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Nuclear Spin System of Liquid He'
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The entropy and heat capacity of spin disorder in liquid He, obtained previously, define the partial
thermodynamic potentials of the spin system. These in turn lead to the spin equation of state. The energy
of spin excitation, quadratic in the liquid temperature at low temperatures, tends toward the limiting value
of -', kTO, per spin, at high temperatures, To being the empirical characteristic temperature of the spin system.
The partial volume expansion coefIIcient of liquid He, arising from the spin excitations, is a linear function
of the temperature at low temperatures and of considerable magnitude, which might make it accessible
experimentally. The e8'ect of the spin excitations on the vapor pressure of liquid He' might also be separable
through a careful analysis of the data over a wide temperature interval.

I. INTRODUCTION

HE explanation' of the behavior of the entropy of
liquid He' at temperatures T&0.25'K, in terms

«an entropy of spin disorder and nonspin entropy
arising from the thermal excitations of the ordinary
degrees of freedom of the liquid atoms, appears to be
well substantiated through the recent analysis~' of the
pertinent data in liquid He . Particularly, at low tem-
peratures, where the more conventional degrees of
freedom are essentially frozen, the spin disorder is the
dominant part of the total thermal disorder. These
results suggest that a more complete discussion of the
statistical thermodynamics of the spin system should
be of interest for a derivation of some of the partial spin
properties of liquid He' arising from it. It will thus be
shown, with the use of a relatively mild assumption,
that at low enough temperatures the expansion coeK-
cient of liquid He' is determined essentially by its spin
system. An additional partial physical property, ac-
cessible experimentally, has thus been added to the
nuclear magnetic susceptibility, vis. the entropy and
heat capacity of nuclear spin disorder, which tend to
determine alone the thermal behavior of liquid He' at
low temperatures. Furthermore, the eGect of the nuclear
system on the vapor pressure of liquid He' will be
traced over a wide temperature interval. This eGect
might be demonstrated through a careful analysis of
the vapor pressure data over a wide temperature
interval.

The present considerations are all based on the
previous evaluation of the entropy of orientational spin
disorder and the associated heat capacity. ' What was
fundamentally involved there concerned the separation
of the orientational spin disorder effects from other,
possibly implicit, spin eGects and, above all, from dis-
order of nonspin origin, connected with the thermal
excitation of nonspin types of degrees of freedom. The
various thermodynamic quantities derivable from the
previously obtained entropy S and heat capacity C of
spin disorder will be obtained here. Such a treatment

of the partial properties of liquid He' seems to be well
justided inasmuch as the explanation of the properties
originating in the nonspin degrees of freedom presents
serious difFiculties if attempted to be based on general
principles. This is well illustrated, indirectly, by the
lack of a rigorous formalism to describe the properties
of classical liquids. The partial properties of liquid He'
associated with its spin system to be obtained here
would, of course, appear automatically in the rigorous
theory of this liquid.

H. EQUATION OF STATE OF THE SPIN SYSTEM

r y

E.(T,V) = I C, (T,V)dT

T(dS,/dT)dT

Let F(T,V) be the thermodynamic potential at
constant volume or Helmholtz free energy of a system
in equilibrium, occupying volume V at temperature T:

F(T,V)=E(T,V) TS(T,V), — (1)

E(T,V) being the total thermal energy and S(T,V) the
total entropy. Then, by definition, the equation of
state of this system is

p(T, V) = —(itF/i)V) r, (2)

the pressure being expressed as a function of V and T.
Our present task is the derivation of that part p, (T,V)
of the pressure which is determined by the entropy of
spin disorder' in liquid He',

S.(T,V)/E= (ln2)x (T,V)/xs(T, V), (3)

g and xo being the actual and the limiting I,angevin
nuclear magnetic susceptibilities of liquid He'. The
Helmholtz free energy of the spin system is

F,(T,V)=E.(T,V) —TS.(T,V), (4)

E,(T,V) being the thermal energy of spin disorder. If
C.(T,V) is the heat capacity of spin disorder, we define

E(TV)b

' L. Goldstein, Phys. Rev. 96, 1455 (1954).
~ T. R. Roberts and S. G. Sydoriak, Phys. Rev. 98, 1672 (1955}.' Abraham, Osborne, and Weinstoclc, Phys. Rev. 98, 551 (1955).
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= TS,(T,V)— S.(T,V)dT. (5)
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Hence,

P, (T,V)= — S (T,V)dT,
0

the first of Eqs. (5),

(6) lim F,(T,U)/RTp ——4 (ln2)r'(1 —gtm'r');
T small

T= T/Tp, (13)
and the equation of state of the spin system is, by (2),

and, again with (5) and (6),

"o
(7)

lim F,(T,V)/RTp= —p(ln2)r'~ 1 ~'T' ~. (14)
T small 24

since IIp and V are taken to be independent.
Since x(T,V) in (3) is an empirically deterniined

function of its variables, it will be seen that with the
definition (5) of E„ the equation of state (7) is quite
general. In order to avoid the explicit use of the function
x(T,V)/xe(T, V), which is available only in numerical
form, it is convenient to use the approximation pro-
vided by the ideal antisymmetric Quid formalism for
this susceptibility ratio, yielding'

S,(T,V)/R= (ln2)L —F'(n)/P(n)7,

These quantities are both parabolic at small ~ values.
At high temperatures, we have obtained with a fair
degree of approximation the limit of E,/RT p, by
integrating C, (T) numerically up to T equal to five
and by using beyond this ~ value the dominant term
of the high-temperature expansion of C, (T), i.e.,

P"(rr) F' (rr)
lim C, (T)/R= (g ln2) lim

T large a» l Fr (&) F (&)

F( )= L1/r (5/2)7(T, /T)-:,

rr = n(T, V), F'(rr) =dF/dn, (9) This yielded

= L(in2)/(2pr) '*7 (1/r'*) (15)

IIpo being the apparent degeneration temperature of a
fictitious ideal antisymmetric Quid whose paramagnetic
susceptibility is identical with that of saturated liquid
He'. At the present time, the evaluation of the partial
derivative (BS,/8 U) T appearing in the equation of
state (7) cannot be performed because the available
data correspond to a line, of variable T and V, on the
susceptibility surface x(T,V). We are thus compelled
to use the apparent ideal antisymmetric Quid formalism
for a derivation of p, (T,V). It is thus clear that the

p, (T,V) values so obtained correspond to some approxi-
mation of the actual values of this quantity. A simple
calculation yields

R ln2 F"(n) F'(n)
(BS,/flV) T ——

V F'(n) F(n)

since, if one uses (9) with Tp expressed in terms of the
total volume V, one has

(Bn/BV)T= —V 'LP(n)/F'(a)7; F"(n)=d F/dng. (11)

With the expression for the spin heat capacity, ' one
obtains the equation of state of the spin system, to the
approximation of this formalism, as

lim I.(T)/RT p
T—& 00

(16)

lim (F,/RTe) = ', r ln2, -—
T large

(17)

showing that F becomes linear in 7 at high tempera-

E (T)/RT,

It was of course clear from the shape of C, (T) curve
given previously' that the total energy of spin disorder
is 6nite in the limit T +~ . This energ—y is (RTp/2), per
mole, and represents the additional energy expended in
transforming the spin system from its configuration at
the absolute zero, where all levels are doubly occupied,
to the configuration in the limit of very high tem-
peratures where all are singly occupied. This spin
energy is automatically added to the energy of thermal
excitation of the nonspin degrees of freedom.

One also finds in this limit,

T

p. (T,U)= l K'(T, V)/V7dT

= —,'E.(T,V)/ V, (12)

showing that the virial theorem is valid here.
We give, in Fig. 1, the spin free energy F. and the

spin energy E„ in units of RIIPo. At low temperatures,
T((Tp, with C (T) given previously, one obtains with

FIG. 1. Energy E and free energy F, of spin excitation, in units
of RTp~ rrs the temperature ratio T/Tp.
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tures, as expected from (4), since E, and S, tend
toward constant limits.

The Gibbs free energy of the spin system is, with (4)
and (12),

G,= (5/3) E.—TS,.

The limiting forms of this are

(18)

and

lirn (G,/ETO) = —-'(ln2) r'$1+-', m r'], (19)
T smali

lim (G,/RTO) =-', —r ln2.
T large

It will be observed that the Gibbs free energy of the
spin system is always negative. This is in contrast with
the behavior of the Gibbs free energy of the Gctitious
ideal antisymmetric Quid whose formalism describes,
at T&0.25'K, the temperature variation of the nuclear
magnetic susceptibility of liquid He . In other words,
the statistical parameter n(T) or ( G/RT) —of the
fictitious ideal antisymmetric Quid, whose magnetic
susceptibility is the same as that of saturated liquid
He', is completely different from the parameter n, (T)
or ( G,/RT) —which is associated with the excitations
of the spin system. While n, (T) is always positive, n(T)
becomes negative at low temperatures. In addition,
n, (T) is bounded over the whole temperature range,
increasing from zero at the absolute zero, to (ln2) in
the limit of high temperatures, while u(T) can take on
any values between (—~) and (+~).

It should be noted here that 6 is associated with the
spin excitations alone. Its temperature behavior is, at
low temperatures, similar to that of the Gibbs free
energy which one can associate with the thermal
excitations of an ideal antisymmetric Quid, as was to be
expected.

The partial thermodynamic properties of the spin
system resemble those associated with two nondegener-
ate internal energy levels of a system of atoms or
molecules. 4 In the latter system, a fraction of the
available thermal excitation energy is used up in lifting
some of the atoms from the lower to the upper internal
level. Since a given amount of energy defined by the
separation AE of the two internal levels is needed in
this process, the partial heat capacity associated with
these levels has to vanish at both ends of the tempera-
ture interval assuring thus its temperature integral to
be 6nite and equal to AE, per atom, over the whole
interval. Geometrically, this partial heat capacity has
to have at least one maximum, and this is similar to
the behavior of C, (T) as shown previously. ' In the spin
system, the apparent energy diRerence of the two spin
configurations, one at the absolute zero and the other
in the limit of high temperatures, amounts, to the
approximation of (16), to —',kTo, per spin, in terms of the
characteristic temperature To. While instructive, the
similarity with the system with the internal levels is

K. Schottky, Physik. Z. 23, 448 (1922).

only superficial. The spin system is, both physically and
formally, vastly different from that of the system of
atoms with the two internal energy levels.

V /V =p, (T)z(T), (21)

V being the total volume at T and ~(T) the compressi-
bility of the liquid. The volume t/', is, of course, in-
cluded in any volume measurement and cannot be
separated experimentally from the total liquid volume.
It is of interest, however, to estimate the magnitude
of the small volume t/'„by giving its lower limit. This
can be obtained at once, by using in (21) the com-
pressibility of liquid He, ~4(T), instead of «(T). Since
one should have K(T) ~&~4(T), then, with (12), one
obtains

V-(T) &~ 3E.(T)«(T). (22)

At 1.2'K, with the compressibility x4 being about'
1.24X10 ' cgs unit, V, becomes about 0.11 cc/mole,
which is only some 0.3/~ of the total volume' of 36.9
cc/mole.

While the spin volume increase V, is small and cannot
be observed directly, it has a possibly observable
eRect on the expansion coeKcient of liquid He' at low
enough temperatures. Indeed, let us define the partial
spin expansion coefficient by

u. (T)= V '(dV./dT)—

$~(T) (dE./dT)+E, (d~/dT) j. (23)
3V

It will be observed that the two terms in the bracket
are diRerent functions of the temperature. At low tem-
peratures, ~(T) will be close to Ko, the compressibility
at the absolute zero, while dE /dT or C„ the spin heat
capacity, is linear in T. The second term with E,(T)
varies at least as T', even if dz/dT were assumed to be
a constant, a rather extreme assumption. One would
expect dK/dT to increase at least linearly with the
temperature. The leading term of the partial expansion
coefhcient is thus linear in T at low enough tempera-

~ K. R. Atkins and C. E. Chase, Proc. Phys. Soc. (London)
A64, 826 (1951).

6 E. C. Kerr, Phys. Rev. 96, 551 (1954).

III. SOME PARTIAL PROPERTIES OF LIQUID He'
ORIGINATING WITH ITS SPIN SYSTEM

The physical meaning of the increasing spin excita-
tions with temperature, in liquid He', was shown' to
correspond to the gradual freeing of the spins from the
powerful internal field tending to increase spin order.
We may thus look upon the pressure p, in agreement
with the definition (7) as a manifestation of the spin
excitations competing with the internal field. Its de-
velopment is accompanied by a volume increase V of
the system, such that the relative volume change is,
to a 6rst approximation,
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2.00 could be traced over a relatively wide temperature
interval. Ke may write the vapor pressure equation in
the form

b
l.50

l.25

I.000

P(T) = $(2sr~)s~sg@s/fy4hs)T@s exp(G„,/gT)
Xexppn2+ (G./ZT} j, (26}

where the nuclear spin degeneracy factor (2s+1) or 2,
in the vapor phase, is included in the last factor through
(exp ln2). All corrections of various origin, both in the
liquid and the vapor phase, are assumed to be included
in G„,. The factor in front of T"' is the vapor pressure
constant for vanishing spin, with M being the atomic
mass, and E Avogadro's number. We may thus write
the following for the specific spin factor of the vapor
pressure:

FIG. 2. The spin factor O.„of the 1iquid He' vapor pressure
vs the temperature ratio T/To. 0„(T)=expLln2+ (G,/RT) j. (27)

tures. The expansion coeKcient determined by the
other degrees of freedom is not expected to have such a
linear dependence on the temperature, at such low tem-
peratures. However, such a linear dependence cannot
be ruled out completely at the present time, because of
the anomalous nonspin heat capacity; the correct shape
of the latter is still unknown at low temperatures. We
obtain with (23),

2 ln2
lim n, (T) «(T)C, (T)= «(T)E(T/Tp), (24)

T small 3P' P

lim n. (T) &~ 0.043T/'K.
T small

(25)

At T equal to 0.2'K, this yields a partial expansion
coefficient of at least 0.0086/'K, which is quite large.

The experimental veri&cation of the linear relation
(25) might be of interest. H positive, the results would
tend to justify the views on spin disorder as being the
dominant thermal excitation in liquid He' at low
temperatures.

We should like 6nally to discuss the eGect of the
nuclear spin system on the vapor pressure of liquid
He'. This appears to be the only liquid where this eGect

where we have used the low-temperature limit' of
C,(T). A lower limit of the right-hand side results by
using there «4(T) instead of the presently unknown
liquicl He' compressibility «(T). With «4 equal to 1.24
)&10 'cgs unit, as above, mahout 37 cc/mole, and Tv

equal to 0.45'K, one Ands

According to (19),at low temperatures where the Gibbs
free energy 6 vanishes with T as T', the spin factor
av(T) tends toward 2, arising entirely from the vapor
phase. As the temperature increases, the spin excitations
tend to balance the factor due to the vapor phase, and
G,/RT, according to (20), tends asymptotically, rather
slowly because of the (1/T) term, toward (—ln2),
compensating fully the vapor phase factor. We give in
Fig. 2, the spin factor o„(T), as a function of the ratio
T/Te ——r, up to r equal to five,

In normal liquids whose atoms have a nuclear spin
and which exist only at temperatures high enough so
that 0„(T) is there equal to unity over the whole tem-
perature range, it is fully justified to leave the spin
degeneracy factor out of account in the vapor pressure
constant. The latter factor is fully compensated for by
the complete spin excitation of the liquid atoms. In
liquid He', however, the o.„(T) factor remains large,
that is, considerably larger than unity out to high
temperatures because of the very slow convergence of
G,/RT toward (—ln2) in (27). This is illustrated in
Fig. 2. Hence, as fax as the contribution of the liquid
spin system to the vapor pressure is concerned, a unique
situation appears to exist in liquid He'. A careful
analysis of the liquid He' vapor pressure data over a
wide temperature interval might disclose the spin
factor av(T}. An empirical separation of this spin
factor from the other pressure factors appears to be of
interest in yielding additional information on the role
played by the nuclear spin system in the macroscopic
thermal properties of liquid He'.


