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The Serber model of high-energy nuclear interactions permits one to express the "optical-model" potential
for nucleons in terms of nucleon-nucleon scattering amplitudes. The potential is written in terms of four
well-depth parameters in the form

5 '1dp
'U c= L&c—@+i&n)p (r) +$&sz+i&sz]—

yc r t&

and experiments necessary to determine the four parameters Vzz, V&1, Vaz, and V&I are discussed. The
explicit relations between the parameters and nucleon-nucleon scattering amplitudes are given and existing
experimental data are reviewed.

The phase shifts of Feshbach and Lomon have been used to calculate Vgg, Vgg, and Vgl. These values
seem to reproduce the qualitative features of the "measured" values of these quantities. (A quantitative
comparison is not possible, since analyses of the experimental data are not sufficiently complete. )

I. INTRODUCTION

HE optical model' of nuclear scattering provides
a means of studying nuclear structure by com-

paring nucleon-nucleus with nucleon-nucleon scattering
and pion-nucleus' with pion-nucleon scattering. In the
present note we wish to review brieRy the relevant
relations between nucleon-nucleus and nucleon-nucleon
scattering. ' The general theory was given in reference 3.
However, the results were not put into a convenient
form for use.

To describe the clash'c scattering of a nucleon by a
nucleus in the laboratory system, ' we suppose the
initial and final nucleon momenta to be P and P',
respectively. The scattering occurs primarily at small

angles, so we may consider the nucleus to be at rest
both before and after the scattering, and suppose the
nucleon energy, E&,b (which is the sum of kinetic and
rest energy), to be unchanged by the scattering. The
"center-of-mass" energy is

E..~.= cLp'+ M'c'j'.

II. RELATION OF THE OPTICAL-MODEL POTENTIAL The nuclear radius, R&, volume, V&, and density,
TO NUCLEON-NUCLEON SCATTERING AMPLITUDES p(z), are related by

To describe the nucleon-nucleon scattering amplitude
M, we shall use the notation of Wright. 4 He writes for
the matrix M in the spin space of the nucleons:

M=BS+C(or+os) st+a(or it)(os 8)T
+-'GL(or tL)(os &-)+(or.it+)(os &+)jT
+-,'IIL(ot tl )(o, .8 )—(e, 8~)(os.@ )$T. (I)

Here S and T are the respective singlet and triplet spin
projection operators. n, n, n+ are unit vectors in the
directions of p)&p', p' —p, and p'+p, respectively,
where y' and y are the Anal and initial center-of-mass
(abbreviated c.m. ) momenta of the particles. The
coeKcients 8, C, E, G, H depend upon energy and the
c.m. scattering angle 0. To distinguish between proton-
proton and proton-neutron scattering, we shall use
subscripts PP and ÃP' on the coefficients 8, C, etc.

*Work supported in part by a grant from the National Science
Foundation.

' Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).' For the scattering of pions, the dis ersion relation of M. L.
Goldberger )Phys. Rev. 99, 979 (1955) permit one to establish
some general relations between the scattering from nucleons and
the scattering from nuclei, if one uses the simple optical model.
These relations are discussed by Frank, Gammel, and Watson
(submitted to The I'hysica/ Remit).

e G. Takeda and K. Watson, Phys. Rev. 94, 1087 (1954) and
Phys. Rev. 97, 1336 (1955).

4 S. C. Wright, Phys. Rev. 99, 996 (1955).

t p(x)d'x= V~,

V~ = (4/3) srRgs,

R~= (A/ttc)XA&,

(3)

Z

exp ——(P' —P).x p(x)d'x, (4)

where (M) is the M-matrix of Eq. (I) averaged over
PP and XP' interactions and over the spins of the
nuclear particles, and nz is the rest mass of the nucleon.
The last factor above implies that small scattering
angles will be most important, so we expand to first
order in the scattering angle 0. If we take Z=~A for

~ We are treating the nucleus as being infinitely heavy. For
nonrelativistic scattering it is more nearly accurate to suppose
that our formulas apply to the nucleon-nucleus center-of-mass
coordinate system.

where p, is the pion rest mass and ) is a dimensionless
scale parameter. Consequently A~i.

In momentum space the optical-model potential is
given by'

3 Eo.m. IM C 1

)P Z,.btnh (2srh)'
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the nucleus, so that M= 2[MPP+M~P) we have

(M)=M.+ .[(p Xy)/p]M,

with [see Kq. (1))

Mp= p{[P+&+G]pp+P+&+G)~p}I p p,

Ml= (+pp++'ptp)
2i sin0

(5)

where
f1

1=xXi —~ l

Ei

is the nucleon angular momentum operator. The spin-
orbit term above divers from that usually considered
in that it contains an imaginary term, V», in the well

depth.

III. EXPANSION OF OPTICAL MODEL POTENTIALS IN
TERMS OF NUCLEON-NUCLEON SCATTERING

PHASE SHIFTS
It is convenient to eliminate p'Xy/p' from Eq. (5),

using
y'Xy 2E, P'XP

p' nzc' P' (7)
We may also easily express 'Uz in terms of the

nucleon-nucleon scattering phase shifts. We again use
Wright's notation4:

which is valid to 6rst order in 8. We also introduce the
following deinitions:

Po m tt (t.l(').I'=——[ttc']
-gtnb~ ( $)-

2Ec.m. pC

fSC I

eJ=mixing parameter for angular momentum J,
bJ', 8J'——two eigenphase shifts for triplet states of

parity= —(—1)~,

8J, &=phase shifts for trip'et states with parity
=(-1)',

8J, 0—phase shift for s.nglet states,

Vott —=+I' Re{Mp},

Vcr=+I" Im{Mp},

Vstt =——QI' Re{Mt},

Vs, —= —QI' Im{Ml}.

(&) and in addition we write explicitly

8('Pp) =phase shift for scattering in the 'Pp state. (12)

Then

Vott ——+ I' {[Q +3 P ](2l+1) sin2ttt, p

16P l(odd) l(even)

Using Eqs. (5), (7), and (8), we may write Eq. (4)
in the form

t'1 l
(P'l'UclP) = —(vcz+t'vcr)+ I

—
l

i~ P'xP
Et c)

1,X[Vstt+iVsz]
l

p(x)
(2~A)'~

Xexp ——(P' —P) x d'x . (9)

Vsz=

+[ P +3 P ][(21+1)sin28t, l
l (eveII) l (odd)

+ (21+3)(sin2t) lt.ll+ sin28t+ln) ]
+3 sin28('Pp) },

QI' [ P +3 P ]{—(21+1) sin2ttt l
32P l(even) l(odd)

+ (2l+3) [sin28t+l'(I cos'et+i —(1+3) sin'et+i)

+sin2ttt+l'(I sin et+i —(3+3) cos'et+i)) } (13)

Together with Eqs. (6) and (8), this expresses the
nucleon-nucleus "optical-model" potential explicitly in

terms of the nucleon-nucleon scattering amplitudes.
As we shall discuss below, the four quantities V&&, V&&,

Vaz, and V&&, are directly measurable, as are also the
coefficients in Kq. (1). Thus a detailed experimental
study of the validity of the optical model is possible.

A somewhat more useful form for Eq. (9) is obtained
on transforming 'Ug to a coordinate representation. To
an approximation consistent with our assumption of
small 0, we have'

—6 sin2t) ('Pp)

A
Vsr= Ql' [ P +3 P ]{—(21+1)(sin8t l)'

16P l(even) l(odd)

+ (2l+3) [(sint) t+l')'(I cos et+i —(3+3) sin'et+i)

+(stnttt+t ) (I sin et+t (1+3) cos et+t))}

—6 (sin'8 ('Pp))'

'Uc(x) = —[Vctt+iVcr)p(x)
( @) ' 1 do The form for Vol is most easily given in terms of total

+[V»+iV»)
l l

~'I~ (10) nucleon-nucleon cross sections by means of the relation
&ttcJ x dx

6 See the appendix for a derivation. Vcr @&1 b/2)ls
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where v&,b is the nucleon velocity in the laboratory and obtain
frame of reference and

1 3 1 pc (pci '
0

XB 4~-~' A ( A)
where

Ii= ~o Tr[MiMitf
=

I
A I'+ IL I'

P,=Tr[eMiMitf/2Ii
= rii(J i/Ii),

(21)

(22)

In this expression 0. is the average nucleon-nucleon
cross section in the nucleus ':

o V[pNp+&pp j (16)

where 0.~~ and 0-~g are the total scattering cross
sections for nucleons on free nucleons and y is Gold-
berger's correction factor for binding eGects. For
energies greater than 100 Mev, y 1.

M~= A+Le ri, (17)

where 8 is a unit normal to the plane of scattering, and
A and I. are functions of the scattering angle, readily
expressible in terms of the nucleon-nucleon scattering
parameters 8, G, C, and E, or in terms of the phase
shifts and mixing parameters as defined by Wright. '
Hence the matrix M~, and consequently the four
optical-model potentials Vgg, Vt.-~, V~g, V~~, are
directly measurable quantities. At each scattering angle
only three independent quantities, such as the magni-
tudes and relative phase of A and I., need be deter-
mined. This can be done by means of angular distri-
bution and polarization measurements in double and
triple scattering experiments. ' "

Letting po be the von Neumann density matrix in the
spin space of the incoming nucleon beam, we may write
the differential cross section Ii(8) after the first scat-
tering in the form

IV. THE PARAMETERS OF THE M MATRIX AND
POLARIZATION EXPERIMENTS IN NUCLEON-

NUCLEUS SCATTERING

The eGective nucleon-nucleus scattering matrix
assumes the form (we are neglecting the nuclear spin)

Ji A*L,—+—AI*. (23)

= (Ji/Ii)'= (Pi. rii)', (26)

which is a positive definite quantity.
Thus the measurements of cross section and polar-

ization in a double scattering experiment determine
two parameters, Ii and

I JiI for example. The third
independent parameter may be found by letting the
second scattering take place in a plane perpendicular
to the plane of the first scattering, and measuring the
polarization P& of the scattered beam by means of a
right-left asymmetry determination in a third scatter-
ing. The polarization after the second scattering is
given by

The magnitude of the polarization Pi may be measured
by letting the scattered beam undergo a second scat-
tering in the same plane through the same angle, and
observing the azimuthal right-left asymmetry in the
scattered intensity. If the normal 82 to the plane of the
second scattering is defined to be parallel to 8~ for
"right" scattering and antiparallel for "left" scattering,
then we may write the 3f-matrix describing the second
scattering in the form

Mom= A+I a" rii, Moz ——A La. ri, .—

The diGerential cross section I2 has the general form

IQ —Tr[MoMipoMitMotj/Tr[MipoMitj (25)

Using (20), (21), (23), and (24), the right-left asym-
metry ratio becomes

Ioa —Ioz Tr[(Ii+Jio" rii)Jar rii]

Io~+Ior, Tr[(Ii+Jio ri,)I,]

where

Ii(8)= Tr[MippMit7/Tr[ppj,

Mi A+Le rii. ——

(18
Po ——Tr[EIMoMippMitMotj/Tr[MoMippMitMot] (27)

which for the special case under consideration becomes

is the M-matrix describing the first scattering. The
polarization Pi after the first scattering is given by

Pi ——Tr[oMipoMi t7/Tr[MipoMi tj.
If the incident beam is unpolarized, we may write

where

Po= [rilJ1Gl+rioI1J1+riiXri2J1+1]I'

Ei——i[AL~—A*L],
8g. 82= 0.

(28)

(29)

(20)
~ M. L. Goldberger, Phys. Rev. 74, 1269 (1948).' N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
'L. Wolfenstein, Phys. Rev. 96, 1654 (1954); L. Wolfenstein

and J. Ashkin, Phys. Rev. 85, 947 (1952)."R.H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952).

Since Ii, J~, and G~ are independent they determine
the M matrix up to a trivial phase factor, and Ei, being
similarly 6xed, is a dependent parameter. Thus the
triple scattering experiments furnish an overdetermi-
nation of the parameters and consistency checks are
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possible. If the third scattering takes place in a plane
parallel to the 6rst scattering, then the sequence of
scatterings is described by the following set of matrices:

As a simple and instructive example, let us consider
scattering nearly in the forward direction from a light
nucleus. In this case we may use the Born approxi-
mation to calculate 3f~ ..MI=A+Le 81,

M2=A+Le 62,

M3R=A+Le 81,

M3L ——3—I.e.l1,

M~——(22r) 2 (5/c2) El.b (P'
I U& I P). (36)

(30) By comparing Eqs. (17) and (36), and using (9) to
substitute for Ug, we obtain

A'1 82=0.

The scattered intensity after the third scattering is
given by

I3——Tr[M3M2MIM1 tM2 tM3 t]/Tr[M2MIM1 tM2 t]. (31)

With the use of (22), (28), and (29) a brief calculation
yields the following for the asymmetry ratio:

ISR—I3L ~1 G1

I3R+I3L II'

(Pl ' 311)(P2 ' 311)~

k 1
A=+(2 )' P. , [—Vc +iVS ]

C2 (22rh)3

X d3xp(x) exp ——(P' —P) .x

(37)
)Py' 1I = —(22r)2—El b[USR+iVSI] il I sinful, b

C2 (pC) (22rI3)'

z
d3xp(x) exp ——(P' —P) x .

This type of experiment measures the component of
polarization along 8'1 of the beam after the second
scattering, and thus provides a direct determination of
the parameters Il, JI, and Gl (except for the sign of JI)
without overdetermination.

A more probable experimental situation is one in
which the beam of nucleons entering the experimental
area has a known polarization P1. This is the case when
the first scattering, which occurs at a target inside the
accelerator, is used to extract the beam. A subsequent
external scattering with 21 parallel to Pl leads to the
scattered intensities:

I2R Tr[IIpl& Jlple 31]

Tr[pl]
(33)

ISR—ISL J1G1
+1

I3R+I3L Il
(35)

This suffices to determine G1.

where p& is the density matrix for the incoming beam
corresponding to polarization PI, i.e., Pl= Tr[pllr]/
Tr[pl]. The asymmetry ratio becomes

I2R I2I, JI Tr[ple —6]
IlTr[pl],

= VI/I )P.
Thus J1 is determined.

Similarly, a double scattering experiment for which
the normal A1 to the plane of the erst external scattering
is perpendicular to Pl, and for which the normal R2 to
the plane of the second external scattering is parallel
to Pl, leads to the asymmetry ratio

As an approximation we may assume that V&R and V&1
are known from simple scattering experiments. Then
knowledge of G1 and J1 determine both VgR and Vqy,
as can easily be seen by substituting the solution (37)
into (34) and (35). There results

ISR ISL J1
+1

I3R+I3L

J1
(3S)

I1

{VcR'+Vcr' [(P/I3~)' »»—la][VsR +Vsr']}
x

{VcR'+ Vcr'+[(P/p~) sinel b]'[VsR'+ Vsr']}

Most previous investigations have ignored the term
Vss.

A similar analysis may be carried through for the
nucleon-nucleon scattering problem. ' " The M-matrix
then will have the form given by Eq. (1) which is the
most general expression for the scattering of two spin- —,

'
particles, assuming symmetry of the interaction under
spin exchange. In this case there are nine independent
parameters, and again the measurement of angular
distribution and asymmetry ratios in triple scattering
processes serves to determine these parameters (al-
though much more complex experiments are needed' ).

~'Henry P. Stapp, thesis, University of California Radiation
Laboratory Report 2825 {unpublished).

I2R I2L

I2R+I2L
[—VcRVSI+VcIVSR](P/I3c)2 sin81, b= —281

VcR'+Vcr'+[(P/I3c)'sin&, ]'[V '+V ']
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V. EXPERIMENTAL VALUES FOR THE
OPTICAL-MODEL POTENTIALS

A number of authors" "have employed the optical
model to fit the nucleon-nucleus scattering data, and
several have interpreted the polarization data in terms
of an effective spin-orbit potential as suggested by
Fermi. " With various assumptions concerning the
nuclear radius and shape of the function p(x), they
estimate numerical values for the optical-model pa-
rameter as a function of energy.

Taylor" uses the cross-section data for neutrons on
Cd, Cu, Al, and C at 85 Mev to evaluate well depths,
nuclear radius parameters, and absorption mean free
paths as a function of neutron energy ranging from 30
to 400 Mev. Woods and Saxon, and Le Levier and
Saxon" fit values for U~g and V~~ to agree with the
elastic cross sections of protons at energies in the
neighborhood of 20 Mev on Al, Ni, Pt, Pd, and %,
using a disuse surface optical model. The values quoted
by Melkanoff, Moszkowski, Nodvik, and Saxon" at 17
and 31.5 Mev were obtained from an analysis of elastic
scattering of protons on elements ranging from Fe to
Pb, and the 5.25-Mev values from protons on Ni.
Clementel and Villi" calculate U~y as a function of
energy up to 200 Mev, using a Fermi-gas model for the
nucleus and relating the energy dependence of Vt.-l to
that of the neutron-proton total cross section. Kind
and Villi" derive a perturbation theoretic expression
for the optical-model potential Vgg on the basis of the
independent particle model, starting from a nucleon-
nucleon interaction of Yukawa type. They 6t neutron
scattering data at energies from 50 to 300 Mev.

It is to be noted that the above-cited investiga-
tions" —"do not take account of the spin-orbit potential,
and that values for the spin-independent potentials
will in general depend on the magnitude of the spin-
orbit interaction.

Fernbach, Heckrotte, and I.epore" and Tamor"
include a discussion of the spin-orbit interaction in
their analyses, and quote values for V&&, V&&, and U»
which give agreement with the 290-Mev scattering
data. Snow, Sternheimer, and Yang" investigate the
eGect of the spin-orbit term on polarization, and fit
the polarization data" for 316-Mev nucleons on Be,

"T.B.Taylor, Phys. Rev. 92, 831 (1953)."R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954);
R. E. Le Levier and D. S. Saxon, Phys. Rev. 87, 40 (1952)."Melkanoff, Moszkowski, Nodvik, and Saxon (to be published)."E. Clementel and C. Villi, Nnovo cimento 2, 176 (1955);
see also A. M. Lane and C. F.Wandel, Phys. Rev. 98, 1524 (1955).

' A. Kind and C. Villi, Nuovo cimento 1, 749 (1955).
' Fernbach, Heckrotte, and Lepore, Phys. Rev. 97, 1095

(1955);W. Heckrotte, Phys. Rev. 94, 1797 (1954); W. Heckrotte
and J. V. Lepore, Phys. Rev. 94, 500 (1954)."S.Tamor, Phys. Rev. 97, 1077 (1955).

» Snow, Sternheimer, and Yang, Phys. Rev. 94, 1073 (1954);
R. M. Sternheimer, Phys. Rev. 95, 587 (1954); 97, 1314 (1955)."D.M. Chase and F. Rohrlich, Phys. Rev. 94, 81 (1954).

"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954)
and Phys. Rev. 90, 166 (1953)."E.Fermi, Nuovo cimento 11, 407 (1954).

"Marshall, Marshall, and De Carvalho, Phys. Rev. 93, 1431
(19S4),

TABLE I. Compilation of numerical values for the optical-model
potentials from scattering and polarization data.

Energy
Mev

vc'R
Mev Reference

Energy
Mev

Vcr
Mev Reference

Q3
5.25

17
20
20
31.5
50
50

100
100
150
150
200
200
250
250
300
400
Energy

Mev

290
316
316

42
52.5
45.5
38
30
35
30
28
20
19.5
15
17
14
12
13
1.0
9

12
vs@
Mev

2.5
0.58~
1.23b

21
14
13, 14
13'
20
13, 14
12
16
16
12
12
16
12
16
12
16
16
12

'

Reference

17
19
19

0
&3

5
5.25

10
17
20
20
20
31.5
40
50
80

100
100
150
150
200
200
290
400

1.6 15
2 21
3.45 15
0.9 14
5.38 15
8.5 13, 14
9 13

20 20
8.73 15

15 13, 14
11 5 15
8.6 12

12 5 15
12.1 15
7.7 12
7.4 12

10.9 15
8.0 12
9.85 15

18 17
14 12

' Square we11 for Vg.
b Harmonic oscillator potential for Vg

assuming for 'U q both square-well and harmonic-
oscillator potentials and for V8~ various shapes in-
cluding the Fermi-Thomas precession form given by
Eq. (10).

These results, together with those of Chase and
Rohrlich" for 20-Mev protons on Al, Cu, and Ag, and
those of Feshbach, Porter, and Weisskopf" for low-

energy neutrons are summarized in Table I and by the
graphs of Figs. i and 2. For comparison, values of Vgr
obtained from total nucleon-nucleon cross sections
Lsee Eq. (14)j are included in Fig. 1.

20- 0

Symbol Reference
lb, 14
20

~ 2I

)5
X

IO

I I I I I

0 50 IOO l50 200 250 500 550 400
EL-Mc2 in Mev

Fzo. 1. Several calculated and measured values of Vgi.

"H. Feshbach and E. Lomon, Phys. Rev. 102, 891 (1956).
&q pre jpQebted to these authors for sending us their phase shift;g,

VL EVALUATION OF POTENTIALS FROM
FESHBACH-LOMON PHASE SHIFTS

Recently, Feshbach and Lomon24 have given a phase-
shift analysis of the nucleon-nucleon scattering cross
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50-

40-

Symbol Reference
i 13,14
~ 2Q
~ 2! 7-

,6-

&20-

l0—
Ref. (12)

ef. (16)

0
.N

CL

~2

I I I I I I

0 50 100 150 200 250 500 350 400
EL -Mc2 in Mev

50 100 150 200
Et as Mc' IN ME VFIG. 2. Experimental values of Vgg. The curve from reference 16

represents calculated values.

25-

20-

l5-
VcR

sections. Using their phase shifts, we have evaluated

Volt, Vsn and Vsz from Eqs. (13). The results are
shown in Table II and Fig. 3 for their two sets of phase
shifts 2 and B. In making a comparison with the
'-'experimental" values for these quantities, we must
recall that: (1) except for the work of Fernbach,
Heckrotte, and Lepore" (who obtain Vcr~0 at 290
Mev), most determinations of Vc~ have neglected Vsn
and Vsr, (2) determinations of Vsn have neglected Var,
(3) values quoted for these parameters do not agree
suSciently well to permit a quantitative comparison
with our calculated values. It seems, however, that
the qualitative features of the V's are correctly given.

These values of the U's, along with V&1 as given by
Eq. (14), have been used to calculate the polarization
of nucleons scattered from carbon at e~,b=20 . For
this calculation the Coulomb force is neglected (for the
case when the incident particle is a proton) and the
spin-orbit term is treated in Born approximation. That

FIG. 4. Calculated polarization of nucleons scattered from
carbon at Hl, b=20'. The values of Vgg, Vag, and Vgq were
obtained from the Feshbach-Lomon phase shifts. The experi-
mental points are those of Dickson, Rose, and Salter /Proc.
Phys. Soc. (London) 68, 361 (1955)j. The point at 290 Mev is
due to Chamberlain, Segre, Wiegand, Tripp, and Ypsilantis
(quoted in reference 17). The error indicated has been estimated
from the scatter of the experimental points. The curve is drawn
from points calculated only at the five energies shown, so the
extent of the discrepancy between calculated and experimental
value at 130 Mev is not clear. Also, for quantitative comparison
more accurate evaluation than ours from Eq. (39) are required.

is, we take

M+ —3E+(0)—(2s') E&~bg's, 'Usofr + ), (39)

where M~(0), list+I, Pet I are the scattering amplitudes
and wave functions for the central potential only and
have been evaluated by a simple eikonal approximation.
Vsn is the spin-orbit term in Eq. (10).The polarization,
calculated at 6ve energies, is shown in Fig. 4.

VII. CONCLUSIONS

Use of Eqs. (6) and (8) enables one to express the

parameters of the optical-model potential directly in

terms of nucleon-nucleon scattering amplitudes. The
implication of this is that the potential may be specifi-

cally obtained from the results of appropriate nucleon-

nucleon scattering experiments. It may also be "meas-

l0-
Vs

Vs

TABLE II. Optical model potentials calculated from Kq. (13}
using the two sets (A) and (8) of Feshbach-Lomon phase shifts. '
All quantities are in Mev.

0-
Vs) (A, B)

Kin. energy Ucz
(lab) A

vsR
B

vol
A

VBI
B

-IO 1

50
I I I I I

I00 I 50 200 250 500
E1.AS- MC' ln MEV

FIG. 3. Values of Vg~, V sf@, and Vgl calculated from the
Feshbach-Lomon phase shifts. The labels "3"and "B"refer to
&bq two set;s of phase shifts of these au&hors.

38.5 22.53
80 14.88

120 8.65
190 4.05
274 2.23

a See reference?$,

23.88
16.86
9.01

—0.57
—8.19

—1.13
—1.49
—1.49
—1.35
—0.83

4.23 5.32 —1.06
2.81 3.45 —1.40
2.16 2.76 —1.44
1 ~ 19 1.65 —1.39
0.33 0.78 —0.94
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ured" by studying the elastic scattering of nucleons by
nuclei. Comparison of these two sets of values should

give an indication of the validity of the Serber model
of high-energy nuclear reactions, in which it is assumed
that "two-body" processes determine the scattering.
This, in turn, has a bearing on a number of related
questions such as the relative importance of two-body
~ersls many-body forces, '~'~ the relative importance
of "compound nucleus" sects eersls "knock-on"
processes, " and the contribution from "nonlinear"
meson effects.

APPENDIX

VVe shall derive here the coordinate-space expres-
sion'~" for the optical model potential.

The optical-model potential in momentum space has
the form

P., P'XP
(P')V )P)= —I') M,+2i M i(2 fz)-

mc' P'

z
d'yp(y) exl —-(P' —P) y

Vc+ io P'XPVs (2zrA) '
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X d'yp(y) exp ——(P' —P) y .

Fourier transform of the foregoing. Thus
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J

In view of the small-scattering-angle approximation,
the integrations over P and P' may be performed by
moving the term within the brackets outside the
integral sign. The symbols V and V' denote gradient
operators with respect to the x and x' coordinates,
respectively. The resultant delta functions render the
integration over y trivial, and there results

(x'( ucix)
(5)—= U,+~ —

i V,ie (V'XV)
~

Q(x)5(x' —x)j.
l,pc)

If furthermore it is assumed that p(x) depends only on
the magnitude of x, then it follows that

1 8p
(V'XV)Lp(g)6(x' —x))= ———(xXV')5(x' —x)

s 8$

11dp=———18(x'—x),
z $4$using the definitions and notation established in the

text, with where 1 is the nucleon orbital angular momentum
operator. There results finally

Vc= —(Vcrr+i Vcr), Vs= Usa+i Vsr
( le ) s 1 dp

(x'('Uc~ x) = Vcp(g)&(x' —x)+~ —
~

Vs—~ 18(x'—x).
(pc) *dgThe corresponding expression in the coordinate space

of the incoming nucleon is obtained by taking the
The space-dependent potential operator "Uc(x) is given
by the relationship

(x'i 'Uc
i x) ='Uc(g)b(x' —x),

( Iz ) s 1 dp
'0 c(x) = Vcp(*)+Vs
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