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KENNETH M. WATSON
Los A/amos Science Laboratory, Los A/amos, /I/ero 3Aaico

(Received October 27, 1955)

The Boltzmann equation is studied for the case of a low-density ionized gas in an externally applied
electromagnetic field. Particle-particle collisions are neglected, but long-range collective interactions are
included. In Part I the static problem is treated in detail. For this case the Boltzmann equation is solved
using individual-particle orbits —an approach which emphasizes the physical basis of the solution.

I. INTRODUCTION

'HE conventional treatment of transport pheno-
mena in nonuniform gases is that of Chapman

and Enskog. ' This is a procedure for solving the Boltz-
mann equation in a series of terms, the erst of which
describes a local Maxwellian velocity distribution at
each point in space. The series expansion used converges
rapidly when the mean free path for particle collisions
is much smaller than all pertinent macroscopic dimen-
sions of the gas. On the other hand, for a rarefied gas
in which collision mean free paths are long, the method
does not seem to be useful.

In the present paper, we wish to consider a method of
solving the Boltzmann equation when particle "colli-
sions" are negligible. We treat the case of a completely
ionized gas in a strong, externally applied magnetic
6eld. To make the treatment as simple as possible, we

suppose there to be only two kinds of particles present—
electrons and ions. Their respective masses will be
denoted by M, and M; and their charges are assumed to
be —e and +e.'

There are various geophysical and astrophysical
applications of the study of conducting fluids in electro-
magnetic GeMs. ' These are usually treated by the use of
hydrodynamic equations (the hydrotrtagrtetic eqlatsotts)
For conducting liquids and dense gases (i.e., gases for
which the mean free paths for collisions are small

compared to macroscopic dimensions), the application
of these equations seems justified. On the other hand,
there are astrophysical phenomena, as well as gaseous
discharge phenomena, for which particle-particle colli-

sions are of very little importance in determining the be-
havior of the gas. It is with such conditions that we

shall be concerned.
In discussing ionized gases, it is necessary to be

careful in dining the term "collision, "since the particle

* On leave of absence from the University of Wisconsin.' S. Chapman and T. G. Cowling, Mathematical Theory of Non-
Uniform Gases, (Cambridge Vniversity Press, London, 1952).

2 We consider only singly ionized particles. This permits us to
ignore states of multiple ionization and the consequent introduc-
tion of several "types" of particles. There would be no inherent
complication of the problem in such a generalization, however,' See, for instance, H. Alfvdn, Cosmica/ Hydrodynamics (Oxford
University Press, New York, 1950}.

motions are very strongly coupled through the long-
range electromagnetic interactions. For this reason, it is
customary to divide the interactions of a particle into
long-range "collective" eGects and short-range "particle-
particle" interactions. The characteristic distance with-
in which particle-particle collisions are important is the
Debye radius,

R&=p/C es~)&

where 8 is the temperature and n is the gas density. '
The "collision time" g is4

1 M,& ts 8+sr (Rn )
ie]n

r 8 M,' 3 (R;„)
where R; is a minimum impact parameter. If r is less
than macroscopic periods of the motion, we expect a
local Maxwellian velocity distribution to develop. In
this case, the hydrodynamic or Chapman-Knskog
methods should be applicable. For the problems of
interest to us, however, we shall assume that v is larger
than other periods of the system and that particle
collisions are negligible.

We must thus consider the two Boltzmann equations'

r/fc 8 c
+c Vf;+ E+—XB V.f;=0

Bt M; C

Bfe (—e) c
+c Vf,+ E+—XB V,f,=0.

Bt M, C

Here f, (r,c,t) and f;(r,c,t) are the respective electron
and ion distribution functions, where r is a space and
c a velocity coordinate. (V', is the "del-operator" in
velocity space. ) E and B are the respective electric and
magnetic field vectors.

Several velocity moments of the f's wi11 be of later

4 See, for instance, L. Spitzer, The Physics of Fully Ionized
Gases (Interscience Publishers, Inc. , New York, 1955).' See, for instance, reference 1.In the general case, the right-hand
side is set equal to the rate of change off due to particle collisions.
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importance to us:

ts, = fisc=average electron density.

deed, let
E=Ep+E',

B=Bp+B', (with Ep Bp ——0),
(6)

v, = cfog cs= average electron velocity.

p, =M, [c v,—J[c v,—Jf,dsc

where Ep and Bp are static and E' and B' are infinitesimal
Quctuating quantities. Also, we abbreviate the Boltz-
mann operator by

8 e 1
S=—+c' V+ Ep+ c&(Bp 'V .

Bt M C

Q,=M, [c—v.)[c—v.J[c—v.jf.dsc

=electron pressure tensor.
Then the solution to the "static" problem will be
denoted by fp(c), which satisfies the Boltzmann equation

=heat Aux tensor, etc.

In addition to these, there are the corresponding
quantities for ions, for which we use the subscript i.
We have also the electric current and charge density
which are

3
= e['siv~ —Neve J)

6=e s —s

Sfp=0.

Returning to the general problem (5), we write

f(c)=fp(c- u)+f'. (9)

Here u(r, t) is a "drift velocity" superimposed on the
static distribution fp(c). In accordance with Eq. (6),
we suppose both u and f' to be infinitesimal and that u
satis6es the equation of motion

Finally we have Maxwell's equations
BU e 1—=—E'+—uXBp .
Bt M C

(10)

4s 1 BE
VXB=—j+———,

C CBt
1 8

=VXE,
C Bt

V B=o,

V E=is.e,

which are coupled to Eqs. (1) through Eqs. (3). The
6elds due to sources of current and charge external to
the plasma are to be speciled by the boundary condi-
tions on (4) rather than by the charges and currents
themselves.

For most of our discussion, it will not be necessary to
specify the distinction between electrons and ions, so we
shall, unless speci6cally stated otherwise, omit the
subscripts "e" or "i." For instance, we write the
Boltzmann equation simply as

Bf e 1—+c Vf+ E+—c&—(B V,f=0
Bt M C

We need then only give e its correct sign and apply
the appropriate subscript when we desire to be more
detailed,

Our problem will be divided into two parts. The first
is that of describing static solutions to Eq. (5). The
second, which will be treated in more detail in the
following paper, concerns the time-dependent solution
of (5) for f when the distribution differs only by an
inPssitesimal amount from the static distribution. In-

Equation (9) is next substituted into Eq. (51). We make
use of Eqs. (6), (8), and (10) and linearize the resulting
equation in small quantities to obtain

Sf'= —u Vfp+c (V'u) V,fp c&(B' V—',fp. (11)
MC

Equation (11) represents the basis of our discussion
of the behavior of the system in the neighborhood of an
equilibrium distribution (that is, fp) It will be u. sed to
describe the dynamic and thermodynamic behavior of
the gas in Part II.

It will be noticed that we are following a procedure
often employed in hydrodynamics in the treatment of
stability of flow (or the onset of turbulence). In such
problems, the hydrodynamic equations are 1inearized
about a state of static Qow. If the linearized perturba-
tion of the Row grows in time, the Row is said to be
"unstable" —otherwise, "stable". Recently these me-
thods have been extended by Chandrasekhar' to
certain hydromagnetic problems involving the stability
of a conducting liquid in an applied magnetic 6eld.
Astrophysical applications to the stability of ionized
gases in magnetic and gravitational fields have been
made by Chandrasekhar and Fermi, ' by Kruskal and
Schwarzschild, and by Frieman et al.'

6 See, for instance, S. Chandrasekhar, Phil. Mag. Ser. 7, 43, 501
(1952) and 45, 1177 (1954). Further references are given here.' S. Chandrasekhar and E. Fermi, Astrophys. I.118, 116 (1953).' M. Kruskal and M. Schwarzschild, Proc. Roy. Soc. (London)
A223, 348 (1954).

9prieman, Bernstein, Kruskal, and Kulsrud, Revs. Modern
Phys. (to be published).
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These studies have all involved a hydrodynamic
approach, which is not in general justifiable for our
problems. It is well known, however, that the equations
obtained by taking successive moments of Eq. (5)
provide a formally rigorous hydrodynamics, involving
an inGnite series of coupled equations. This series of
equations may be terminated at any stage by evaluating
the appropriate moment from the solution f' to Eq.
(11). In a sense, this is purely formal, since if f' is
known (we assume that fp is specified as an initial con-
dition) the problem is completely solved. From a
practical point of view, however, this is often a useful
approach —and, in this respect, similar to the Chapman-
Enskog method. '0

e—E+—cXB —=F
M C

(12)

in Eq. (5), and consider

dc/dt= F,
dr/dr= c.

Let the solution to these equations be

c=c(ni ' 'np, E),

r=r(ni np, t),

(13)

(14)

where the e's are integration constants. Let us also
suppose that these equations may be solved for the
a's in terms of r, c, and t. Then

n;= (ncr, f)(i=1,2, 6).

Now, any function (possessing derivatives with respect
to the n's),

ei 'e6,

of the n's (when the n's are replaced by the functions
(15) of (r,e,t) is a solution of the Boltzmann equation
(5). Indeed, on substituting into Eq. (5), we obtain

Bf Bn, p Bf dn,
+c Vn, +F V~, =P — =0,

i=& Ba; Bt =I Be; dt
(16)

since the n s are constants. When the e,'s are not true
constants, but adiabatic invariants, the resulting f
satisGes the Boltzmann equation to within the accuracy
of the adiabatic theorem.

A useful set of e s are the initial position ro and initial

'0 We are indebted to Dr. G. Chew, Dr. M. Goldberger, and Dr.
F. Low for calling our attention to the similarity here to the
Qhapm@n-Knskog method.

IL RELATION TO PARTICLE EQUATIONS OF MOTION

For the sake of added physical clarity, we shall discuss
the static solution by means of particle orbits. It is quite
apparent that this may be done, the formal argument
being as follows:

Abbreviate

velocity co. Then

f= f(rp(r, c,t), cp(r, c,t))

satisGes Eq. (5).
Equations (16) and (17) hold in general. To obtain a

static solution, it is evidently necessary to choose f so
that expression (17) is independent of t.

III. THE SPECIFICATION OF THE PROBLEM

In order to be able to make detailed statements con-
cerning the behavior of the gas, it is necessary to specify
in some detail the physical properties of the static state.
We shall assume:

(A) The gas is very nearly electrically neutral, or
that n,~n, . More precisely, we shall keep terms of
order no higher than the Grst in (e;—I,).

(B) The quantity

Average Larmor radius of particle orbits
'9= ~&1.

Dimensions of the system

This will be considered as an expansion parameter (to
which we shall frequently refer) and we shall usually be
interested in keeping no more than Grst-order terms in
q. Assumption (B) implies a "strong" magnetic Geld
and means that Larmor frequencies will be much greater
than other characteristic frequencies of the system.
This is apparent, on recalling that the Larmor radius
~thermal velocity/Larmor frequency.

(C) The quantity

Kinetic energy density in gas

Magnetic field energy density

This is clearly compatible with our assumption of low

gas density and strong applied magnetic field. Taking
P«1 simpliGes considerably the solution of Maxwell's
equations, since it implies that the magnetic field arising
from the external sources will provide a reasonable
starting approximation to the actual B.

(D) The static electric Geld, Ep, is small and its
derivatives are negligible.

Of our four assumptions, (B) is by far the most im-
portant since it determines the general nature of our
conclusions. Assumption (C) is convenient in obtaining
explicit solutions of our equations. The remaining two
assumptions are of less significance and might have been
relaxed without invloving much additional complication.

IV. THE STATIC DISTRIBUTION FUNCTION

In accordance with the theorem quoted in Sec. II, we
consider Grst the orbits of a charged particle in a mag-
netic Geld. We keep first-order terms in g in solving

Bc—= (e/M)Ep+cX pi(r),
Bt
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where
oi(r) = (e/MC)&o(r). (19)

an0 "coordinates" x~, x2, and x3. The x's are lengths
measured along the direction of the unit vectors. They
are not true coordinates, since they are defined only
locally. The unit vector ei is in the direction of B, and we
have

~2/Rl oj~l/~+1 ~o ~1X~2.

Other relations involving these unit vectors are given
in Appendix A.

In Appendix 8 we derive the motion of the charged
particle. The dominating term in the motion perpendic-
ular to Bo is the Larmor velocity,

Vo= Vg cos (van )

As explained in Appendix A, we introduce at each point
in space a local coordinate system with orthogonal unit
vectors

Py, e2, and e3

Again our unit vectors are defined at the position of the
guiding center. The position of the guiding center is R„
which is related to the particle position r by

r=R, —(VX8i/oo),
to first order in g.

We have now put the solution to the equation of
motion in the desired form. To continue, we define a
guiding center distribution function Ji by

f(x,c)d'rd'c= F(Vi, Vo, V o,Rei,R.&,R.o)d'R, d'V. (27)

Equation (27) is an expression for the one-to-one
correspondence between particles and guiding centers. "
To obtain the time dependence of F using the method of
Sec. II, we observe that

d'rd'c= const,

following the dynamical motion (this is a consequence
of Liouville's theorem). Next, we may show that

cPR,d'V =const.

This follows on evaluation of the Jacobian of the trans-
formation"

pt
V3= V& sin ~dt',

(20)

o)= (e/MC)Bo(G).

Here Bo(G) is the value of the field Bo at the position of
the guiding center of the Larmor orbit. The guiding
center moves along the field lines with a velocity V~

determined from

Rcg =RcgoVgbt,

Rc2 Rc20&

Rco —Rcoo+ oi)Q~

Vi= Vio+ (V~'/2D)8t,

Vo= [Voo+ VoooAtj[1 —(Vio/2D)Dt's,

Vo= [Voo—Vooiobtj[1 —(Vio/2D)btj,

(28)

iEVi/dt= V~'/2D. (21)

(d/d$) (V ') = —Vi(VogD). (22)

[1/D= —(1/B) (BB/—Bxi), as described in Appendix
(A).j

Also, the quantity V~ in Eqs. (20) satisfies

where Q is an infinitesimal time interval. Vo and R~o
represent the values of V and R, at the begirinilg of the
interval ot. Equations (28) follow immediately from
Eqs. (24) and (25), if we drop vE, or assume it to be
in the es direction and thus included in vD.

In the same interval bt, we have

It is convenient to write a vector V as

V—= Viei+ Voeo+ Voro, (23)

ro= r—c5tq

co= c—(e/M) Ep53 —cXoi (r)Q.

where all the unit vectors are defined at the guiding
center position.

Then, (as is shown in Appendix 8), to first order in q

the solution to Eq. (18) is

Referring to Eq. (27), we see that during bt, f changes
according to Eqs. (29) while F changes according to
Eqs. (28). The differential equation for F is determined
from

=—[F(h~) —F(0)].
8t St

(30)
ViVo UoUo ( 1 1 )+'i
coRi 2oi ERo Ro]

c=V+vD+vs. —ei

Vo'+ Voo= V,'.
where

It is apparent that if Ii is not to oscillate at the
I.armor frequency, it must depend only on V2 and V3+, g V V (V 2 V' 2), (24) in the combination

3R, l' ' '

v~, = cEoXo/Bo'

e3
vD= [Vi'+-,' Vi'J.

coRy

(25)

Also if F is not to change due to the guiding center drift

"This approach to the distribution function using F was begun
in collaboration with M. L. Goldberger.

"The argument is given in more detail in Appendix A,
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gc]t)=Ecg—VgQ,

Vtp= Vt —(Vis/2D) bt,

V.,s= V,'+ V, (V,'/D)m,

(32)

which follows directly from Eqs. (28). Using Eq. (31)
we have

BF 1 t ( Vg' V~'
=—F~ Vt — "ot, V~'+Vg bt, Rcr VrQ, —Res

~

at ot l ( 2D D i

e~, F should sot sepend upon Ec3. Thus, "
F=F(Vr, V~s,Rct,Rcs). (31)

There is one final condition on F due to motion in the
"1"direction. In time bt

I= —fd'c= ~~Fd'V= 1V, — (38)

the guiding center density, to and including first order
terms in g. For the higher moments, we introduce the
notation

V. CONDITIONS ON THE MOMENTS OF THE
STATIC DISTRIBUTION

The static distribution f of the previous section is the
distribution fp about which we shall linearize the time-
dependent equations in Part II. Its general properties
lead to conditions on the moments introduced in Eq. (2).
For instance, we obtain directly from Eq. (37)

=0

F(Vt—,V~,Rct,Rcs) t ~(y).—= '

yFds V, (39)

or
Vg2 BIi BF

+Vt
2D BV&

2 g Jf"

—Vg
D BU~'

(33)

This represents the final restriction on the form of Ii.
If vg, is not in the e3 direction, then the functional form

of F is further restricted. The resulting equations may be

easily worked out as we have done above.
Dividing Eq. (33) by Vt, we see that this equation

depends only on V~'. We thus take F to be a function of

V 2 ~

F=F(Vts, Vis,Rat, Res),

and satisfying Eq. (33).
From Eq. (26) we have the relations between the

volume elements as

(VXet)
dR, =dr 1+V (

Q7 )
V (VXet) Vs Vs

1— +—V es ——V es . (35)

where $(v) is some function of V.
We may also easily express the higher moment ex-

pressions (2) in terms of the moments of F. For the ith
component of the drift velocity at the point r we have,
where e;(r) is the appropriate value of e; at the point r.

Vsvs(1 1 )
&v c'(r)=—~n'= "e;(r) V+er

2(o (Rs Rs 3

VgV3 83
+ LVrs+-;V.q

o)E.g +E.~

Y3 BIi„
csvsvs ——(Vss —Vss) F„+—

2 Ol BS2

V (VXer) Vs Vs
X 1— +—V. e2 ——V.ep d'V. (40)

To evaluate this we recall that the components of V
are defined in terms of the e;(R,), so we must replace
the 8;(r) in the right-hand side of (40) by

It is also necessary to express F in terms of its value at
r through Lsee Eq. (26)]

V3 BIi„
F(R,)=F„+ (36)

f VX~.l
c;(r)=c;(R.)—~ I Ve;(R,). (41)

CO BRC2
The integral is now readily evaluated to first order in g

where F„means Ii at the point r. These relations permit to give

us to write Eq. (27) as
j. 8

v = cs(r) M(e(vs') g)
coMÃ &$2

V3 BF
f(r,c)d'c= F(vt', Vg', xt,xs)+

M Bxg„ + L(vt')o —(Vs'&03 (42)
Eye@V- VXet Vs Vs

+ 1— +—V es ——V cs d'V. (37)

p;;=M e;(r) [c vjltc v] e;(—r) fd'c.—

CO CO CO The pressure tensor is evaluated in the same manner

Here we must keep only zero- and first-order terms of p.
frOIQ

"We are not seeking the most general static solution of Eq. (30), (43)
Eq. (31) being suKciently general for our purposes.
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To and including 6rst-order terms in q, we 6nd that direction of e~. Then

p11=Mn(V12) g,

Pss= Pss= Mss(Vs') g,

prs= prs= pss=O

e2/+1 riel/cixl (A-3)

(44) defines the unit vector esLes 81=0j and the principal
radius of curvature of the 6eld lines. A third vector is

Thus the pressure tensor is diagonal and has two diGer-
ent elements in our coordinate system.

Finally, to zero order in p, the heat Qow tensor

(45)

Define
83—FAX e2.

1 1 88

D 8 Bxg

(A—4)

Our moments are still not arbitrary, but are further
related by the differential equation (33). Indeed, taking
moments of Eq. (33), we obtain

and

cipll pll pss =0 14

D

V Q=O. (46)

Any further detail must be obtained by making more
specific assumptions about the distribution function f
(or fp). This cannot be determined from general
principles, but must involve the physical details of the
plasma structure. Such arbitrariness is not a short-
coming of our analysis, since it represents an actual
arbitrariness in the corresponding physical situation.

In Part II, where the nonstatic problem is studied,
the static solution obtained here will represent an initial
condition on the system with respect to which small
perturbations are made.
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Using V B=O, we have also

1 (cler) ( cier)
i+es i

D l ax,) &ax,)
where bx~ and bx3 are infinitesimal displacements in the
direction of e2 and e3, respectively. Ke also define

( rl81) 1
g~ ~

( cixs) Rs

( rierl 1
es

(ax) Z,
'

(A—7)

&0
BxyBX2 Bx28xi

in general.
The V' operator is

Further differential relations may easily be worked
out. In treating the equations of motion in Appendix 8,
it is assumed that the radius of torsion of the field lines
is large enough to be neglected.

The unit vectors e~, t",'~ and e3 along with the displace-
ments bx~, Sxg and bx3 define a rectangular coordinate
system in the neighborhood of each point. They are not
true coordinates, since they are defined only in an
in6nitesimal region. For instance

8 8 8
+es +es

xy Bx2 Bxa
APPENDIX A

We discuss here the differential geometry used above.
The magnetic field is

B=ae, .
consistent with the divergence and Stokes' theorems.

(A—1) We obtain, for instance

In accordance with our assumption that p«1, we take

VXB=O,
(A-9)

or, using (A—1),

~Xi= —6XV'8.
8

In connection with Eq. (28) and the discussion pre-
ceding this equation, we may now show the constancy
of the volume element

Let bx~ represent an infinitesimal displacement in the

's This will be recognized as (v.p) 6=0, which is obviously
necessary for our equilibrium solution.

'1i A development similar to that presented here will be pubHshed
separately by Chew, Low, and Goldberger.' Part II is written in collaboration with Dr. K. A. Brueckner.

in more detail. The motion of R, is given by

R,=R,p+ v225t+e1(0) Vspbt. (A—10)

Here e;(0) is the value of e; at t=O 8,(Q) is the. corre-
sponding value at R, at time tit Our volume elem. ent is
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(8—1) becomes

p l &R,p ae, (0)
hR, =Q ' +Vip' ARc, p. (A—11)

BRc;0 BRc;0

(The contribution from vii is of higher order than the
terms which we are keeping. ) Then,

ARcg =ei(5t) DR, =DRcip+ ~

Set

with

dc e
I

v~Xeii—=—&p+cXpc —cX I I
V' pp. (8—5)

dt M

c= vt+v&ei+ve, +vD+vr, ',

vE = cEpXBp/Bp .

~10
ARcp=ep(8t) AR, = 1+ St ARcpp+

R2 (A—12)

Vlp
ARcp= 1+ Q DRcpp+ ' ' '.

R3

For evaluating the Jacobian determinant only the terms
on the principal diagonal are needed. These are just the
terms explicitly written above. Using Eq. (28) in the
form given for the velocities, we obtain immediately

Vlp V lp
d'R, d'V= 1+ 9 1+ ot

R2 R3

2

X 1— 8t d'R, pd'V p d'R, pd'V p
——(A—13)

2D

(We recall that Ep is considered to be small and that we
can neglect its derivatives. ) Now,

~V1 Vl~1 ~V1 Vl
(&lei) = ei+ ep— ei+ e2 (8 8)

dt Bt R1 Bt R1

where Vi is the nonoscillatory part of vi. (That is, the
diGerence v1—V1 will turn out to be smaller than terms
we need keep in Eq. (8—8).)

Making use of the diGerential relationships of Appen-
dix (A) and using Eq. (8—6), we finally reduce Eq.
(8—5) to

dug (Vpp Vpp) Vip dvc dvz, dvc'

dt (Rp R&) Ri dt dt dt

vt, Vi(1 1 p+v~X pp
——

I

——
I (VA —Vpep)

2D 2 (Rp Rpd

to first order in bt.

APPENDIX 8
e2

+—V Vp'p+ —(V '- Vp')
2R1 R1 2

We now discuss the solution of Eq. (18) to first order
ln 'Q.'

dc e—=—Ep+cX pp(r).
dt 3f

+voX~+vI. 'Xpp. (8—9)

Here we have replaced e2' and e3' by e2 and e3, respect-
ively, in all terms which involve field radii of curvature,
and set

Ke introduce the "Larmor velocity"

vt. ——[ep' Vp+ep' Vp j,
Now, take

(8—2)

V '=V'+V' (8-10)

R,=r+ (vI,Xei/&c).

Also [from (8—3)g
(vt.Xei)

~(r) =~(R.)—I
—

I &~(R.)
cv

(8—3)

to first order. We henceforth write for brevity

pp= pp(R, ),

where e2' and e3' diGer from e2 and e3 by terms of the
first order in g. Explicit forms will be given later for e2'

and ep'. The position of the guiding center is defined to be

ViP+
R 1' 2

d V1 V~2

dt 2D

dv1 V

dt R~

Also, define vz, by

4VL, V1VI
+vLX pp

dt 2D

(8-11)

and also suppose ei, ep, and ep are evaluated (as pre-
scribed in Appendix A) at the position R,. Then Eq.

V,
t

1 1 ~——
I
——I(Vpgp —Vpep). (8-12)

2 (Rp Rpk
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Now, by Eq. (B—2)

dvt. d V2 d V3 VIV2
+e3' — ei,

dt dt dt Ri

if we neglect the torsion, fle3/cjxi. Choosing

(B—13)
( V2V3) (1

2co j LR2 R3)
(8—16)

keeping first-order terms in p, the solution is just Eqs.
(20) with VA given by Eq. (22).

From Eqs. (B—11), we easily obtain

e3' ——e,—ei (Vi/~R, ),
/

eg = e2)

Eq. (B—13) reduces to

dvt. dV2 dV3
+es

dt dt

Ke have now defined all quantities except v~' in

(B—14) Eq. (B—9). Substituting, this becomes

1 eo
v L' ——v L'X os+ V—2V3e3+—(V.'—V;i-'), (B -17)

E.i 2

(B—15) which has the solution (to order 2i)

(dV3/dt oeV2, t—o first order in 2).) Substituting Eq.
(B—15) into Eq. (B—12), we obtain coupled differential
equations for dV2/dt and dV3/dt By m. eans of the
adiabatic theorem in mechanics, we can show that,

1 e3
VL = 82V2V3 (V2 V3 ) . (B 18)

3MR1 2

Thus we have all the quantities in Eq. (B—6), which is
just Eq. (24).
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Use of the Boltzrnann Equation for the Study of Ionized Gases of Low Density. II*
K. g. BRUECKNER'f AND K. M. WATsoNf

Los Alamos Seseatzfie Laboratory, Los Alamos, Xe2o bfexico

(Received December 30, 1955)

The Boltzmann equation for ionized gases of low density in an external magnetic field is used to obtain
approximate solutions in the nonstatic case. The Boltzmann and Maxwell equations are linearized by
assuming small deviations from a static solution. It is shown that in the limit of a strong magnetic fie]d

{g((1,as defined in the text), the motion transverse to the magnetic Geld is described by the conventipna]
hydrodynamic equations. The variation along field lines is described by a one-dimensional (i.e., one space
dimension and one velocity dimension) Boltzmann equation. Several applications are given, including an

analysis of the Kruskal-Schwarzschild gravitational instability of a plasma.

I. INTRODUCTION

~ 'N Part P we discussed on rather general grounds the
~ ~ behavior of an ionized gas of low density in a strong

magnetic field. The properties of the static state were

treated in detail. In the present paper we study further

the dynamic and thermodynamic behavior of the gas.
%e recall a few of the basic equations from Part I.

The dynamical properties were described by the

Boltzmann equation

itf e—+c Vf+ E+—CXB—V',f=0,
M C'

which applies to either electrons or ions on giving e its
proper sign and on assigning the appropriate subscripts
e or 2 The first .four moments of f were written as

*A development closely paralleling in many respects that given
here has been found by Chew, Goldberger, and Low. This treat-
ment is to be published separately.

(Present address: Brookhaven National Laboratory, Upton,
New York.

$ On leave from University of Wisconsin, Madison, Wisconsin.
' K. M. Watson, preceding paper (Phys. Rev. 102, 12 (1956)j.

Equations in Part I will be referred to here as Eq. (I-1), etc. Part
I itself vrill be referred to as I, for brevity. The notation is the same
as in I:E is the electric Geld, 8 the magnetic Geld, C the particle
velocity, etc. The unit vector e& is in the direction of 80, e2 in the
direction of the principal radius of curvature of the 80-lines. e3 is
AX@.

v=——)~cfd c,

p—=M) (c v)(c v)fdsc, — —


