
PH YSI CAL REVIEW VOLUM E 102, NUM BER 4 MAY 15, 1956

Nuclear Matrix Elements for Allowed. y Transitions*

W. C. GRAYsoN, IR.,t f. AND L. W. NQRDHEIM

Department of Physics, Duke University, Durham, cnorth Carol&sa

(Received January 13, 1956)

Nuclear matrix elements are evaluated for all allowed p transitions in the strict j-j coupling shell model,
i.e., for states of lowest seniority. The wave functions for the j configurations are obtained by algebraic
means in the formalism of coeKcients of fractional parentage. The matrix elements are given for the two
assumptions, firstly that isotopic spin is a good quantum number, and secondly that the neutrons and
are coupled separately to their lowest seniority states. The latter includes the case where the protons end
in a j=l+2 shell, while the neutrons end in the j=l—~ shell. A similar explicit form is given for the mag-
netic moments of the states of the j~ configuration with seniority one.

I. INTRODUCTION

'HIS paper is devoted to a der'ivation of the nuclear
matrix elements for all allowed P transitions,

using the strict j-j coupling shell model. As shown in
the companion paper, ' hereafter referred to as II,
these matrix elements lead to a consistent treatment
of the observed transitions which provides some
insight into the validity of the model and, in particular,
clarifies the role of configuration mixing.

Matrix elements have been calculated for specific
transitions in this scheme by Wigner, ' Feenberg, '
Kurath, ' Talmi, ' and Kofoed-Hansen. ' In the present
treatment all matrix elements of this type are derived
in a systematic manner by making use of the powerful
techniques developed by Racah' " and Flowers. ""

The complete pairwise coupling of the strict j-j
coupling shell model is expressed by choosing the states
of lowest seniority, '""i.e., of maximum symplectic"
symmetry. These states have been shown'"" " to

*Work supported by the National Science Foundation and the
U. S. Atomic Energy Commission.

t This article is based on a thesis submitted by W. C. Grayson,
Jr., to the Graduate School of Arts and Sciences, Duke University,
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy (1955).

$ Present address: University of California, Radiation Labora-
tory, Livermore, California.

'W. C. Grayson, Jr. and L. W. Nordheim, following paper
fPhys. Rev. 102, 1093 (1956)j.

E. P. Wigner, "The j-j Coupling Shell Model for Nuclei, "
University of Wisconsin Lecture Notes, 1951 (unpublished).' E. Feenberg, Shell Theory of the Xudeus (Princeton Univer-
sity Press, Princeton, 1955).' D. Kurath, Phys. Rev. 91, 1430 (1953).' L Talmi, Phys. Rev. 91, 122 (1952).

6 A. Winther and O. Kofoed-Hansen, Kgl. Danske Videnskab.
Selskab, Mat-fys Medd. 27, No. 14 (1953).' G. Racah, Phys. Rev. 62, 438 (1942).' G. Racah, Phys. Rev. 63, 367 (1943).' G. Racah, Phys. Rev. ?6, 1352 (1949).

'0 G. Racah, "Group Theory and Spectroscopy, " hectographed
notes, 1951,Institute for Advanced Study, Princeton, ¹wJersey
(unpublished)."B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).

"A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A214, 515 (1952).

"M. Umezawa, Progr. Theoret. Phys. 8, 509 (1952).
'4 H. Weyl, The Classical GrouPs (Princeton University Press,

Princeton, 1939).
's M. Mayer, Phys. Rev. 78, 22 (1950).
"D. Kurath, Phys. Rev. 80, 98 (1950).
'I B. H. Flowers, Proc. Roy. Soc. (London) A215 398 (1952).
's A. R. Edmonds, Proc. Roy. Soc. (London) A215, 120 (1952).

10

lead to lowest energy for attractive charge-independent
central forces of very short range.

For light nuclei neutrons and protons occupy the
same levels and there is considerable evidence that
the total isotopic spin, T, is approximately a good
quantum number, at least for the ground states. The
existence of favored transitions up through the fr(s
shell" indicates that this should be a valid approxi-
mation up to A 56.

For higher A the neutron excess becomes large and
the last neutron levels are accessible to protons only
at high excitation energies. Isotopic spin will then
cease to be a good quantum number, and the shell
model states will be better represented by coupling the
protons and neutrons separately to their configurations
of lowest seniority (odd-group coupling model).

The nuclear matrix elements are derived here for
both of these extreme cases. However, while the ex-
pressions obtained diGer in form, they are of com-
parable magnitude, so that the conclusions to be drawn
in II do not depend sensitively on the actual purity
of the isotopic spin states.

In Sec. II explicit forms are obtained for the wave
functions of states of lowest seniority for the configura-
tion j~, using the coefficients of fractional parentage
(cfp) technique of Racah.

In Sec. III these wave functions (cfp) are used to
obtain the nuclear matrix elements for allowed P tran-
sitions.

II. WAVE FUNCTIONS FOR THE
CONFIGURATION j~

Assuming charge-independent central forces and
introducing the classification according to symplectic
symmetry, o= (s,f), of Flowers" and Umezawa, II the
wave functions for the configuration (rsjl)~=jN of X—
nucleons in the same shell may be written

+=+(j~era= (s,f)TTrJM), (1)

where n denotes any additional quantum numbers
which may be required to specify the state completely.

Such' a state may be interpreted as one in which
E—s nucleons couple oG in pairs with zero angular

"The last observed mirror transition is Sc '—+Ca", the last triad
Co'4—&Fe".
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momentum and unit isotopic spin, while the remaining
s nucleons couple to angular momentum J and isotopic
spin t. The resultant total angular momentum is J,
with s-component M, and resultant total isotopic spin
T, with "s"-component T~.

States of this type 6rst occur for Ã= s and T= t; s is
called the seniority of the state and t its reduced isotopic
spin.

In this scheme the ground states predicted by the
strict j-j coupling shell model correspond to the states
of lowest seniority, i.e., for even-even con6gurations
o = (0,0) and J=O; for odd-odd configurations o = (2,0)
and J=1, 3, .2j; for odd-even or even-odd can-
figurations o = (1,~i) and J=j.

A. CoefBcients of Fractional Parentage

In principle, the wave functions

0 (j N«= (s,t) TTrJM)
can be obtained by vector coupling the single particle
wave functions to J, T in such a way that X—s par-
ticles couple oG in pairs with zero angular momentum
and unit isotopic spin and the remaining s couple to
J, t, then explicitly antisymmetrizing.

However, for more than three particles this pro-
cedure becomes rather lengthy and it is more con-
venient to use the coefFicients of fractional parentage
(cfp) technique developed by Racah. '

In this scheme the antisymmetric states for
particles are obtained by vector-coupling the last par-
ticle to all possible parent states of the E—1 particle
"ions, " the latter being presumed already known from
a previous calculation, i.e.,

4(jw«TTt JM)

(j «TJ(i '(~ioiTiJi) j)
a1O171Jy

XP(j" '(ni iToiJi)j ~; TTrJM), (2)

where ij is obtained by vector coupling the wave
function of the 1Vth particle, P&(jnt), to

4'(j 'bio iTiTir JiMi),

and the coefficients

(j"«TJ(j~ '(o,~,T,J,)j)-
which give the fractional contribution from each parent
state are called coefficients of fractiona/ parentage (cfp).

Tables of the cfp in this scheme for the states of j"
with j=3/2, 5/2 have been given by Edmonds and
Flowers. "However, their method is dificult to extend
to E particles since it involves a chain calculation and
all of the cfp for j~ ' are required to obtain the cfp
for j~.

For the purpose of this paper the cfp are needed only
for states with o = (0,0) and o = (1,—,'). These simple cfp
can be obtained for arbitrary E by a treatment closely

analogous to that used by Racah' for atomic 1=5
coupling.

B. Factorization of the cfp

The evaluation of the cfp is considerably simpli6ed
by using a lemma of Racah'" to factor the cfp into
three factors, each depending on a smaller number of
variables:

(j (0'io'iTiJi) jij Q'O'TJ)

= p —1 T, IXT)(j& (p,~,-T,)J I
J&poT)

X (pl&Tlyi JiX (1;',)j I pop J), (3)

where the notation indicates the variables upon which
each factor depends and (P,p)=a denotes any addi-
tional quantum numbers which may be required to
distinguish states with the same 0-, J in this scheme.

In terms of these factors, the requirement that the
wave functions be orthogonal and normalized leads to
the following orthonormality conditions:

(4a)

p (pop JIpioipiJiX (1;',)j )(tsioipiJix(1, )j I
p'o'p'J)

=Re e.3i ~.3, , (4c)

C. Additional Relations for Determining the cfp

Three further independent relations between the cfp
can be obtained by using Eq. (30) of Edmonds and
Flowers" to express the matrix elements of various
two-particle operators

which are diagonal in this scheme, with known eigen-
values, in terms of the cfp.

Two such operators are

G(J)—= 2 (j' 3.),

with eigenvalues

g~(J) = 2I:J(J+1)—&j(j+1)3
and the similar operator for the isotopic spin

G(T)= P(t;.t,), —

with eigenvalues

g (T)=!IT(T+1)-!~]
~ The factorization here corresponds to the reduction scheme

U(4j+2)—&U(2)X U(2j+1)~R(3)XSP(2j+1)~2t(3)Xtt(3)
used in classifying the states; see Flowers" and Racah. "0
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A third such operator" is

N 2j
G(Sp) =4 P P (2%+1)(u, i~& u, i~&),

j(j K=1
(K odd)

gst(J) = E giv i(Ji)
N 2 cgltrl~l~l

X I (P '(~ioiTiJi) jjIP«TJ) I', (»)
N

g~(T) = —2 g~-i(Ti) I (N —1 TilNT) I'
N —2» (5b)

where the N, (~) are unit tensor operators of rank E
defined for a particle with angular momentum j by

(jlltt'~'ll j')=8; ', with E=O, 1, 2j.
From Edmonds and Flowers, " the eigenvalues for

G(Sp) can be derived:

g&(s, t) = (s—N) (2j+2)—sis(s —1)+as—2t(t+1).

When G(J), G(T), and G(Sp) with their eigenvalues
are inserted into Eq. (30) of Edmonds and Flowers, "
three relations are obtained between the cfp them-
selves:

is restricted to those states with seniority one or zero.
These states are uniquely determined by N, T, cr, and
J so that n= (P,y) can be dropped. "

Consider now the seniority-zero states, N even,
o.= (0,0), and J=O. For these states the only possible
parents are the states with oi ——(1,—', ), Ji——j and the
orthonormality conditions (4) give

(j" '((1s)Tibl j (00)T)
= ((1,-', )jX (1,-', )jl (0,0)J=0)
=1.

The nonzero total cfp for the states of seniority zero
then are

(j '((1,s)TiJi= jbItj (0,0)T J=O)
= (N 1Ti

I
N—T). (8)

The treatment of the seniority one states with
o = (1,—', ), J=j is slightly more complicated. Here the
possible parent states have o i ——(0,0) and Ji——0,
ai= (2,0) and Ji——1, 3, 2j, or oi= (2,1) and Ji——2,
4, 2j—1.

If one uses the reciprocity relation'4 (9b) of Edmonds
and Flowers" and the orthonormality condition (4c),
the nonvanishing third factors are

gv(s, t) = p giv i(si, ti) I
(1v 1TiI NT)—I'

N —2 PI~»I
((0,0)Ji=OX(1,-', )jl (1,—',)j)=1, (9a)

((2,1)Ji=2, 4, . 2j—1X(1 s) jl(1 s)j)
= I:(2J +1)/(j+1) (2j—1)3', (9b)

D. Evaluation of the cfp

It is convenient to consider the three factors sepa-
rately. The first factor (N —1 Ti

I
NT) can be evaluated

in general. "Noting that Ti——T&—'„Eqs.(4a) and (5b)
give

an additional relation can be obtained by using the
j-j coupling analog of Eq. (19) of Racah' to relate the
total cfp for the configuration with N particles to those
for the configuration with N —1 holes.

(N —2T) (T+1)
(N —1 T,= T+ ;INT)=-

N (2T+1)
(6a) (j& i((0~0) TiJi 0)j IIj~(1~is)Tj

These relations and the orthonormality conditions (4),
along with the reciprocity relation (9.6) of Edmonds
and Flowers" and the j-j coupling analog of Eq. (19) = —L(2Ji+1)/(j+1)(2j+1)]'. (9c)
of Racah' are sufhcient to determine the cfp of interest
here. To determine the remaining factors,

(N —1T,=T ', I1VT)=—-(N+2T+2)T *'

1V(2T+1)
(6b)

(4j+3—N)(2Ti+1) l
—

( 1)T+Tg+

iV(2 j+1)(2T+1)

Xo such general result has been obtained for the
other two factors and the remainder of the discussion

s' See Edmonds and Flowers. '~ The operators G(J), G(T), and
G(Sp) are related to the Casimir operators for the rotation group
R(3) and for the symplectic group Sp(2j+1). The reduced
"double barred" matrix elements are de6ned in Racah. '

~It can also be shown that (X—1 T&~1VT)= (ef4]/nP. 7)&,
where IfX~g, nf)~] are the dimensionalities of the representations
f) &J and P.J of U(2J+1) deternuned by (iV—1, T&) and (Ã,T),
considered now as representations of the symmetric group on S
letters, SJv. See Racah, "

(j"""(( s) jbjlj"" "(oo) =o) ( o)

"The seniority-one states are uniquely determined by N, T,
0., and J, but for 7~&37~&2j+1 there are two sets of parent states
with o&= (2,1), (see Flowers" ). For these cases the quantity listed
in Table I should be interpreted as the rms of the two cfp. In
Sec. III these cfp can be expressed in terms of the cfp with
o i= (0,0) using the orthonormality condition (4b), thus avoiding
the necessity of determining the two separately. See Appendix I.

'4 Note that the reduction (o)~Dq implies that the dimen-
sionality of (o) is the sum of the dimensionalities of the Dz, i.e.,

e(o)= Z (21+1).
gin (a)
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TABLE I. Nonvanishing total cfp for seniority-one states of the configuration j+, for N odd, 0 = (1,~), J=j.~

Case (A): 2T=N, N —4,

(j '((0,0)Ti=T ', J—i=-0)jllj (1,-', )TJ=j)=—(4j +4 N 2—T)—

2N(2 j+1)
(2J,+1)(4j+4)LT(N+2T)—1j+N—2T &

(j~ '((2,1)Ti——T——', Ji——2, 4, ~ 2j—1)jllfA'(1, —,')T J=)j=
N(2T+1)(2 j+2)(2j+1)(2j—1)

(N —2T) (2Ji+1)
(j~ '((2,0)Ti = T+,' Ji——1, 3,—2j)jll j~(1,—,')T J=j )=-

2N(2 j+2)(2j+1)
(N —2T)(2T+3) (2Ji+1)

(j~ '((2,1)Ti=T+ ,'Ji=2,—4, 2j—1)jllj~(1-', )TJ=j)=
2N(2T+1) (2j+2)(2j—1)

Case (B): 2T=X—2, E—6,

(j+ '((20)Ti=T—~i Ji——1, 3, 2j)jlljir(1, ~i)T J=j)=
(N+2T+2)(2Ji+1)

2N(2 j+2) (2j+1)
(N+2 T+2) (2T—1)(2Ji+1)

(j~ '((2,1)Ti=T——', Ji=2, 4, 2J—1)jllj~(1,-', )T J=j )=
2N(2T+1)(2J+2)(2j—1)

(4j+6 N+2T) &—

(j~ '((0&0)Ti——T+ ,'Ji=0)jllj~(1,q)-T J=j)=
2N(2 j+1)

(2Ji+ 1)(4j+4) l (T+1)(N —2 T—2)+1]—(N+2T+2)
(j '((2,1)Ti=T+2 Ji=2, 4, 2j—1)jllj"(l,k)T J=j)=-

N(2T+1)(2 j+2)(2j+1)(2j—1)

a For the second cfp of case (A) and the fourth cfp of case (B), see reference 23.

(4j+6 N+2T) (2T+1)—
(11a'l

(N 2T) (2T+2) (—2j+1)

(P '((0,0)TL=T—2)J IP(1,2)T)

(4j+4—N —2T)(2T+1) '*

(N+2T+2) (2T) (2j+1) .
(11b)

These two factors with Eq. (Sc) and the orthonor-
mality condition (4b) determine the remaining cfp.
For this purpose, the seniority-one states are for con-
venience divided into two classes (see the explicit classi-
fication of states by Flowers" ):
Case (A): 2T= N, N —4, . Here if Ti—T+-
oi ——(2,0), (2,1) and if Ti T z, oi ——(0,0), (——2,1). —

Case (3): 2T=N 2, N 6, . Here Ti—T+ ,' c—or-———
responds to o.i= (0,0), (2, 1) and Ti T ,' to o i= (2,0), ————
(2,1).

Collecting all three factors together, the nonvanishing
total cfp for seniority one states of the configuration
j~ are listed in Table I.

Factoring this expression and inserting the factors
already determined gives two of the required factors

E. cfp for Identical Particles

For the special case where j~ involves only one type
of particles, i.e., neutrons, protons, or electrons, a
calculation similar to that of the last section gives, for
arbitrary seniority s,

(j" '((s 1 2s —2) Ti= T 2)J I
J"(s ks) —T= zN)

= [s(2j+3—N —s)/N(2 j+3—2s)]'*, (12a)

(P '((s+1, is+a) Ti=T k)JI P(s z—s) T=kN)
= [(N—s) (2j+3—s)/N(2 j+3—2s)]&. (12b)

Since (N—1 Ti———', N—
z IN T= ', N) =1 and the -third

factors (s+1, —,'s+-', )Jt&& (1,—,')j I (s,—,'s)J) can be obtained
from the tables of Edmonds and Flowers" (for
j—3/2, 5/2, 7/2), this result determines the wave
functions for states of arbitrary seniority in the simple
coupling scheme where neutrons and protons couple
separately, or for atomic j-j coupling. "Note that here
o.= (s,t) is uniquely speciled by a single number, s.

III. MATRIX ELEMENTS

For allowed beta transitions, there are only two
possible types of transition operators and the transition
probability can be written

1/ff= gp'Mr'+gg'Mg', (13)
ii C. Schwartz and A. de-Shalit, Phys. Rev. 94, 1257 (1954),

prcv&ously obta&n|;d th&s r|;suit for tht: sen&ority-one states only.
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where

& I&flZ r, (k)ls&l'
l

irreducible tensor operators to separate out the M-
dependence.

Rewriting the transition operators in terms of irre-
ducible tensor operators, in Racah's notation:

is the Fermi matrix element squared, I
J'1l', and N N

F(10)—P r (k) —P v2[t (i) (k) ti(i) (k)7 (16)

2 I &flZ "(k)o(k) ls&l' (»)
2J'+ I sr, sr s=t

is the Gamow-Teller matrix element squared,
I
J'(rI'.

In these expressions the isotopic-spin-Rip operator
v.„and the spin vector e will be assumed normalized so
that v-t. and 0-, have eigenvalues &1. J.' is the total
angular momentum of the initial state (i) and M' its
s-component. In general, primed quantities will refer
to the initial state and unprimed quantities to the
final states (f).

The wave functions (cfp) obtained in the previous
section will now be used to evaluate the nuclear matrix
elements Mp' and Mg' for allowed transitions involving
the seniority-zero or -one states of jn: (A) for T
a good quantum number, and (8) for the simple
coupling scheme where neutrons and protons couple
separately.

The actual computation of these matrix elements is
considerably simpliied by using Racah's~ method of

G'"' =P r„(k)[o (k)],=Q &2[t i"' (k) —ti(" (k) ]o,"'.
%=1 (17)

The superscripts label the tensor character of the
operators in, respectively, isotopic spin space and coor-
dinate space. t is the isotopic spin vector of a single
particle (tr ——&s). q=0, &1 labels the "spherical"
components of the spin vector.

A. T a Good Quantum Number

Consider 6rst the case where the total isotopic spin,
T, is a good quantum number.

Here the Fermi matrix element, Mp', can readily
be evaluated for all transitions, independently of the
coupling scheme. "If the initial state is %(u'J'M'T'Tr')
and the final state %(oJMTTr), where u', a are any
additional quantum numbers required to specify the
states, then, from Eq. (29) of Racah, '

&flF Is&= &afMTTr
I ~ r, (k) la'f'M'T'Tr'&

I(:=1

= ()(.»r), ("~ )(r ) (—1)'+'"~2(TII T"'ll T') & V(TT'1 ' Tr Tr'(T—r Tr') )—

2J'+1 M', sr

=~(.», ("~ ) V'(»'1; Tr Tr'(Tr Tr—') )&& 2
I (Tll—T"'ll T') I'.

Inserting
I (Tl] T(')ll T') I'= T(T+1)(2T+1)i)r r, ' ' and the explicit form of V' r,

Mp'=8(, ~r), (;g r )(TaTr)(T+1WTr) for Tr=Tr'w1.

(19)

(20)

Evaluation of the Gamow-Teller matrix elements requires a more detailed knowledge of the character of the
states involved.

For the simplest case of a single-particle transition ( Vjn' 'trn')t—+(nljmtr), the matrix elements are readily
evaluated using the explicit single-particle wave functions. However, they will be derived here as a simple
example of the formalism (see also Talmi').

From Eq. (29) of Racah' it follows that

(f I G, I i&= &nl jnttr
I r„o,I n'I'j'nt'tr'&

= (—1)'+ +'+'rV(jj'1; ntnt'(I) V(s s 1—; trtr'(tt tr'))v2(tsllt(—"list)(nj)—Ilolln'I'j'), (21)
and

& 2 I&fIG. I
)I'

2j+1 mm'o=t

1
I (nVII Iln'I'j') I'

2j'+1
I E. P. Wigner and E. Feenberg, Repts. Progr. Phys. 8, 274 (1941)."E. U. Condon and 6. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1951).

(22)
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The double-barred matrix elements can be obtained from Eq. (30) of Racahr and from Condon and Shortley, "
noting that j=l+-,'»r. These matrix elements vanish for rsWe, lWl' and for ml=riV give:

Mo' ——(j+1)/j
Mos= j/(j+1)
MG'= (2j+1)/j
M o'= (2j+1)/0+1)

For general transitions j~—+j~, Eq. (23) of Racah' gives

if j=j'=l—2,

if j=j '+1=/+ (23)

=N(j noTTrJM~ r„(N)o,(LV)
~ j n'o''T'Tr'J'M')

(j n&TJ(j (nlolT1J1) j)(j (nlo 1T1J1)jjIj n o T J )
1&1+1+1

X (TiJi, s j(N); TTrJM
~
r„(cV)o,(N)

~

TiJ. i, —',j(N); T'Tr'J'M'). (24)

Evaluating the matrix element on the right in terms of the single-particle matrix element from Eq. (44) of
Racah, ~ and simplifying, we obtain

(f ~
G, ~i )= ( —1)~+~+rr+r[3/V'(2T+1) (2T'+1) (2J+1)(2J'+1)j-'

X U(TT'1; —Tr T&'(Tr Tr') )U(J—J'1; —MM'q) (j~(o ~~ j)"P", (25)
where"

(—1)r+r'+1+~+~'+~IV (,'T -',-T'; Ti1)W(j J—jJ'; Ji1)
&14'1+1~1

X(j"no TJ(j"—'(n,o,T,J,)j)(j~—'(n, o,T,J,)j jj vn'o'T'J').

Defining S.P. as the Gamow-Teller matrix element for the single-particle transition j—+j [see Eq. (23)], we get

3fg'——=3)V'(2T+1) (2T'+1) (2j+1)(2J+1)U'(TT'1; Tr Tr'(Tr T—r') ) ~ P ~

'. —
S.P.

(26)

Case (B): 2T=N 2, N —6, —This expression then gives the Gamow- Teller
matrix elements for arbitrary transitions j~—+j~ di-
rectly in terms of the cfp for the initial and final states. o [( ) ( &+ )+ ( + + )~

For N=2, all of the cfp are unity for states with S p (2T)s(2Ty2)s(2j+2)s
(—1)r+~= —1 and zero otherwise, i.e.,

Mgs/S. P.=2(2j+1)(2J+1)S'(jJj J'; j1), (27)

as given by Talmi. '
For S odd and both initial and Anal states of

seniority one, the cfp of Table I gives, if T~= T~'&1, for
T—T'

Case (A): 2T=N, N —4,

[(2T+2) (2j+2)—(N —2T))'
(2T)'(2T+2)'(2 j+2)'

X (T~Tr) (T+1~Tr); (2g)
'8 Reference 2/, p. 64 6.
~ For the de6nition and properties of the Racah functions lV,

see Racah and L. C. Biedenharn, Oak Ridge National Laboratory
Report ORNL-1098, 1952 (unpublished).

X (T~Tr) (T+1WTr).

For T= T'+1, the cfp of Table I give, under the same
conditions,

Case (A): 2T=N, N —4,

M o' (4j +4 N)' (2T)'— —
(T~Tr) (T 1+Tr);-

S.P. 4(2T)'(2 j+2)'

Case (B): 2T=N 2, N 6, ——

M ' (N+2)' —(2T)'
(TW Tr) (T 1W Tr) . —

S.P. 4(2T)'(2 j+2)'

For T=T'—1, the cfp of Table I give, under the same
conditions,
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Case (A): 2 T=N, N —4,

M02 (N+2)' —(2T+2)'
(T+1~Tr) (T+2 ~Tr);

S.P. 4(2T+2)'(2 j+2)'

Case (8): 2T= "'—2, N —6,

M 02 (4j +4 N—)' (2—T+2)'
(T+1W Tr) (T+2 W Tr).

4(2T+2)'(2 j+2)'

has been obtained, but for N=3, 4 and j=3/2, 5/2
the cfp of Edmond and Flowers" may be inserted in

(25) to evaluate Mg' for transitions involving states
of higher seniority.

Similarly, for transitions of the type j~ ' '(j')*+'~
j~-*(j')~, Eq. (28) of Racah' can be used to obtain
3fg' in terms of the cfp for the initial and final states.

For

Lj * '(~r'Tr'Jr') (j')*"(~2'T2'J2')]r ~ ~
[j" (~2TrJr)(j')*(~2T2J2)]re,

No such general result for states of arbitrary seniority 3E6' is given by

Mg /S.P.= 3(N —x) (x+1)(2T+1)(2T'+1) (2T&+1)(2T2'+1) (2J+1)(2j'+1)(2J&+1)(2J2'+1)
X V'(TT"1; —Tr Tr'(Tr Tr') ) I ((j—')*(o2T2J2) j'i(j')~'o 2'T2'J2')

I

'

XI(j" '(~r'Tr'Jr')j)j '~rTrJr)I'IX~I'IZrl',
where

P~=—P (2J2+1)W(J&'j'J'J2, J2J,')W(J,JJ2J', J21)W(jJ&j'Js, J&'1),
J3

Q r=p(2 T+s1) W( T,
'—2T'T ,2T2T2')W(T, TT2T') T 12) W(-, 2T22T 2,

Tr'1)
T3

(29')

and S.P. =—3f& for the single-particle transition j—+j.
This expression cannot be readily evaluated for general transitions of this type, even for those between states

of lowest seniority. However, for the special case where @=0 (i.e., transitions of the type j~—'j'~ j~),
Mg'/S. P.=3N(2j'+1)(2J+1)(2T+1)(2T'+1)V'(TT'1; —TrTr'(Tr Tr'))W2(2T 2—T'; T&'1)W2(jJj'J'; Jr'1)

X
f
(j~ '(&2ITriJ, ')7]}@&—TJ) f' (30)

In particular, for X=2,
M@2/S.P.= (2j'+1)(2J+1)W'(jJj'J'& j1). (31)

M G' for specific transitions of interest may be
evaluated from (29) by using tables of cfp and of the
Racah functions, 8'.29

All other allowed transitions can be reduced to one
one of these types [j~~jN or j~ * '(j')*+'~j~ '(j')*]
by using the method of Condon and Shortley. "

B. Odd-Group Coupling Scheme

In cases where the neutron excess is large, and in par-
ticular where there are additives (such as doubly oc-
cupied orbits with different l for the neutrons alone),
the isotopic spin, T, will no longer be a good quantum
number.

The logical formulation of the shell model will then
be that the neutrons and protons will couple separately
to their states of lowest seniority. In odd-A nuclei this
means that the even configurations have zero angular
momentum, while the nucleons of the odd group
couple to J=j.

The nuclear matrix elements for allowed P transi-
tions in this scheme are easily obtained from Eq. (11)
of Nordheim and Yost" and Eq. (28) of Racah

Consider first transitions of the type

[j"(~r'Jr'); j"(~2 J2)]J'~ [j~'(~r Jr); j '(~2J2)]J

where p and 22 are the proton and neutron numbers in
the initial state. The expressions for the matrix ele-
ments in terms of the cfp for the initial and final states
are then

M~'= ~(P+1)(2jr+1) (2J2'+ 1) I
(j"(~r'Jr') jib+'~r Jr) I'I (j" '(~2J2) jIIj"~'J2') I'W'(Jr'j JJ2; JrJ2')o~, ~, (32)

aild

Mg'/S P =~(p+1)(2J+1)(2Jr+1)(2J2'+1)(2j+1)l(j" '(&2J2) jItj"&2'J2')I'l(j"(&2'Jr') jjfj"+'&rJr)l'IXI' (33)

where
Q—=Q (2J2+1)W(J&'J'J2, J2J2') W(J&JJ2J'; J21)W(jJ&jJ2, J&'1).

J3

The cfp of (12) can be used to evaluate these matrix elements (and the analogous ones for the corresponding P+
transitions) for all transitions of this type. In particular, for the transitions between the states of lowest seniority

~ Reference 27, Sec. 1, Chap. 8.
2'L. W. Nordheim and F. L. Yost, Phys. Rev. 51, 942 (1937}.
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which are of interest here, we have, for even A, J'=1, and J=O,

M G' (p+1) (2j+2—n)

S.P. 3 (2j+1)
(34)

for odd A:

(a) if n is odd, p even,

(b) if n is even, p odd,

Similarly, for transitions"

Mo' (2j+2 n—) (2j+1 p—)
Mp'=

S.P. (2j+1)'
M 0' n(p+1)

Mp'=
S.P. (2j+1)'

(35)

Lj'(Oi'Ji'); (j')"(02J2)]J —+
I
j"+'(OiJi); (j')" '(02J2)]J

3II&' is given by:

Mg'/S. P.= n(P+1) (2J+1)(2j'+1)(2Ji+1)(2Jp'+1)
x I

((j')" '(~2J2) j'It(j') "~2'J2') I'I (j"(~i'Ji') jIIj'+'~iJi) I'IE I' (36)

where

p =—p(2J3+1)W(Ji' j'J'J2, J3J2')

xW(JiJJSJ'; J21)W(jJij'J3 Ji 1),

and S.P. is defined as 3fg' for the single-particle transi-
tion j'~j.

Explicitly, for transitions between states of lowest
seniority, we have, for even-A, J'=1, J=O:

S.P. (2j+1)(2j'+1)
(b) if n is even, p odd,

Mg' n(p+1)

S.P. (2j+1)'

(a) if n is odd, p even,

M(P (2j'+2 —n) (2j+1—P)
(38)

for odd-A:

M p' (P+1)(2j'+2 —n)

3(2j+1)

Matrix elements for allowed transitions between

(37) other configurations may be reduced to one of these
two types by using the method of Condon and
Shortley. "

APPENDIX I: EVALUATION OF Mg' FOR SENIORITY-ONE TRANSITIONS j ~j
As a typical example, consider transitions

Ci"~'=( l4) J'=j T']~Ci"~=(1h) J= jT=T'+17,

S.P.
for T~= T~'&1, where

&—= & (—1)"'"'W(jets J 1)&j"(1 l)TI & '( T =T—l) j&
&1 &1~1

x(P '(~i Ti=T'+2) jlP(1,l) T'= T—1) I &~iJix(1 —:)jl (1,k)j&l'.

Carry out the summation over J& 6rst by de6ning

~(~i) —=2(—1)'+'"'w( jjjj;Ji1)
I &~i Jix (1,l) jl (1,-') j& I'

with 2T=c7, 1V—4, . (i.e., case A). Since T= T'+1, T = T'+2= T—2, then wh'en we insert the W(T) from
the ORNL tables, "Eq. (26) becomes

Mg' (2j+1)'I (%+2)'—(2T)']'
(T~ Tr) (T—1~Tr) I 2 I' (39)

4(2T 1)(2T+1)—

L2j(j+1)—Ji(Ji+1)]
I ( iJix(1,—',)jl (1,l) j&l'.

2j(j+1)(2j+1)
(40)

"This case includes the important class of transitions in which the protons end in the shell j=l+—„which is completely filled by
neutrons, the latter ending in the states with j '=l—$. For states of this type T happens still to be a good quantum number. The
neutrons in the filled shell can be omitted in the computation of the matrix elements and p and n taken as the numbers in the un-
filled shells alone.
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The possible parent states have 0.&= (0,0), J&——0; 0,= (2,1), J,= 2, 4, ~ . , 2j—1; and 0&——(2,0), J&——1, 3,
Inserting the proper cfp from (9):

S(0 0)= —1/(2 j+1), S(2,1)= —1/[(2j+2)(2j+1)], S(2,0)= 1/[(2j+2)(2j+1)].
For case (A), T~ T————,

' corresponds to 0.
~
——(0,0), (2,1) and

Q =S(0 0) (j~(1,—',)T
~

j~ '((0 0) T& T—-'——)j)(j~ '((0,0) T& T'+——', )g I j-~(1,-', ) T' = T 1)—

(41)

+S(2,1)(j~(1,—',)T~g~ '((2,1) T&=T——')j)(j~ '((2,1) T&=T'+~s)g~ j~(1 ~) T'=T 1).—(42)

Using the orthonormality conditions (4), the 0.
&
——(2,1) cfp can be eliminated and

[P]'=[S(0,0) —S(2,1)]'](P '((0,0) T& T—~s)g[——j (1,~s) T)]'((j '((0,0) T& T'+ ,')y——(P—(1,—,') T'=T I)('.—

(43)
Substituting S(0~) from (41) and the cfp from Table I [using (6) and (9)], we have

Then, from (39),

as given by (28).

[(4j +4 E)' (—2T)']—(2T+ 1)(2T—1)

&1 (2T)'[(%+2)'—(2T)'](2j+2) (2j+1)'

4(2T)&(2j+2)'S.P.

M G' [(4j+4—cV)' —(2T)']
(T~ Tr) (T 1aTr)—

(44)

(45)

APPENDIX II. MAGNETIC MOMENTS FOR THE SENIORITY-ONE STATES OF j&, T A
GOOD QUANTUM NUMBER

Using the wave functions (cfp) of Table I, the magnetic moments for the states [j~o= (1,~s) TJ=j]are found
to be

Case (A): 2T= V, 1V—4,

1
p=- (p„[(2j+2)(2T+2)(T+T&) (N 2T)T—&]-

(2T) (2T+2) (2j+2)
+p„[(2j+2) (2T+2) (T Tr)+ (lV 2T) Tr—);—

(46)
Case (8): 2T=iV —2, X—6,

p= (w~[(2j+2) (2T) (T+1 Tr) Tr(1V+2T+2)]
(2T) (2T+2) (2j+2)

+@~[(2j+2)(2T)(T+1+Tr)+Tr(N+2T+2)j),
where p =g„jis the magnetic moment of a single neutron with the same 1, j and p,

„

is the similar quantity for a
proton, i.e., the Schmidt values.

Flowers" and Umezawa" have given discussioris of the magnetic moments for such states and for particular
cases of states with seniority three.

"B.H. Flowers, Phil. Mag. 43, 1380 (1952).


