from spin-wave interactions is the 04 term from eGect
(b). In particular, it is established that neither e nor
8 ~ corrections exist. The corrections are all so small
that experimental departures from the Bloch formula
can be reliably attributed to physical eGects' not in-
cluded in the model.

The large corrections found by earlier investigators' 4 '
arose from insuKciently exact treatments of the kine-
matical interaction (c).This interaction produces effects
which appear to be large, but which upon closer ex-
amination cancel each other almost exactly. It is easy
to be misled, because an approximation which looks
harmless can destroy the cancellation and produce a
result much larger than the true one. The present
author once fell into the same trap and announced a
correction to Eq. (1) of order est', in a letter which was
circulated but fortunately not published. The 0"' term
was obtained by calculating the terms in Eq. (I, 157)
which involve the kinematical interaction but not the
dynamical interaction. Since the terms involving the
dynamical interaction alone are of order tII', it seemed
safe to assume that terms involving both interactions
simultaneously would be of higher order than 0'~'.

However, it turned out that the leading tenn involving
both interactions is of order 0't' and precisely cancels the
leading kinematical term. The analysis of Secs. 2—4
will show that the cancellation is by no means accidental
and extends to all powers of 0.

The main result of this paper is therefore a negative
one, that there is no thermodynamical e6ect of the

~ The relation between the Curie temperature and the exchange
integral J is not known precisely. For convenience we define an
"approximate Curie temperature" T, by the equation kT.
=—,'JSyov, which gives the convenient relation (T/T, )=2m.e to
de6ne the dimensionless variable 8. Various approximate calcula-
tions, reported by C. Kittel, IntroductiorI, to SolÃ State I'hysics
(John Wiley and Sons, Inc. , New York, 1953), p. 1'63, give values
for the Curie temperature equal to T, within the theoretical uncer-
tainty. More recent calculations by G. S. Rushbrooke and P. J.
Wood, Proc, Phys. Soc. (London) A68, 1161 (1955), indicate that
for all three types of cubic lattice, with S=-,', the true Curie
temperature is about 0.9T,. Note that the J in the quoted refer-
ences is equal to —,

'J in the notations of the present paper.

kinematical spin-wave interaction in any series ex-
pansion in powers of 8. In other words, the spin waves
can be considered as a Bose gas of ordinary particles
subject to no "exclusion principle" but only to the weak
dynamical interaction. The basic physical reason for
this result seems to be the following. A spin wave of
long wavelength is a rotation of the total spin of a large
number of aligned atoms through a small angle. Such
small rotations do not have any significant tendency to
exclude each other.

The picture of a spin wave as a coherent rotation of
a large number of atomic spins through a small angle
provides a qualitative explanation for the smallness of
both kinematical and dynamical interactions. In this
picture the kinematical interaction is the limitation in
the number of available states, due to the fact that
rotation angles have a range of variation which is not
infinite but equal to 2m-. This limitation will become
important only when rotation angles of the order of a
radian are actually excited, which is the case at tem-
peratures in the neighborhood of the Curie point. At
low temperatures, the probability of a rotation angle
exceeding a radian decreases exponentially with de-
creasing temperature, and the sects of kinematical
interaction are correspondingly small.

In the same picture, the dynamical interaction be-
tween spin waves arises in the following way. When two
long-wavelength spin waves are superposed in the same
region of the lattice, they will interfere with each other
to the extent that the two corresponding rotations of
the total spin of the region fail to commute. The non-
commutativity causes a mutual disturbance which is
the dynamical interaction. ' Since any two rotations
through small angles almost commute, the dynamical
interaction is always weak and grows rapidly weaker at
longer wavelengths.

The explanation of the smallness of both kinds of
interaction effects lies in the fact that a spin wave of
long wavelength is a basically nonlocal phenomenon.
Because each spin wave is a coherent movement of a
great number of atomic spins, the quantum effects of
the individual spins are very largely suppressed. For
this reason it seems that the spin-wave picture is more
appropriate than the Van Kranendonk picture' of a
gas of spin deviations attached to individual lattice
sites, for describing the state of a ferromagnet at low
temperatures. At higher temperatures, and especially
in the neighborhood of the Curie point, the situation is
reversed; the spin-wave picture becomes meaningless
while the Van Kranendonk picture remains valid and
useful.

Strictly speaking, if two degrees of freedom of a system are
associated with coordinates x, y, the extent to which the two co-
ordinates fail to be dynamically independent is measured not by
the commutator fx,y) but by the double commutator Pi,yg
=(i/h)LLK, xj,yj. Accordingly it is the double commutator of
the Hamiltonian with two rotations (see Eq. (I, 22))which deter-
mines the magnitude of the dynamical interaction.
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(vlFlg)=F 8„„, (2)

with F„given by Eqs. (I, 31) and (I, 32). Then accord-

ing to Eq. (I, 31)

(vlF its) =(vie). (3)

An ideal state ll) is called "proper" if there exists a
physical state

l I) corresponding to it, which is the case
if each e; does not exceed 25. Otherwise the state ll)
is called "improper. " The meaning of Eq. (3) is that
the two sides of the equation are equal when ll) and

l
v) are proper states, and the left side is zero if one or

both states are improper.
The Hamiltonian K is transferred from the physical

to the ideal model by means of the parallel equations

(I, 26) and (I, 47). In consequence of Eq. (3), the
definition of the transferred Hamiltonian may be
written

(vlFX le) = (vlael «s). (4)

This equation, like Eq. (3), means that the two sides

are equal when lu) and
l v) are proper, while the left

side is zero otherwise. In particular, Eq. (4) implies

that all matrix elements of K from an improper state

l«s) to a proper state lv) are zero. &ut the matrix ele-

ments into an improper state
l v) need not be zero, be-

cause the left side of Eq. (4) is automatically zero when

l v) is improper. The matrix elements of X into improper
states are left completely undetermined by Eq. (4).

The choice of Eq. (I, 48) for the Hamiltonian of the
ideal model is not uniquely determined by Eq. (I, 47).
We may add to the Hamiltonian (I, 48) any operator
which has zero matrix elements into proper states

l v),
and all the results obtained in I will remain valid. We
shall take advantage of this freedom to modify K in

the next section.
A convenient language in which to speak of the ideal

spin-wave model is to call the operator Ii an "indefinite

metric tensor. " Thus every state le) has an adjoint
defined by

(ul = (sslF. (5)

Every operator 0 of the physical model is transferred

to the ideal model by the definition

(vlOll) = (vlFOlu) =(vlOll), (6)

2. PHYSICAL AND IDEAL SPIN-WAVE MODELS

We now begin the analysis of thermodynamic eRects
of the kinematical interaction, which will occupy Secs.
2—4. The first step is to reformulate the properties of
the physical and ideal spin-wave models which were
discussed in Sec. (I, 5). The reformulation will supple-
ment and simplify, but not supersede, the results
obtained in I.

We introduce an operator Ii, operating in the Hilbert
space of the ideal spin-wave model. Between two states

le), lv) of the ideal model, defined by Eq. (I, 43), the
matrix element of Ii is

of which Eqs. (3) and (4) are special cases. If 0 is
Hermitian in the physical model, it satisfies in the
ideal model the condition

I'O=O Ii, (7)

that is to say it is self-adjoint with respect to the
metric F. In particular X, is self-adjoint in this sense.
In general, all physically observable quantities such as
probabilities and eigenvalues are unchanged when we
pass from the physical to the ideal model, provided
that conjugate states are replaced by adjoints. '

The interpretation of P as an indefinite metric makes
clearer the physical meaning of the eigenstates of the
Hamiltonian K which were studied in Sec. (I, 6).
These were states lP) of the ideal model satisfying the
equation

3('lit) = «I 4) (8)

I-et I' be the projection operator onto the proper states
of the ideal model; this has matrix elements

(v l
P

l I)=E„8„„
with F- given by Eq. (I, 56). The fact that 3(', has zero
matrix elements from improper to proper states is
expressed by the identity

Thus Eq. (8) implies

I'Bc= I'scI'. (10)

FKP
l P) = «F

l g ).
If lf) is the physical state corresponding to the proper
part Pl/) of lf), than Eq. (11) is equivalent to the
statement

3('lk) = «14). (12)

Thus every solution of Eq. (8) for which P lf)&0 gives
rise to a physical eigenstate of the Hamiltonian in the
physical model.

Conversely, let lP) be any physical eigenstate satis-
fying Eq. (12). Then the corresponding proper ideal
state P lP) satisfies Eq. (11), from which

PEPIN) = «Pl a) (13)

follows. Thus Eqs. (12) and (13) are equivalent, and
there is a one-to-one correspondence between the
physical eigenstates lf) and the ideal eigenstates Pl/),
corresponding eigenvalues being equal. The deduction
of Eq. (8) from (13) is, however, not trivial. For Eq.

' The Holstein-Primakoff method (see reference 4) associates
with each physical state )m) the ideal state ~N)zzz= J'&~u). Thus
Eqs. (3) and (6) are replaced by (siv)zzi =(e~v), («I~OIrJ ~v)&I
=(e~Ojv), with a transformed operator OIri de&ned by OHi
=Ii&OI &. In particular, the transformed Hamiltonian K~~
=Ii&BCI & is Hermitian in the ideal model. By using the basic
states

~
m)av, which are orthogonal and correctly normalized, the

method avoids the conceptual difhculties associated with in-
de6nite metric and non-Hermitian Hamiltonian. But the metric
tensor F takes its revenge by appearing in K~z with a square
root; for any practical calculation of spin-wave interaction effects,
the Hamiltonian K~~ is useless because of the dominating non-
linear behavior of the square roots.
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(8) to hold, the improper part ~P') of ~P) must be
determined by

f(m) = 1—(u/2$). (20)

Here q is the total number of particles, which is a con-
stant of the motion and may be treated as a c-number,

This can be solved for ~P') and gives a unique state
~P) satisfying Eq. (8), provided that there does not
exist a purely improper eigenstate of BC with the same
eigenvalue e. For Eqs. (8) and (12) to be equivalent,
it is thus sufFicient that c should not be the eigenvalue
of a purely improper state.

We shall investigate whether e may be an improper
eigenvalue, in the case of the two-particle states con-
structed in Sec. (I, 6). When S)-'„ two-particle states
have no improper components and so the question does
not arise. So we suppose S=—,'. Then any improper two-
particle state

~

P') is of the form

I4') =Z 4(h)~ *'I0), (»)
and the Hamiltonian (I, 57) operating on it gives

Se ~y') = (Z,+2L+ ~,Z) (P'). (16)

Every improper two-particle state is an eigenstate with
the same eigenvalue given by Eq. (16). The eigenvalue
of the physical scattering state of two spin waves with
momenta e, ~ is

=&o+21-+V[~vo v. 7.) (17—)—
This can indeed become degenerate with Eq. (16) when
the two spin waves have energies of the order of —',ypJ.
But whenever the wavelengths are long compared with
6, the energies are small compared with ypJ, and there
is a clear separation between proper and improper
eigenvalues. In the case of long wavelengths, the eigen-
states of Eq. (8) are in one-to-one correspondence with
the physical states satisfying Eq. (12).

To conclude this section, we observe that the identity
(10) leads to a very simple derivation of the formula

(I, 55) for the partition function of the lattice. By using
Eq. (10) repeatedly, it is easy to prove

exp( —PERP) =I' exp( —PX). (18)

We have seen that the eigenstates of (PAP) in the
ideal model are in one-to-one correspondence with the
eigenstates of X, in the physical model. Therefore the
partition-function Z is the trace of the left side of Eq.
(18), taken in the ideal model. But the trace of the
right side of Eq. (18) is identical with the right side of
Eq. (I, 55), and this completes the proof.

3. CONSTRUCTION OF A POSITIVE HAMILTONIAN

The Hamiltonian (I, 57) may conveniently be written

~=&0+LV+~S E~~L~~*f(&~+~) (n~ n~+~) 3, (19)—
with

and I, is the occupation number at lattice site j. The
eigenvalue s of this Hamiltonian corresponding to
proper eigenstates all lie above Ep, by a theorem of
Teller. " However, the third term in Eq. (19) is not
positive-definite for improper states. Consider for ex-
ample the state

(n*) (n *)'I0).
In this state, Eq. (19) has the expectation value

(21)

where
Z, —Zp Zg) (23)

Zr ——Spur Lexp (—P3'.)j (24)

is a sum extended over all eigenstates of K in the ideal
model, and ZI is the same sum extended over improper
eigenstates. The exact formula (I, 157) for the free
energy is obtained by taking the logarithm of Eq. (23).
The terms in Eq. (I, 157) involving no 6, with j)1 are

Ar = —(kT/E) logZp, (25)

and the terms involving some 6, with j&1 are correc-
tions which subtract away the nonphysical eGects of
the improper states in ZI. In other words, A z is the free
energy of a Bose gas with dynamical interaction but no
kinematical interaction, and the kinematical correc-
tions to A~ consist in the removal of the contributions
arising from improper states.

If we use this method of calculation, it is essential
that the eigenvalues of 3C should be bounded below, in
order that Az shouM even exist. We are therefore forced
to modify the Hamiltonian. The desired result is ob-
tained by a very simple modification, keeping Eq. (19)
unchanged but using instead of Eq. (20)

f(N) =1—(I/2S), I=0, 1, , 2S,

f(u) =0, N&25.
(26)

This change is allowed by the argument of Sec. 2, be-
cause it adds to the Hamiltonian an operator which has
zero matrix elements into all proper states. The added
term also has zero matrix elements between states
containing less than (2S+2) particles, so that the
previous discussion of 2-particle eigenstates is not
aGected by the change. The dynamical spin-wave inter-

Io E. Teller, Z. Physik 62, 102 (1930).A proof of this theorem is
incidentally provided by Eq. (40).

(~)=Eo+L(X+Y)+JSt Xf(Y)+Yf(X)3 (22)

which certainly lies below Ep if X and I' are both large.
Thus the Hamiltonian is not only not positive-de6nite,
but even has no lower bound to its eigenvalues, when
improper states are included.

The improper eigenvalues are a purely artificial
creation and must disappear automatically from any
physically observable quantity. For example, they are
excluded from the partition function (I, 55) by the
factor E„which is zero for improper states. However,
our method of calculation is based on the identity
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Ng'=Mg'q j 6 g)

Qg+2Sq j 6 g.
(28)

Here g means the set of lattice points j not in g. Let
PM be the projection operator onto the space QM. In
particular, when g is the empty set, QM is the space of

proper states and I'~ is the projection operator I'
defined by Eq. (9). When g is not empty, QM is the

space of states which are improper with respect to a
fixed set of lattice points at which fixed numbers of
particles are located.

Let ~e) and
~
v) be any two states, and j any lattice-

site for which N, &v;. The matrix element (@~~X~v)

according to Eq. (19) contains a factor f(N, ), which is

zero by Eq. (26) when n, )2S. If then the state ~v)

lies in QM, nonzero matrix elements of X lead only to
states ~e) with

I;&M;, j eg. (29)

In other words, X', has matrix elements from a state of

QM to a state of QM only if the conditions

I

(30)
M &M;, jag,

hold. The conditions (30) will be expressed for brevity
by the notation (M') & (M). The important point is
that the relation (&) is transitive, that is to say
(M") & (M') and (M') & (M) imply (M") & (M), and
asymmetric, that is to say (M') & (M) and (M) & (M')
imply (M') = (M). Hence, if a cycle of nonzero matrix
elements (ei IX I +„), (+ IX I

+ i), , (» I
X

I ei) exists
with each ~e,) belonging to QM;, all the (M,) must be
identical. From this follows the identity

PM [exp (—pX) 7PM ——exp (—pPMXPM),

of which Eq. (18) is the special case g=0.

(31)

action will be modi6ed by the addition of terms repre-
senting the direct interaction of (2S+2) or more par-
ticles. The Green's functions I'; defined in Sec. (I, 9)
will be unchanged for j= 1, 2, , 2S+1, but changed
for j&2S+2.

An important property of the modified Hamiltonian
is that it still contains the factor (g;—q;~p) operating
to the right. This means that the new dynamical inter-
actions introduced by the change have the property of
being uniformly small when operating on a state com-

posed of spin waves with long wavelengths.
We now proceed to the proof that the eigenvalues of

the modified Hamiltonian all lie above Eo. Let g be any
set consisting of a finite number of lattice points j.Let
(M) be a set of integers M, , one corresponding to every

j in g, satisfying

M;)2S+1, j p g.

Let QM be the space composed of linear combinations
of those states of the ideal model for which

Taking the spur of Eq. (31) and summing over (M'),
we obtain Z& given by Eq. (24). Thus

X~I)=p(N), (34)

with X given by Eq. (33) and the state ~N) in QM, is
then equivalent to the problem

Xi+)=pie), (35)

where jg) is a state of the spin system with atoms j in

g removed, and K is given by

X=Ep+Iq+-,'J Pi[S'—(S; S,+p)7

+p JZpM~(S —SJ+p') (36)

There is a theorem, proved in Appendix I, which
states that

s -((s,"s,„,))& (8s)- [(s,*)—(s,+,*)7,

where the expectation values are taken with respect to
any physical state whatever. When the expectation
value of Eq. (36) is taken in the state

~
I) which satisfies

Eq. (35), the theorem gives

p &Ep+ Lq+ (J/16S)Pi [V;—V;+p7'

+-,'J QpM;[V; —V;+p7, (38)

with

V =S+(S*) j & p,
(39)

Vg=2S) j 6 g.

By means of Eqs. (27) and (39), the second sum in Eq.
(38) may be crudely approximated and combined with

Zr =pM. Spur[exp (—O'MXPM) 7 (32)

Equation (32) states that to find all the eigenvalues of
K it is sufhcient to examine the projections of K in
each subspace QM separately.

When X is operating between two states of the sub-
space QM, Eq. (19) may be written

X=Ep+Ig+ JS Pi[g;*f(N,+p) (g;—g, p)7

+JSg pM;f(pi, +p) (33.)

Here the sum Pi extends over points (j, j+5) both
belonging to g, while gp extends over j belonging to g
with (j+5) belonging to g. In Eq. (33) the operators
g, , q,*, with j in g, no longer appear; the degrees of
freedom of the system corresponding to these variables
are suppressed by Eq. (28). Therefore X may be con-
sidered as operating between states

~
I) and

~
v) defined

by occupation-numbers I; and v; at points j in g alone.
When defined in this way the states

~
I) and

~
v) are

proper, corresponding to physical states ~m) and ~v)
of the spin system which remains after the atoms at
points j in g are removed from the lattice.

By following the argument of Sec. 2 in the reverse
direction, we may transfer 3C back into an operator
operating on physical states

~
e). The eigenvalue problem
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the first to give

e & Ep+LV+ (J/16S)$g[V; V—;+o]', (40)

tion function de6ned by Eq. (23), the contribution of
an improper eigenstate to Z& is smaller than Z& by a
factor

where the sum is now over all j and S.
To 6nd a lower bound to Eq. (40), we return to the

electrical network analog which was introduced after
Eq. (I, 75). The sum

D=s Zrp[Vr —Vi+o]' (41)

is the energy dissipation in the network when each
junction j is maintained at potential V;. The presence
of the term Lq in Eq. (40) requires that q be finite and
therefore the V; tend to zero at large distances. The
minimum of D is attained when current is fed into the
network only at the junctions j of g at which the po-
tential is 2S, the current flowing out to zero potential
at infinity. Thus

D& (2S)sE (42)

where R, is the resistance of the network between the
junctions g and infinity. When one or more junctions
are removed from g, the resistance R, increases and
the dissipation decreases. Therefore for any g/0,

D& (2S)'Ei '

where R~ is the resistance between a single junction and
infinity and is given by

Et=Go(0) = Q 'dhdydz,JJ~ (44)

with Gp and Q de6ned by Eqs. (I, 90, 91, 93, 96). We
may write

Rt= (1+a.)yo ', 0&a.&1, (45)

the numerical values of o. for the three types of cubic
lattice being, respectively, "

n =0.5164, 0.3447, 0.3932. (46)

Combining Eqs. (40) and (43), we obtain the inequality

e & Eo+Lq+[JSyo/2(1+rr)]&Ep+Lq+»Jap, (47)

which holds for every eigenvalue of 3'. operating within
a subspace Qsr with g/0. The only eigenvalues which
are not subject to Eq. (47) are those belonging to
proper eigenstates.

Ke have thus proved that the modified Hamiltonian
defined by Eqs. (19) and (26) is positive de6nite.
Further, there is a. finite energy gap greater than
(rs JSyp) between the lowest proper eigenstates and the
lowest improper eigenstates. According to reference 7,
this gap is of the order of (AT.) at least."In the parti-

~' The integrals were computed analytically by G. N. Watson,
Quart. J. Math. 10, 266 (1939). For the body-centered case the
result is particularly simple, namely Gp(0) = L32s') 'jF(~}g'.

"More careful analysis could probably increase the gap by a
factor of 2. According to Eq. (16) the gap is not greater than
2JSyp when S=).

4. ELIMINATION OF THE KINEMATICAL
INTERACTION

In the formula (I, 157) for the free energy, each
momentum X,„or p„occurs just twice, once as argument
of a F; and once as argument of a 6;. Hence the whole
expression is formally unchanged if we transform to
configuration space, replacing each function F; and 6;
by its Fourier transform, and replacing each momentum
variable X, or p, by a position variable j„or k„. By
Eq. (I, 150), the transformed 6o is simply

ao(jt, )j,)k, ) ~,k,)

=e(V) II ~(j —k ) II ~(j —jt) (49)

This means that in configuration space the eGect of
each 6, is only to make a set of 2q position variables
occupy the same lattice point.

The Fourier transform of I't is, by Eq. (I, 135),

I', (j,k) =X ' P~ exp[ok (j—k) —P(L+e„)]. (50)

When we insert into Eq. (50) the quadratic approxima-
tion (I, 109) for eq, the result is

I', (j,k) =(l& exp[ —PL—oreV i(j—k)'] (51)

a Gaussian distribution representing the solution of a
continuous diffusion problem. The exact F& given by
Eq. (50) is the solution of the corresponding discrete
random-walk problem, in which a particle jumps at
random from a lattice point to any one of its nearest
neighbors. The exact I'i will behave like Eq. (51) at
large separations

~ j—k ~, decreasing exponentially with
a finite range of the order of 0 &V&.

The Green's functions I", with q) 1 are solutions of
multiple random-walk problems in which q particles
diGuse simultaneously over the lattice with an inter-
action which acts only between particles which happen
to occupy the same or nearest neighbor positions. Since
the interaction has short range, the range of the dif-
fusion of any one particle is determined by the function
I'&. Since I'~ is defined as a sum only over connected
Feynman graphs, all of the q particles are connected
with each other by interactions. Therefore the function
F, has a finite over-all range, and decreases exponen-
tially as soon as the separation between any two of its
arguments is large compared with 8 &V&.

exp[ —e/AT] &exp[ —(3or8) '], (48)

by virtue of Eqs. (I, 108) and (47). It is to be expected .

that the contribution from improper states to the free
energy will remain of the order of magnitude (48),
after summing over states and taking the logarithm of
Eq. (23). This statement will be proved in the following
section.
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The general term in Eq. (I, 157) may be written
schematically

ni

(52)

needed to prove that [N 'P, (m;)$ remains small in
the limit as E —+ ~.

To complete the proof, we choose a number M and
write

71' ' 77' 1 Z.(~') =Z.t+Z.s (57)

Qq'Iss; = srs;. (55)

The sum of all connected cluster integrals with given
mi will be

There is one position variable j„corresponding to each
factor 6; in Eq. (I, 157), and this j„occurs (2i) times
among the arguments of the Green's functions F;. The
sum I is precisely what is called a "cluster integral" in
the statistical mechanics of imperfect gases. The
structure of I depends on the following parameters:
(a) the integers m; which determine how many of the
variables j„occur (2i) times, (b) the integers e; which

determine how many times each function Fi occurs,
(c) the permutations P and Q which distribute the j„
among the F;. The choice of these parameters is re-
stricted only by the requirement that the expression
must not break up into a product of two or more un-

connected cluster integrals.
If the integers mi are kept fixed and I is summed over

all P and Q, the resulting sum is apart from a numerical
factor equal to

P(srs;) =P„(ss~ exp[ —P(K—Eo)J~N). (53)

This is part of the partition function Z& given by Kq.
(24), but the states ~e) are restricted to those which
contain no~ positions j„occupied singly, ns2 positions
occupied doubly, and so on. In Eq. (53) contributions
are included from values of ss;, P, and Q which make I
disconnected. Such contributions will be of the form

P(srs„)g(sls;) . P(m„),

where the m;i are integers satisfying

[pM8:]» sV-. - (59)

Each set (j&, . ,j~) separately gives a contribution
which can be written in the form (56) and is bounded
by Eq. (48). Hence P,& is bounded by

N[PM8 ' jss s exp[ —(3m8) 'j.
But g, s is of the order

(60)

N' exp (—M'), (61)

because each of the functions F; in the cluster integral
has a range limited by Eq. (51). Taking M to be of
order 8 ', Eqs. (60) and (61) give

g, (m, ) &bN exp( —a8 '), (62)

with coefficients a, 6 independent of E and 8. It is
thereby proved that all terms in the series (I, 157) for
the free energy are of order exp( —a8 '), except the
terms with no~= q, mi=o for i&1.

This result implies that, in developing a series ex-
pansion in powers of 8, all terms involving the kine-
matical interactions 6; with i&1 may be simply
dropped from Eq. (I, 157). The resulting formula for
the free energy is

Here g.t consists of those terms of the sum g, (ass;)

for which

~j„—j, ~
&Mp8 'V' (58)

for each pair of variables (j„,j,), and P,s contains the
terms for which Eq. (58) is false for some (r,s). The
number of sets of points (j~, . ,j„)contributing to P, ~

is of the order of

P.(e;)=P (stsr) —P (et,)g (e„)+ (56) ~=(Es/N) —(0N) '2 2
q ) 1.~ Xg I'

where each of the correction terms is a product of the
form (54) with a numerical coef5cient which need not
be written out in detail. In fact Eq. (56) states just the
identity of the free energy 3 with the logarithm of the
partition function Z, when both quantities are expanded
in series of cluster integrals.

Suppose that at least one mi with i) 1 is nonzero.
By Eq. (I, 151), this means that one nz; with i)2S is
nonzero, and so all the states contributing to Eq. (53)
are improper. Moreover, in every product which ap-
pears in Eq. (56) there is at least one factor P(m;;)
with the same property. By Eq. (48), every term on
the right of Eq. (56) has then a factor which is ex-
ponentially small at low temperatures. However, it does
not immediately follow that g, (mrs;) is itself exponen-
tially small, because the different terms on the right of
Eq. (56) contain various powers of N. Some care is

ni

SIS2 ~ ~

A = (Es/N) 8*kT Q b e "&z-
m=l

(64)

re The deimition of be is taken from D. Ter Haar, Efemears oj
StaAstical Mechanics (Rinehart, New York, 1953), Chap. 8.

representing a virial expansion of the free energy of a
Bose gas with only the ordinary dynamical interaction.
Each variable X„occurs just twice among the argu-
ments of the F;, and the permutations I' are subject to
the condition that every subset of the Fi contains at
least one X„whose second occurrence is outside the
subset.

The virial coefficients b are de6ned" as coefficients
in the series
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Thus b„ is given directly by the terms in Eq. (63) where i(r/)=Z„(0) is the Riemann i function. These
which have q=e. corrections to the Bloch formula (1), arising merely

from the discreteness of the lattice, are easy to calculate
S. FREE ENERGY IN THE LINEAR APPROXIMATION and are not of any theoretical interest.

The leading terms in the virial expansion (63) are
those with e~=q, e;=0 for i)1. The sum of these
terms is the quantity A&, given explicitly by Eq.
(I, 158), which represents the free energy of a spin-
wave gas without interaction. At low temperatures,
significant contributions to A& come only from spin-
waves of long wavelength, for which the quadratic
relation (I, 109) between energy and momentum is a
good approximation. If the quadratic approximation
for the energy p/, is substituted into Eq. (I, 158), the
result is an elementary Gaussian integral which gives
a free energy proportional to T"', in agreement with
Bloch.' If we expand the difference between e), and the
quadratic approximation in powers of (Q,), and then
substitute into Eq. (I, 158), we obtain an expansion of
A~ in ascending powers of T. The higher terms in the
expansion are corrections to the Bloch formula arising
from the discreteness of the lattice, but having nothing
to do with interactions between spin waves. These are
the corrections which are called type (a) in Sec. 1.

An elementary calculation gives, for the first three
terms of the expansion,

Ai/ 7pT[Zp/2(pL—)gp/'+ ',7rvZi/p(pL)8-'/'

+~2v2Z (PL)g //2+ 0 (89/2) $ (65)

A D ——A —(Ep/cV) Ae,. — (72)

it is the sum of the terms in the virial series (63) con-
taining at least one 7; with i) l.

Consider a particular term in A ~ for which

g i/p;= g Ni= —f (73)

The labeling of the variables X„can be arranged so
that the factors 1"~ take the form

II I'i(P0 „,x„). {74)

Ke call the I'; with i& j. the "nontrivial" F;, and the
2, with 1 (r &f the "nontrivial" 2,. Since the permuta-
tion P links the arguments of all the F;, every closed
cycle of P must include at least one nontrivial , . The
X, are therefore divided into nonoverlapping chains
C„s=1, , f, delned as follows. We write

O. VIRIAL SERIES

We now begin the analysis of the contributions to
the free energy arising from dynamical spin-wave inter-
actions. The sum of all such contributions is denoted
by

(75)X,p=k„s=1, , f,
Z„(x)=Q q "e ',

1
(66) and

O, , ~g=P X,„., i=0 1,
and co is a numerical coeKcient which takes the values

M=33/32, 15/16, 281/288,
whenever P X„ is a trivial 2„. The chain C, is com-

posed of the variables

for the three types of cubic lattice. The explicit defini-
tion of ~ is

Cs= [+sps +si, ' ' ', +sv(s)]s (77)

8 E9

C= —k—8'—(PA),
88 88

(68)

~=—(8A/&H) = —(r/p/S) (gA/8L), (69)

«cording to Eq (I, 7). At zero magnetic field H, Eq.
(64) gives for C and M the values

CB=k[(15/4)l. (5/2)8P/'+ (105/16)vrvf (7/2)8'/'

+(63/4)&ax v f(9/2)g / +Q(8 )j (70)

Mi/= (m/S) [S—i'(3/2)8P/P —P&vt (5/2)8P»

pr/rv'i (7/2)8 /'+—0(8"')j, (71)

a& = (25/32)+ P4(cos'@), (67)

where @ is an angle between two nearest neighbor
lattice vectors (S,S'), and (cos4$) denotes an average
over all 5 and 5'.

The specific heat and the magnetization per atom
are respectively defined by

breaking o6 at the first value of p for which P '3,v is
nontrivial. The chain C, contains one nontrivial vari-
able followed by p(s) trivial ones, where p(s) may take
any value including zero. Every X,„belongs to precisely
one C,.

The product (74) may be written

f y(s)

II II I'i(~, '-i» ~).
8=1 i=1

(78)

f
exp[ —P Z P(s) (L+-.)1,

s=l
(79)

by virtue of Eq. (I, 135).

According to Eq. (I, 135), the function I'i contains a
8-function factor, so that Eq. (78) is nonzero only
when all X,„in the chain C, are equal to X,o= X,. The
summation over the trivial X,„ in A ~ is therefore indeed

trivial. After summing over the trivial variables the
product (78) becomes
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(81)

therefore after summing over ei the p(s) become inde-
pendent variables.

Inserting Eq. (79) into Eq. (63) and carrying out the
trivial summations, we obtain the formula for dy-
namical corrections to the free energy

with

ni

XP Q Li],(N;!) ' g I";(QX,X)j, (82)
Q n2n3 1

The factors P'(2, ) in Eq. (82) represent the effect of
eliminating from Eq. (63) the terms involving I', .

The main advantage of Eq. (82) over Eq. (63) is
that Eq. (82) is a series in which successive terms in-
volve interactions of successively larger numbers of
particles. Each factor I'; in Eq. (63) or (82) includes
one 8 function in the momentum variables, and be-
tween these 8 functions there is one linear relation,
namely

The permutation I' of all the X„ induces a permuta-
tion Q of the nontrivial X,, according to the scheme

Q 'X,=P 'X,„(.), s=1, , f . (80)

Whenever P links all the I';, Q will link the nontrivial
I';, and conversely. For given P, Eq. (80) determines Q
uniquely, but to a given Q there corresponds a wide
variety of P. Namely, when Q is fixed the choice of I'
is equivalent to choosing (a) the lengths p(s) of the
chains Ci, , Cy, and (b) the identification of each
chain-position 2„,i=1, , p (s), with a particular
X„r=f+1, ~, q. The choice (b) can be made in

(q f)!—ways, and this cancels the factor (Ni!) ' in

Eq. (63). The choice of the p(s) is limited only by the
condition

e; with i &2 appear, and there is at most a Gnite set of
terms with given F.

We shall see later that the functions I';(QX,X) in
general carry a factor

exp( —Pe&,) (86)

for each of their arguments X. After integrating with
respect to the F independent momentum variables
(each with 3 components) in a particular term of Eq.
(82), the factors (86) produce a result proportional to

(87)

Actually, because the dynamical interaction vanishes
at long wavelengths, the I";(QXP.) carry positive
powers of X in addition to the factors (86), and so the
X integration gives a higher power of T than —,'F. But
Eq. (87) is enough to indicate the essential point, that
the terms of the series (82) belong to powers of T
which increase with F. In order to calculate an asymp-
totic expansion of the free energy up to a given power
of T, , only a finite set of terms in Eq. (82) needs to be
examined. The calculation from this point onward is
therefore in principle straightforward.

The reason why the direct virial expansion Eq. (64)
is not appropriate for our calculations is that the ex-
pansion parameter exp( —PL) becomes unity in the
limit of zero external Geld. In other words, the Bose gas
is precisely at the point of condensation when 1.=0.
The coeKcient 5, contains eGects of the purely sta-
tistical correlations in the positions of q particles, and
at the condensation point these correlations are im-
portant for large as well as small q. In Eq. (82), on the
other hand, the higher terms represent particle
correlations which arise from interactions and not from
statistics, and when the interactions are weak these
terms are correspondingly small. For a weakly inter-
acting Bose gas at the point of condensation, the true
virial expansion (63) converges very poorly, while the
"interaction expansion" (82) converges well.

In the following sections we shall calculate all terms
in Eq. (82) which might give contributions up to the
order T'. This will determine the magnetization up to
order T4.

P (X„-E3,) =Q (X,—Q0.,) =0; (84)
'7. LEADING DYNAMICAL CORRECTION,

BORN APPROXIMATION

no second linear relation can exist, because all the I';
are linked by I' or Q. Therefore the number of inde-
pendent momentum variables in a particular term of
Eq. (63) or (82) is

F=p;(i—1)N;+1. (85)

This F is the number of independent particles which
are concerned in the interactions which the particular
term describes. Obviously, F is independent of el, and
so there is an infinite number of terms in Eq. (63) corre-
sponding to each value of Ii. But in Eq. (82) only the

The leading term in the series (82) is the term f=2,
n2=1, n;=0 for i&2. This term has F=2, and all
others have F& 3, by Eq. (85). Since I'2 is a symmetric
function, the two permutations Q in the leading term
give equal contributions, and this term becomes

Al. i)= —2(PS) 'Q.,F(e)F(~)1'2(e~,eg). (88)

The function I'2 was defined by Eq. (I, 133) as a
sum of contributions from Feynman graphs 6 with 2
initial and 2 final vertices. All such graphs belong to the
sequence shown in Fig. 1, whose eth member we denote
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by G„.The mth Born approximation to AL, & is the sum
of the contributions from G~, , G .

By following the rules of Sec. (I, 9), it is easy to
write down the contribution from Gi,

A LD' ———-',J1V ' Q.,i'.,'I'(e) I'(~)
Xexp[ —P(e.+e,+21)]. (89)

When I'„' defined by Eq. (I, 23) is expanded in powers
of e and ~, the fourth-order term in 0-'v' is the 6rst for
which Eq. (89) does not vanish by symmetry. The
fourth-order term gives

an eGect of order T'. The vanishing of the lower-order
terms at this point is the essential reason for the over-all
smallness of the dynamical correction to the free energy.
The vanishing is due to the algebraic structure of the
F„",which in turn may be traced back to the origin
of these coefficients in the double commutator (I, 22).

The next contribution to AL, D comes from G2 and is

We have calculated the 6rst two terms of the series
(95), as a concrete example to show how accurate the
successive Born approximations are. We see that the
Grst Born approximation gives the correct order of
magnitude of AI.~, but gives a wrong numerical co-
efBcient. To obtain the exact value of AL,~, a calcula-
tion based on the series (95) is evidently clumsy and
unsuitable. The advantage of the Born approximation
is that it gives simple and rapid estimates of the orders
of magnitude of the more complicated terms in the
virial expansion (82). With the help of the apparatus
of Feynman graphs, the calculation of Born approxima-
tions becomes a mechanical process which can be
applied systematically to all such terms.

In the following section we abandon the Born ap-
proximation and calculate AL,~ by an independent
method which gives the coefficient of T' exactly. Equa-
tions (90) and (94) will be used only as a check on the
results. However, when we consider in Sec. 9 the dynam-
ical corrections to the free energy arising from interac-
tions of more than two particles, the exact method will
be impracticable and we shall return to Born approxi-
mation estimates.

with
e(D) =D'[e ~D 1+P-D], — (92)

D= ep+e„—eg er. — (93)

XI'.,&
—'I', „—& exp[—P(e.+e,+2L)]C (D), (91) 8. LEADING DYNAMICAL CORRECTION,

ACCURATE METHOD

The term A LD defined by Eq. (88) is directly related
to the second virial coefficient of the spin-wave gas.
If we omit the factors Y'(n) I'(~), Eq. (88) becomes

An elementary calculation, neglecting terms of higher
order in 0 than those retained, gives the result

A LD' = —

(harv/4pS')

9'[Z1 (pl-) )'
X[n+3Xil'i+2X21'2]. (94)

Here n is defined by Eq. (45), (46), the I', by Eqs.
(I, 85)-(I, 88), and the X; by Eq. (I, 103). The con-
tribution (94) is again of order T', and is smaller than
Eq. (90) by a numerical factor which is approximately
(3S) ' for the simple cubic lattice. Similarly the con-

tributions from G3, G4, will be of the same order,
and the Born approximation series b2 =b~'+ b2', (97)

AID'= —2(P&) i P„I'g(re, rrs)
—(pg) le 2LP——

XSpur[exp( —p(Hi+H&) )—exp( —pH, )], (96)

where the spur denotes a sum over states containing
two spin waves only, and IJ& and H2 are defined as in
Eq. (I, 58). Equation (96) follows immediately from the
definition of the function I'2 in Eqs. (I, 123) and (I, 133).
The second virial coefficient of the spin-wave gas may
be written in the form

ALD Q ALD
n=l

where b2' is the coefficient for a perfect Bose gas without
(95) interactions. Then Eqs. (64) and (96) give

will converge only because of the numerical coefficients,
which grow smaller in the higher terms according to the
argument of Sec. (I, 8).

A I.g)'= —e 'L&b2'0&kT.

There is a well-known formula, '4

bg'= 24 ' P (4/+1) " exp[—ph'k /nz]
L=O

(98)

G,

Fxo. 1. Feynman graphs with 2 initial and 2 final vertices.

X (dq2i/dk) dk) (99)

connecting b2' with the phase shifts g2~ of the scattering
states of two interacting Bose particles. Thus we may
expect to be able to calculate b~' exactly from the
scattering wave functions which were explicitly con-

"Reference 13, Eq. (8.631), p. 196.
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structed in Sec. (I, 6). Because the lattice-space lacks
both spherical symmetry and Galilean invariance, Eq.
(99) does not apply directly to the spin-wave problem.
It would not be difficult to construct a modified form
of Eq. (99) which would be valid in a lattice space.
We shall, however, take a short-cut and derive an
approximate analog of Eq. (99) [namely Eq. (106)]
which equates b2' with an integral over the for-
ward scattering amplitude. The approximation corre-
sponds to replacing the angle g in Eq. (99) by the
scattering amplitude (e'& sing), and this is allowable in
the spin-wave problem because" all the angles g go to
zero with k at least as fast as O'. In this way we avoid
the need to introduce into the calculation any analysis
of scattering states into partial waves.

The states

c„=Ã—' p;I, exp[is' (j+k)]
Xcos[p (j—k)]g;*gg*~0), (100)

with a=X+p, ~=X,—p, form a complete orthonormal
system" of states containing two spin waves. Therefore
Kq. (96) may be written

AI, D' ——(P1V) 'e ' & ~ dP' Spur(exp[ —(P—P')Hi]

XH2 exp[ —P'(Hi+H2)]}

=N 'e ' &Spur H2 exp( —PHi)

[1—(P'/P)]dP'H, exp[—P'(H, +H,)]

aKT (BLITT H2+IJT) (105)

is precisely the forward scattering amplitude for two
spin waves of momenta e, ~ Thus E.qs. (98) and (102)
give

b2' —(2(V) 'P——8 '* Q., exp[ —P(e.+e,)]a.„(106)
which is the approximate analog of Eq. (99) for the
spin-wave system.

The foregoing analysis can be equally well applied
to Az, D given by Eq. (88), instead of to Al. &'. Instead
of Eq. (102), we then find

order of I which are large compared with P '=kT.
Thus the values of P' which are important in Eq. (101)
(PVi here represents the duration of the interaction) are
small compared with P.

We make the approximation of dropping the term
(P'/P) and extending the integration over P' to infinity,
in the second term of Eq. (101).This gives

Al D' ——(2lV) ' Q„exp[—P(e.+e,+2I)]
X (C ..*II+..), (102)

with
'If «= [1—(Hi+H2 tg &,) —H2]C „. (103)

This 4„ is an eigenstate of (Hi+H2) with eigenvalue
(e,+e,). It is the scattering state with incoming par-
ticles described by the plane wave C „.It is therefore
identical with the state

e.,=E P;,P(-j,k)~;*~,*~0), (104)

in which f(j,k) is given by Eq. (I, 71). The quantity

XH~ exp[—(P P')H,]—
= (2$)—' Q„exp[—P(e.+e,+2I)]

X C„* H2 [1—(p'/p)—]dp'H2

A I.g) = (2')
u~e=&

Xexp[—PP(e,+I.)—Pq(e, +l)]a., (107)

The amplitude a, can be expressed very simply in
terms of the coeKcients A & which appear in Eq. (I, 71).
Eq. (105) with (I, 72) and (100) gives

Xexp( —p'(H&+H2 —E'g —~ ))H2 4„. (101) a.,= 4SJE 'Qg cos—(p 5)Ag. (108)

This equation is still exact. We now make approxima-
tions based on the fact that the spin-wave interaction
is rapid, that is to say the interaction is completed
within a time short compared with Pk. According to
the description given in Sec. (I, 8), the interaction con-
sists of a short-range multiple scattering process, with a
time scale of the order of AJ ' independent of tempera-
ture. In other words, the intermediate states which
exist virtually between the two operators II2 in the
second term of Eq. (101) have mostly energies of the

1~ According to Eq. (I, 102), q0 is proportional to k', y2 to k'.
'6The states with eWe have norm 1 while those with e=g

have norm 2. In a sum over e, e, the states with o'Wv are counted
twice and those with e=e only once; this precisely compensates
for the difference in normalization.

We shall retain only the leading term in AI,D which is
of order T'. For this degree of accuracy, it is sufFicient
to calculate the summand in Eq. (108) as far as terms
of fourth order in (e 6) and (~ 6). But Eq. (I, 79),
which gives Aq correct to second order in (a 6) and
(z 5), can only be used when A& is multiplied by a
second-order quantity. The exact relation (I, 73)
implies

2SQ~ cos(X S)A~

=(gq cos(X S)[cos(p 5)—cos(X 5)]}
X[1+QsA~G(5)]. (109)

The first factor on the right of Eq. (109) is of second
order; hence Kq. (I, 73) may be used in the second
factor, and also G(6) may be approximated by Go(G)
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= (n/po). Equation (109) then becomes

2S Pq cos(X. S)Aq=-', [gi(e S)(~ 6) cos(0. 6)]
X [1+nA'P(a ~)J. (110)

In Eq. (107) this quantity will be integrated over e
and ~; so we average Eq. (110) at once over the direc-
tions of e and ~ and obtain

4S P$ cos(X S)A) ——(1/9)gob'0'7'[ —~+nAq. (111)

In the remaining sum

S~——Pq[cos(p. 5)—cos(X 6)]A i, (112)

we may use Eq. (I, 73) directly and find, after averag-
ing over the directions of o and ~,

S,=-', P, (~ S)(~ S)A,
=-', pg[Z, (s)+Z2(S)+-', (e ~)Pj

x[AiZi(S)+A2Z2(6)+A'(e ~)P$
= [F05 (r r /54j[3A iXi+2A2X2+3A'j. (113)

With Eqs. (108) and (111),this gives

~i„=—QJX 'b OPO'r'/36j, (114)

where the numerical coefficient Q is defined by

Q = 8S(A iXi+-', A 2X2)+ (u/3S) —-', . (115)

After substituting Eq. (114) into (107), we carry out
the summation over e and ~ and obtain

AzD ———Q[3m p/4S/8'kT[Z;(pL)$'. (116)

This result differs from the first Born approximation,
Eq. (90), only by the factor Q. The expansion of Q in
powers of S—' is easily obtained from Eq. (I, 82). It
begins

Q=1+(3S) '[3X,I',+2X,I' + ]+ . , (117)

in agreement with Eq. (94). The largest values of Q
occur when S= ~, in which case we have approximately

Q= 1.68, 1.35, and 1.45, (118)

bg' [3irvQ/4S)0'"—— (119)

For an "ordinary" Bose gas, for example helium, the
2-particle interaction gives rise to an S-wave phase
shif t go proportional to the momentum k at low energies,
and Eq. (99) then gives

b2' T-' (120)

at low temperatures. The spin wave b2' is smaller by
two powers of T than the normal order of magnitude'

~7 In this connection it may be of interest to observe that there
is another well-known physical system which has an abnormally
small b2', namely the Maxwell field. For details see Appendix II.

for the simple, face-centered, and body-centered lattice,
respectively.

The second virial coefficient is found from Eq. (106)
and (114) and has the value

(120). Examination of the scattering-state wave func-
tion of Eq. (I, 102) shows that the D wa, -ve and S-wave
contributions to b2' are both of order T"'. For the
D-waves this is the normal behavior. The peculiarity
of the spin-wave interaction lies in the fact that the
amplitude of the outgoing S-wave in Eq. (I, 102) de-
pends on the angle between the incoming particle
momenta. Such an angle-dependence is not possible in
a system possessing Galilean invariance. For this reason
any approximation to the spin-wave interaction by
means of ordinary potentials in a continuous space is
certain to lead to erroneous results. " The S-wave
phase shift is of order k3,

'

and if it were independent of
angle it would give b2'-T' according to Eq. (99). An
additional power of T' appears because the average of
qo over angles is proportional to k'.

The contributions of dynamical spin-wave interaction
to the specific heat and magnetization are obtained by
substituting Eq. (116) into (68) and (69). In zero
external magnetic Beld these contributions become

(121)

Mzi) = —(m/S) [3m-i Q/2S)| (5/2)g(-,')04. (122)

These are the leading correction terms which are to be
added to the results (70) and (71) of the linear spin-
wave theory. The correction to the magnetization is
negative, indicating that the interaction between spin-
waves is on the average attractive.

9. HIGHER-ORDER DYNAMICAL CORRECTIONS

There remains the task of estimating the order of
magnitude of the higher terms in the virial series (82).
It will be proved" in this section that all such terms are
of higher order than T' and therefore negligible in
comparison with Eq. (116).Exact values of these terms
will not be calculated.

The change in the Hamiltonian from Eq. (20) to
(26) has the effect of adding to Eq. (I, 58) a series of
supplementary interactions between (2S+2) or more
particles. The 6rst supplementary interaction, involv-
ing exactly (2S+2) particles, is

H2s+2 ——[2J/(2S+1)!]
Xg pa*(rl+~")"+'rl;2'+'(rl, g;+&). (123)—

The others are of the same form and involve larger
numbers of particles. All these interactions have matrix
elements only between improper states.

Each Green's function I'; in the series (82) is a sum
of contributions I', (G) from various Feynman graphs
G. By dividing each I', into its constituent I', (G), we

8 Van Kranendonk in Eq. (52) of the third paper quoted in
reference 6 Gnds n2' T '. His definition of the second virial
coeKcient a2' differs from our b2' by a factor T &. Thus his result
is equivalent to Eq. (120), and the correct result is e2'~T."To avoid becoming immersed in what seem to be unimportant
details, we do not attempt to maintain in this section the same
standard of mathematical rigor as in Secs. 2—8.
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divide the whole expression AD into a sum of terms
T(Gi, , G,). We call the term T "regular" if all the
graphs (Gi, , G„) are constructed according to the
rules of Sec. (I, 9) with the two-particle interaction Ps
alone. Other terms, in which one or more of the supple-
mentary interactions such as H2&+2 are involved, are
called "irregular. "

Consider an irregular term in which H2q+2 occurs
operating at a particular graph vertex to which is
associated the integration variable Pi. To this term we
add all the other terms which have B2q+~ operating at
the same value of Pi and which belong to the same
value of f in the series (82). The sum of all such terms"
is apart from numerical factors an expression of the form

Spur{exp' (P Pl) (+ +p)]ass+2
Xexp) —Pi(BC—Ep)]), (124)

where the spur denotes a sum over states containing f
particles. The summatiori over permutations Q in Eq.
(82) is automatically included in Eq. (124) by the
symmetry of the particle wave functions. Since 3'. has
zero matrix elements from improper to proper states,
and H~q+2 operates only between improper states, the
proper states make zero contribution to Eq. (124). The
contribution of improper states is, by the argument of
Sec. 3, of order exp( —ag '] at low temperatures.
Therefore Eq. (124) gives zero contribution to the
free energy" in any term of an expansion in powers of 8.

When we add together all irregular terms, the sum is
not precisely Eq. (124). The terms including two
irregular interactions are counted twice, and those
including n irregular interactions are counted n times,
in Eq. (124). From Eq. (124) we must therefore sub-

tract a term of the form

Spur {exp t
—(P—Pi —Ps) (BC—Ep)]H, s+,

Xexp( —(Pi—P ) (3'-—Ep)]
X&ss+2 expL P2(K—&p)]), (125)

plus a similar term with H2q+~ appearing 3 times, and
so on. But Eq. (125) is also of order exp| —a8 '], by
the same argument as before. In this way we arrive at
the conclusion that the sum of all irregular contribu-
tions to the free energy is zero in any finite power of 9.

The elimination of the irregular terms rests on the
assumption that the seriess' of which Eqs. (124) and
(125) are the first two terms, will be convergent. The
assumption is not in fact valid. We have seen in Sec.
(I, 3) that the Hamiltonian (Hi+Hs) has unbounded

negative eigenvalues, and therefore the Born approxi-

Strictly speaking, the sum is to be taken only over con.—

nected terms, while Est. (124) includes contributions from dis-
connected terms also. A repetition of the argument of Sec. 4
shows that the disconnected terms can be subtracted, as in Eq.
(56), without changing the conclusion that Eq. (124) is exponen-
tially small.

~'This series is not a Born approximation series, but can be
regarded as obtained from the Born approximation series by a
suitable grouping together of terms.

mation series of the regular terms alone cannot con-
verge. The irregular terms must to some extent com-
pensate the divergence of the regular terms, because the
modified Hamiltonian BC is free from negative eigen-
values. It is possible that the divergences from regular
and irregular terms can be made to cancel each other
completely, so that the Born approximation series for
the total free energy is convergent. We do not attempt
here to prove the convergence, but leave the question
open for future investigation. The convergence problem
was already discussed qualitatively in Sec. (I, 8).

In this section we consistently use the Born approxi-
mation for estimating the magnitude of both regular
and irregular contributions to the free energy. The
estimates so obtained are not mathematically rigorous.
Hut it seems unlikely that a more careful analysis
would change the main conclusion that all terms other
than A J.~ are of higher order than T'. A rigorous proof
of this result would require a detailed investigation of
the Green's functions F,'- with i&3, and such an in-
vestigation would need more time and eRort than the
problem is worth.

The result of the preceding analysis may then be
stated as follows. So long as we are calculating the
Born approximation series term by term, and grouping
the terms suitably together, irregular terms make zero
contribution to the free energy in any power of 0.

The regular terms can now be rapidly disposed of.
According to Eq. (85), after the leading term A»
which has F= 2, the next terms of the series (82) which
must be considered are those with F=3. There are
two such terms, namely A its with f=3, tss ——1, ts, =0 for
i/3, and ADss with f=4, ns ——2, ts, =0 for i&2

Let F3~ denote the Green's function for three par-
ticles, constructed with the regular interaction B&
alone. The term A ~3 is, apart from numerical factors,

A rip
——(PN)-' gi,„,I'(X) P (ts) F(v)i'P(2 tsv, ktsv). (126)

The summation variables Xpv are here independent,
and the function I'P carries a factor exp( —P(e&,+e„
+e„)]which has the effect of limiting each variable to
values of the order of fest'V t]. We express I'P as a
sum of contributions I'P(G) from Feynman graphs G.

According to Eq. (I, 129), each I'P(G) includes a
factor

I') p' (127)

corresponding to the incident particle with momentum
X, and a similar factor for the other two incident par-
ticles with momenta p, v. By Eq. (I, 27), this I'&,' is
proportional to (Q,) for small 2, and is to 6rst approxi-
mation an odd function of X. After averaging over the
direction of X, I's, ' becomes proportional to (Q)'. Thus
the order of magnitude of Eq. (126) is at most

Aris-LSV —' Qg exp( —Pe),) Y(0.)(Q.)']'
(128)~Tis/sLg (PJ )]s

T'his is comfortably smaller than A I,D. The dependence
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on J. is such that the contribution of AD3 to the mag-
netization is a term of order 8""which remains finite
and nonsingular at zero external field.

Next we consider the term A D22 which is, apart from
numerical factors,

~egg=(P&) ' 2 I"(~)I'(t)i'(v)I'(8)

v=1, 2&, and 3.2 4f', (132)

for the simple, face-centered, and body-centered cubic
lattices, respectively. Also

external magnetic field; k is Boltzmann's constant; v is
the geometrical factor

Xyvp

XL8()+S—v —8)1' () S, 8)1' (v8,) S)
Z„(x)=P j-"e—

~

j=l
(133)

+8(p—8)r, (rg, rp)1', (v8,v8)). (129)

The second term in the bracket in Eq. (129) carries a
factor expL —P(gi+g„+g,+g,)), and a repetition of
the previous argument shows that this term is again
of the order (128). The 6rst term in Eq. (129) is,
however, larger, because not all the variables X, p, v, y
are restricted to be small. The main contribution to
Eq. (129) comes when either (X,p) are small and (v, y)
large or vice versa. Suppose for example that (v, 8) are
large. Then the "intermediate state" consisting of the
two particles with momenta (v, 8) can exist for a short
"time" of order (AJ ') in both the functions I'g(Xp, vp)
and I'g(v8, ky). After some elementary calculation, the
order of magnitude of the first term in Eq. (129)
becomes

~»g-PP~ -2, e-m( &.&) I—'(~) (@)g)'

-T'LZ)(tlL))',

''
(»0)

and this gives a 8' contribution to the zero-field mag-
netization. A more detailed discussion indicates that
the leading term in A~22 merely cancels out a term in
Ai, ii involving (P/P) which was omitted in passing
from Eq. (101) to (102). In any case the entire con-
tribution AD~2 is of order T' or higher and will not be
analyzed further.

The terms in the series (82) with F&4 need not be
discussed individually. The arguments which were
used for P=3 can be applied to them, and it is clear
that there will always be enough free momentum vari-
ables to make the terms of order T' at least. This com-
pletes our analysis of the higher order dynamical
corrections.

10. SUMMARY OF QUANTITATIVE RESULTS

The results of this paper are all contained in the
following formula for the free energy per atom at
temperature T.

A = gi JS'pg LS kT)Z—g)g(PL)8—"g-
+CiZ7)g(pL)8' '+CgZg/g(pL)8'~'

+C,S '[Z, (PL))'8'+O(8' ')). (131)

To avoid numerous cross references, the notations will
be recapitulated: S is the spin per atom; (—JS') is
the energy of two aligned nearest neighbor spins, po is
the number of nearest neighbors per atom; L is the
Zeeman splitting of the levels of a single atom in the

P=(kT) ',

8=3kT/(2grJSppv) = T/(2grT ),

(134)

(135)

G=2F '=10) 24) 16,

0.=0.52, 0.34, 0.39.

Equation (138) gives, for S=i,

(139)

(140)

and for S=1,
C3=3.97, 4.00, 4.08,

C3=3.10, 3.46, 3.43.

(141)

(142)

In the limit as S—+ ~, we have C~ ~ C».
The formula for the spontaneous magnetization per

atom in zero external field is by Eqs. (69) and (131)

M (T)= (nz/S) [S ag8" ai8"' —ag8"'— —
agS '8'+O(—8"')) (143)

where m is the magnetic moment of each atom and

o=f (3/2)

ai= i (5/2)Ci

=2.612,

=3.15, 3.97, 3.77,

(144)

(14S)

ag ——f(7/2)Cg =11.5, 16.4, 15.4, (146)

as =2t (3/2) f(5/2)Cg 27 8, 28.0—,—28.6. , (S=-',), (147)

=21.7, 24.2, 24.0, (S=1), (148)

=16.5, 20.7, 19.7, (S= ~). (149)

In the temperature range over which these results
might reasonably be applied, say for 0&T(-',T„ the
numerical value of 8= (T/2grT, ) does not exceed (1/12).
Over this range the ag term in Eq. (143) is less than 4%
of the ag term when S= ig, and less than 2% when S= 1.

where T, is approximately equal to the Curie tempera-
ture, as explained in reference 7.

The numerical coef6cients Ci, Cg are given by

C) = 4m v= 2.35, 2.96, 2.81, (136)

Cg ——(on'vg = 10.2, 14.6, 13.7, (137)

for the three types of lattice. The coefficient C3 depends
also on S. If we make the very slight approximation of
equating the two coefFicients l»f and F2f which are
defined for the face-centered lattice by Eqs. (I, 94)
and (I, 95), then Cg is for all three lattice types equal to

C =QC, Q=1+4/3LGS —1) '+ (3S) ', (138)
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It is therefore unlikely that the u3 term, representing
the effect of interactions between spin waves, could
ever be observable in a real ferromagnet. The physical
diGerences between a real ferromagnet and the Heisen-

berg model will certainly cause deviations from Kq.
(143) large enough to hide the a3 term completely. The
practical conclusion of the whole investigation is

simply this, that the linear Bloch theory with non-

interacting spin waves is good enough for all practical
purposes.

APPENDIX II. SECOND VIRIAL COEFFICIENT
OF A PHOTON GAS

In the case of the Maxwell field, the second virial
coeScient b2' is an e8ect of the scattering of light by
light. " We may expect an unusual temperature de-
pendence of b~' because, in the scattering of two low-

energy photons with relative momentum k, the largest
phase shifts g are proportional to k4. We define the
virial coeKcients by the formula analogous to Eq. (64),
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3 = —(2/~') (h T/Ac)3h Z Q b„e "~
n=l

(A3)

APPENDIX I. PROOF OF EQ (3'7)

Theoretic. —Let S~ and S2 be two independent spins

each of magnitude S. Then, for any state of the com-

bined system,

S'-(S,.S,)& (gS)- t (S,.)-(S,.)y.
Proof. Any state o—f the combined system may be

written
W=sAs+8',

I
~I'+

I
bl'=1

where p, s is an eigenstate of the total spin

(Si+S2)'As =~ (~+1)As
with J=2S, and p' is a combination of eigenstates with

J&2S—1. Then

S'—(Sg S2)=S(2S+1)—-', ((S,+S2)')
& (b['Ls(2S+1)—S(2S—1)]=2S[b(' (A1)

The state $2s is symmetric with respect to inter-

change of the two spins, and therefore

(4'2s (sl S2 )4'2S)
Hence

(S *) (S )=b(0 (S S )lt' )
+ b*(~ *(S..-S..V,.).

But all eigenvalues of (S~,—S2,) are bounded by 2S in

absolute magnitude, so that

/(s„)—(s,.)J &2st lb(+]~[/b[3&4S/b[. (A2)

Together, Eqs. (A1) and (A2) imply the theorem.

giving the free energy per unit volume at temperature
1', for a photon gas with a "chemical potential" J.The
quantity L is introduced for mathematical convenience,
and is put equal to zero after any necessary differentia-
tions have been performed. The normalization is
chosen so that

b] 1p bm 2 +b2 (A4)

The value of b2' obtained from the photon-photon
interaction is then

b2' (44/15) (n——/or)'(Je 7/roc')', (AS)

~here n= (1/137) and mc' is the electron rest energy.
The lowest order quantum-electrodynamical correction
to the Stefan-Boltzmann formula for the energy density

p in a radiation enclosure at temperature T is given by

p= (m-'/15) (kT/Ac)'hTL1+ (7/3)| (4)b2'j. (A6)

The temperature dependence of Eq. (AS) is even
stronger than that of Eq. (119), mainly because the
photon mass is zero while the e8ective spin-wave mass
is 6nite. Owing to the difference in mass, the volume of
phase space accessible to a photon at temperature T is
proportional to T', while the volume accessible to a
spin wave is proportional to T'. The phase-space factor
has the effect of making the spin wave b2' intermediate
in behavior between the b2' of an atomic gas and that of
a photon gas. But in its qualitative features, the inter-
action between two spin waves is much more similar to
the photon-photon interaction than to any normal
interatomic potential.

"See J. M. Jauch and F. Rohrlich, The Theory og J'hotels and
E/ectroes (Addison-Wes1ey Press, Cambridge, 1955), Chap. 13.


