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TAsLE V. N II 2s 2p 5g. Observed and calculated levels.

Limit
Designation

I. fK)
Level (cm ')

Obs (Obs )Alt Calc

(sZ„) e L5,'g

('&») & L42)

('&t) G L4-'1

('~t) G L3-'3

('&») 2" L3k)

('2'») 2' L2H

E=221 289.792 cm ',

6
5
5
4

4
4
3

3
3
2.

221 364

221 323

221 168

221 164

221 343

221 381

0.80 0 790.78
0.66 0.610.56
0.37
0 18 0,29

0.51
0.51
0.80 0 720.61

0.79

0.59

0.33

0.70

0.08

g2„——116.237 cm ', J 2
——0,6030 cm '

coupling approximation with the result shown in
Table IV.

The observed N rr 2s' 2p 5g levels, given in Table V,
occur in close pairs with a splitting of less than 0.20
cm '. The arrangement of the pairs is exactly de-
scribed by the theoretical formulas. The value sees„
=174.36 cm ', derived from this calculation, agrees
within experimental errors w tithhe splitting of the
ground term 2s' 2p 'P of N rrr, which is 174.5 cm—' as
determined from observations in the extreme ultra-
violet.
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This paper represents the generalization of an earlier theory by
Wangsness and the author in which the phenomena of relaxation
were treated by considering the interaction of individual nuclear
moments with the molecular system and assuming that the latter
remains always in thermal equilibrium. Instead of a single nuclear
moment, the representative spin system is here allowed to consist
of several moments, interacting with each other, and the corre-
sponding general Boltzmann equation for the distribution matrix
is developed. A first application is given by investigating the
effect of a weak alternating 6eld in the vicinity of resonance
conditions. It is seen that the phenomenon of saturation is closely
related to the change of populations in states, other than the two
between which the resonance transitions occur. This general type
of Overhauser eRect is shown to be equivalent to that of a dc
circuit and it is illustrated by a special example. The general
formalism is adapted to the treatment of a nuclear spin sys-
tem in a strong constant 6eld with particular attention to the
structure of resonance spectra in liquids, due to chemical shift
and spin coupling. A special case is that where the spin coupling
causes a splitting of the lines, large compared to their natural
width and their broadening due to the alternating field. An

l. INTRODUCTION

HK phenomena of nuclear magnetism require the
general consideration of a system of nuclear spins,

interacting with external fields and with each other. The
behavior of the system is further determined by relax-
ation processes which are due to its interaction with the
molecular surroundings. In an earlier paper, referred to

*Written at CERN, Geneva, during a leave of absence of the
author from Stanford University for the academic year 1954-1955.

expression for the signal, obtained in this case, is developed and
the eRect of the spin coupling upon the eRective longitudinal and
transverse relaxation time is illustrated by the particular example
oi the two coupled nuclei of spin 1/2 and with independent
dipole relaxation. New phenomena appear if the rate of re-
laxation-transitions is comparable or large compared to the fre-
quency separation of resonance lines, due to spin coupling. The
eRect of such transitions by some nuclei upon the line width and
structure of the resonance of others is investigated, assuming
the spin coupling to be small compared to the chemical shift.
Similar eRects occur to the resonances of a nucleus in a weak
alternating field, if other nuclei are at the same time irradiated by
an alternating field of diRerent frequency and sufFiciently strong
so that its effect is comparable or large compared to that of the
spin coupling. It is shown that, even for the case of a single kind
of nucleus, the presence of the strong 6eld causes a doubling of
the resonance with the weak field which can be used to calibrate
the strength of the former by a frequency measurement. Another
illustration is given in the case of two nuclei and explicit expres-
sions for line width and intensity are given for the example of
two nuclei with spin 1/2 and independent dipole relaxation.

below as I, Wangsness and the author' have presented
a new approach to the problem of relaxation by treating
the molecular surroundings as a quantum-mechanical
system in thermal equilibrium. Through statistical and
perturbation methods they were led to the Boltzmann
equation for the distribution matrix which is analogous
to the classical distribution function and contains all
the information necessary for the description of the spin
system.

' R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
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An essential restriction in I was made by assuming
that each nuclear spin under consideration reacts inde-
pendently of the other nuclei in the sample to the
external 6elds and to the molecular surroundings. It
excluded therefore a rigorous account for those relax-
ation processes which originate from the interaction of
nuclear moments as well as the consideration of systems
where the coupling between neighboring nuclear spins
causes a structure of the resonance lines. Such struc-
tures have been known for a considerable time to occur
in crystals', more recently, a considerably 6ner structure
has also been observed in liquids' and gases. 4 It is the
purpose of this paper to generalize the methods,
employed in I, in order to allow the treatment of
features which arise from a mutal interaction between
nuclear spins. While it was sufFicient, in I, to consider
a single representative nucleus, it is here necessary to
deal with more general spin systems. This leads to an
extended theory which contains the earlier results as
the simplest special case.

A more complicated case is that in which the repre-
sentative spin system consists of several nuclei, con-
tained in a molecule and with a coupling of their spins,
characteristic for liquids and gases.

In the following papers by Arnold and Anderson,
observations under high resolution are presented which
reveal a very 6ne structure of proton resonance spectra
in liquids. It was in fact the attempt to establish a
quantitative basis for the discussion of the relative
intensities and widths of lines, appearing in such spectra,
which has led the author to the theory presented here,
The case of spin coupling in crystals is likewise con-
tained in the general formalism but it is of considerably
greater complexity since it demands in principle that
one considers all the nuclei in the crystal together as
the spin system. While it is often sufhcient to regard
merely the interaction of nearest neighbors, there exists
also the possibility of spin waves propagating through
larger regions. The mechanism of relaxation is thereby
greatly complicated and no attempt shall be made here
beyond outlining its treatment. Finally it is not neces-
sary to include only nuclei in the spin system. Although
the individual carrier of spin and magnetic moment
shall be here for brevity called the "nucleus, " it is
equally possible for the spin system to contain also
electrons. As was pointed out by Overhauser, ' it is in
fact of special interest to consider relaxation processes
which originate from the coupling between nuclei and
electrons. A similar situation arises in cases where the
coupling leads to a hyperfine structure with relaxation
transitions between the levels of the nucleus-electron
system. The bearing of the general theory on this type
of "Overhauser eGect" will be discussed below.

~ G. E. Pake, J. Chem. Phys. 16, 327 (1948).
'Gutowski, McCall, and Slichter, Phys. Rev. 84, 589 (1951.);

E. L. Hahn and D. E. Maxwell, Phys. Rev. 84, 1246 (1951).
4 Smaller, Yasaitis, Avery, and Hutchison, Phys. Rev. 88, 414

(1952); H. Y. Carr and K. M. Purcell, Phys. Rev. 88, 415 (1952).' Albert W. Overhauser, Phys. Rev. 92, 411 (1953).

The formalism will be first developed without speci-
fying the nature of the spin system and it will be used
to draw some general conclusions. It is later particu-
larly applied to the case of structures in liquids; special
assumptions will be freely introduced in this application
with the view to illustrate in a relatively simple manner
certain characteristic phenomena rather than to adhere
strictly to various actual conditions. Depending upon
the latter, one may be faced with problems which
require greater computational efforts for their solution.
One of the complications may arise from the time-
dependence of the applied radio-frequency field; we
shall restrict our considerations to a purely mono-
chromatic field and to the superposition of a strong and
a weak field with diHerent frequencies. It should be
noted, however, that other cases such as transient
phenomena and the application of pulsed 6elds, leading
to spin echoes, could equally well be treated from the
general equations.

2. THE GENERAL BOLTZMANN EQUATION
FOR THE DISTRIBUTION MATRIK

Proceeding in this section in a manner, analogous to
that in I, we shall first define the Hamiltonian of the
total system in the form

where the first part represents the energy of the spin
system and depends only upon the spin operators and
certain fixed parameters. The second part, representing
the energy of the molecular surroundings, is an operator
which pertains to all other degrees of freedom of the
total system, in particular to those of thermal motion
of the molecules. The third part represents a coupling
energy between the spin system and the molecular sur-
roundings and it is not subject to any restriction except
that it can be treated as a small perturbation.

Let further

where AEO shall be a large, AE& a relatively small part
of the spin energy. This separation is to some extent
arbitrary and a matter of convenience. In analogy to
the procedure followed in I, it is possible, for example,
to include in AE& merely the contribution to the spin
energy, arising from the applied rf field Hi(t). 5EO
contains in this case the spin energy, due to a strong
constant field H'

0, the coupling energy between dif-
ferent nuclear spins, the quadrupole interaction with
fixed electric field gradients, etc. , in short all those parts
of the spin energy which, irrespective of their relative
magnitude, do not explicitly depend upon the time. It
may be indicated, on the other hand, to separate certain
relatively small parts from AEO and have them con-
tained in AE~. This type of separation will be later
applied to the spin coupling in order to treat cases
where the coupling gives rise to effects which are corn-
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parable or small compared to those caused by the rf
6eld or by relaxation processes.

The quantum-mechanical problem, presented by the
Hamiltonian (2.1), will now be solved in a representa-
tion in which Eo and F are both diagonal. The eigen-
values of Eo will be denoted by g, those of F by f. As
in I, it must be noted that the molecular system has
very many degrees of freedom so that the values of f
must be considered to be practically continuous.
Besides, it will be generally highly degenerate so that a
stationary state of this system must be characterized
by the double system (f,u), where u specifies one of
many states with the same energy hf! Although it is
not essential for many purposes, one may admit that
the spin system is likewise degenerate and, in this case,
characterize one of its states by the double symbol (g,e),
where e speci6es states with the same value g. In the
absence of degeneracy, a state of the spin system is
uniquely determined by g so that the symbol e can be
omitted.

The following procedure is closely analogous to that
followed in I; it is sufhcient, therefore, to present merely
a brief outline with special mention, however, of those
points which do not enter in the earlier treatment.

The density matrix p(t), satisfying the equation

dp*/dt — iLE 4(t)+GO (2.10)

Because of the fact that Ei is a spin function, Fq. (2.9)
can also be written in the form

(gojE,*(t)lg n) —exp[i(g g )t5(gal E,(t) jg'it') (2 11)

with

(g~fu
I
Ei'(t)

I
g'~'f'u')= (go I

Ei*(t)jg'&')~ff'~M&"

Starting with the initial value p*(0)=p(0) for t=0, the
Eq. (2.10) can be solved by forward integration during
a suSciently short time interval t, keeping only the
terms which are linear in E~*as well as those, linear and
quadratic in G*. The assumption that the molecular
system is in thermal equilibrium at the absolute tem-
perature T is formulated through the replacement of
p(0) by its statistical average

(gnfuj p(0) I
gYf'u')=(gi jo(0) lgY)P(f)bgt 8„, (2.12)

and

(gofujE *(t)
I
g'"f' u')

=expLi(g —g'+f—f')t5(g~fu
I Ei(t) I gYf 'u'), (2.9)

one obtains from (2.3)

dp/dt= i)Ep+F+—Ei+G, p5,

has in our representation the matrix elements

(g~ful pl g'"f'u')

2.3)
with the Boltzmann factor

P(f) = exp( —&f/kT)/p exp( It f'/kT)—, (2.13)

The expectation value (Q) of a spin function Q, defined

by having matrix elements of the form

(2 4)(gofujQI g"'f'u') = «~IQI g"')'~t'-
requires the knowledge of the distribution matrix

(gal o(t)
I
g"')=Z(goful p«) I

g"'fu), (25)

which, for 0., demands therefore

Z(g~l Igo)=1

and is given by

(Q (t) )=P Q (g™I Q I p) (go
I
o (t) I

g'v') =Trj Qo (t)5.
pv 0v

(2.6)
p will satisfy the normalization condition

2 (goful pl g'fu) =1,
g vfts

and with the understanding that all further equations
are meant as statistical averages over the molecular
system. It is further assumed that the molecular system
shall act as a heat reservoir, i.e., that it shall always
remain in thermal equilibrium in spite of its coupling
to the spin system and the fact that the latter can be
made to deviate from the equilibrium through the
action of the applied rf field. '

By a generalized but otherwise analogous procedure
to that leading to Kq. (3.22) of I, the forward integra-
tion of (2.10) leads to the transformed distribution
matrix

(gal *(t)Ig'~') =&(g~fuj p*(t) lg'& fu)

at the time t. Through (2.5) and (2.8) it can also be
written in the form

(go I
o*(t)

I gY) =expti(g —g') t5(go I o(t) lg'o'), (2.14)

and is found to depend upon t in a manner which can
be expressed by the Boltzmann equation

=(g'I 1'(o*)
I
g'"). (2.»)

' V. Fano, Phys. Rev. 96, 869 {$954).

Defining further the transformed matrices

(gofu I
p*(t)jg"'f'u') —(go I

o*l g'o')+i(go
I LE *,~*5

I
g'o')= expL~(g g'+f f') t5(g~fu I

—p(t) I
g'&—'f'u'),

(gaul G*l gYf'u')
=expL~(g g'+f f')t5(gaul Gl—g"'f'u'—),
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The abbreviation

(gvlI'( *)
I
g'v')

quantum numbers will lead to the eigenvalue

g'= —Q„(g„m„'. (2.20)

y v"v'"
{2exp(fvP/kT)

xI'-"(»'v"v'")(g+p v" I&*Ig'+p v"')

—I'gg" (»"'v"v") (gv"'I ~*lg'v')

—I"'g "(v'"v""v")(gv I
~*Ig""')} (2.16)

By replacing m, by m„+r„ in (2.19) and m„' by
m„'+r, in (2.20), one is led in both cases to another
eigenvalue of Eo, provided 7.„is an integer such that not
only m„, m, ' but also m, +r„, m, '+r, are contained
within the limits I„a—nd +I„given by the spin I„.
Unrestricted by the aforementioned conditions, the
quantity p in the summation of (2.16) assumes thus in
this case all values

has here been introduced with the symbols

Igg g(»V V )

x(gvf~lGlg+p, v", f p, 0')—

x (g'+ p, v"', f p, N'I G—
I
g'v'fN)df, (2»)

satisfying the relation

I gg~g (VV 'V 'V )
=exp( —AP/kT) I'g +„,g+„g(v"'v'Yv). (2.18)

g= —P, (g„m„ (2.19)

where co„and m„represent a set of Larmor frequencies
and magnetic quantum numbers, respectively, referring
to different nuclei r of the spin system; another set of

In the derivation of these formulas it is assumed that
gt„(f)df represents the number of states of the molecular
system, characterized by N and with an energy between

hf and h(f+df)
It is necessary, by the definition of the quantities

(2.17), that p assumes either the value zero or such
values which, added to the eigenvalues g as well as g'

lead to other eigenvalues of Eg The summ. ation over p
on the right side of (2.16) extends therefore for the
second and third term in the curly bracket over all

energy levels of the system with Sp representing the
difference between one of these levels and the levels Ag,

kg', respectively, and the same holds for the first term
if g=g'. For g/g', this term demands, however, the
more stringent condition that both g"=g+ p and
g'" =g'+ p are eigenvalues of Eg so that the summation
over p is here restricted to those pairs of levels 5g" and
Ag"' which differ from Ag and Sg' respectively by the
common value kp. While the first term in the curly
bracket of (2.16) is thus always to be retained for p =0,
it requires in the case g/g' exceptional conditions for
the eigenvalues of Eo in order to contribute terms to the
summation over p for which p/0.

A noteworthy exception of this kind is that, con-
sidered in I, which occurs more generally if it is assumed
that Eo contains only the spin energy, due to a constant
external field. An eigenvalue of Eo has in this case the
form

p Zr ggrrr (2.21)

which one obtains from a permissible set of integers v, .
A state of the spin system can here be characterized by
the set of quantum numbers m„and one can omit the
index v if all frequencies co„are different and incom-
mensurable so that there is no degeneracy. If one further
specializes to the case of a single spin, thus using the
symbols m, m', r instead of g, g', p, one obtains from
(2.15) and (2.16) the Eq. (3.22) of I as a special case.

The assumptions, made in the derivation of (2.15)
are very similar to those of the special case, treated in I.
In the 6rst place, the coupling between spin and mo-
lecular system appears only through the quantities I'
of Eq. (2.17) which are quadratic in G while terms,
linear in G have been omitted. In analogy to (3.6) in I,
the linear terms actually lead to a contribution in the
spin energy, divided by 5, which in our representation
has the form

(gv I
»

I
g'")

Since this term represents a weighted average over the
quantities f, u of the molecular system, it can be omitted
if the interaction with the spin system consists entirely
of fluctuating terms so that 6 has only matrix elements
which are nondiagonal in f. In the general theory,
presented here, there exist, however, rather important
contributions to the spin energy which enter strictly
speaking in the form of (2.22) and have to be retained.
The omission of this expression in the derivation of
(2.15) demands in this case that the quantity E, intro-
duced in (2.1), is redefined by the inclusion of ».

To exemplify this procedure, we consider the dipole
interaction of nuclear moments in a crystal. It depends
both on the spin operators and, through the relative
positions of the nuclei, on variables of the molecular
system, and contributes therefore to the part AG of the
total energy (2.1). Unless one includes it from the start
in the spin energy AE, the static part of the dipole
interaction appears thus in the form (2.22) and it re-
moves a high degeneracy, to be further discussed in Sec.
4, through its nondiagonal matrix elements v&v'. Be-
sides the static part, an expansion of the dipole inter-
action around the equilibrium position yields further
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contributions in ascending powers of the displacements.
The linear terms in this expansion give no contribution
to (2.22) since their average value vanishes, but they
have to be retained in the quantities (2.17) where they
appear quadratically, thus contributing to relaxation
processes.

Another example, which is of particular interest for
the later purposes of this paper, arises in the case of
molecules in liquids and gases through the modification
of the spin energy by the electrons. Since their spin is

not essential in this respect, the electrons are here to
be regarded as part of the molecular system and e6ects
of their interaction with the nuclear spins are likewise

to be contained in SG. As a result, there arises through

(2.22) small but important contributions to the spin

energy; one of these contributions represents the
chemical shift of the effective field, acting upon a
nucleus, the other consists of a small rotational in-

variant interaction between two nuclear spins and both
will be further discussed in Sec. 4. In contrast to the
case of crystals, the direct dipole interaction is here

averaged out as a consequence of the rotation of the
molecules, but it enters in relaxation processes through
the quantities I' of (2.17) which are quadratic in G.

In analogy to the condition (3.4) of I, the derivation

of (2.22) demands that the forward integration of (2.10)
is extended over a time interval t which has to be long

enough to satisfy the condition

I g
—g'I &»1 (2.23)

for any two eigenvalues g and g' of Eo, provided that

(2.24)

The same condition must be satis6ed for the validity
of (2.15) in order to justify the appearance of the second

and third term in the curly bracket of (2.16). For the
justification of the erst term in this bracket, it is

necessary, on the other hand, that

I g
—g' —g"+g'"

I
»» (2.25)

for any four eigenvalues g, g', g", g"', provided that

g
—g' —g"+g'"«. (2.26)

The aforementioned restrictions upon the permissible
values of p, to be contained in the summation of (2.16),
are in fact closely related to the conditions (2.23) to
(2.26). In the special case of I, the relevant quantities
(2.24) and (2.26) are all of the same order of magnitude,
so that they could be replaced by a single condition.
In the more general case, considered here, one may
frequently deal with diferent orders of magnitude;
nevertheless, the foregoing conditions upon the duration
t shall be symbolized by the single condition

I Ep
I
t»1. (2.27)

It has to be kept in mind, however, that I Eel repre-
sents here the various absolute magnitudes of the dif-

ferences (2.24) and of the double difFerences (2.26).

It is further necessary, in analogy to (3.20) of I, that

a)*t)&1, (2.28)

where co* is a characteristic frequency of the molecular
system, indicating the effective scale in which the
spread of the frequencies f has to be measured. ' This
condition is necessary in order that the matrix elements
of G can be considered as sufFiciently slowly varying
function of f in the integrals over this variable which
lead to (2.15).The Boltzmann factor P(f) of Eq. (2.13)
enters in the same integrals and its variation must
likewise be sufFiciently slow. It requires the fulfillment
of the additional condition

(AT/It) ~&&1, (2.29)

and
IEil «&1

I

I'
I
z«1,

(2.30)

(2.31)

where
I Eil indicates the effective magnitude of Ei, and

ll'I that of the quantities, defined in (2.17). One
obtains in this manner an equation for the increment of
cr* which is linear in t; in order to replace it by the
differential equation (2.15) it is necessary to assume that
0.* contains only frequencies of order of magnitude v,

satisfying
(2.32)

Actually this relation, which was likewise implied in I,
does not represent an independent condition. It is seen
from (2.15) that the order of magnitude of i is measured

by the quantities
I
Ei

I
and

I

I'
I

themselves so that (2.32)
can be considered as a consequence of (2.30) and (2.31).

Analogous to the Eq. (3.21) of I, one can combine
the conditions (2.27) to (2.31) in the single condition
of validity for (2.15):

(ll'I IE l)«(lEoI * &T/It) (2.33)

in the sense that each quantity on the left side of this
relation must be small to each quantity on the right
side. Except for omitting the condition on the variation
of P(f), measured by kT/js, Eq. (3.21) of I is indeed a
special case of the more general condition (2.33).
Under the assumptions of I, I

Es
I

is of the order of the
resonance frequency o~=yHs and

I
I'I is of the order of

the inverse relaxation times (1/Ti), (1/Ts) which were
indeed the quantities used to formulate the condition of
validity of the Boltzmann equation.

The differential equation (2.15) for the transformed
distribution matrix results, in analogy to (3.25) of I, in

r In the customary terminology, the quantity 1/or* corresponds
to an effective correlation time of the molecular system.

which, actually, was already assumed in I without
being explicitly mentioned.

On the other hand, t must be short enough to justify
the neglect of terms, higher than those which are linear
in E~ and quadratic in G. This leads to the further con-
ditions
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an equation for the distribution matrix defined by (2.5).
Using Eqs. (2.2), (2.14), and the identities

(v I
~o

I gY) =g5"5-
and

(gnl Ãs,~jigY)= (g—g') (vI ~1 g'")

one obtains

(—gsl~l gY)+i(vl L~,~llg"') =(gslr(~) I
g's'), (2 34)

dt

where the symbol on the right side is obtained by
replacing in (2.16) the matrix elements of o* by the
corresponding ones of o.

As in I, it can be seen from (2.15) or (2.34) that these
equations are compatible with the condition of nor-
malization (2.7) since they lead through (2.18) to the
identities

d—&(gal *I')=—&(gsl lgn) =0.
dt a. dt f7.

Another obvious and general feature appears in the
absence of the term E& of E, i.e., by replacing E by Eo
in (2.34) or by letting Ei*——0 in (2.16). Both equations
have in this case a stationary solution

(gal ~el g'") = (gal «*IgY)
=l exp( —kg/kT)5«5„„, (2.35)

where normalization demands

Z(gnl ~ol gs) = Z(gal «*Igr) =1, (2.36)

and hence
1 =1/P exp( —Sg/kT). (2.37)

o'= «+X)
Q+

E(gal x I gs) =Z(ge
I
x*l gn) =o,

(2.38)

(2.39)

(2.40)

as a consequence of (2.36) and the normalization
requirement

(2.41)E(gnl ~l gn) =Z(gal ~*l gn) =1

Equation (2.35) expresses the fact that, in the absence
of external actions, the spin system is stationary if it is
in thermal equilibrium with the molecular surroundings.
The diagonal elements of o. and o-, i.e., the probabilities
to find the spin system in certain states, follow thus the
Boltzmann distribution at the temperature T of the
molecular surroundings and their oB-diagonal elements
vanish because of the absence of phase relations between
diferent states. It is convenient, for later purposes, to
introduce instead of o. and o.* the deviations x and x*
from the equilibrium solution by writing

Kith the same notation for x* and x as that, used on
the right side of (2.15) and (2.34) for ~* and o, one
obtains from these equations

—(gs I)(l g's')+'(gnl I ~,7(j I
g"')

dt —(gnl I'(7()
I gY) =if /exp( hg—/kT)

—exp( —Itg'/kT) j(gv I Et I gY) (2.42)
a d.

—(gs I
x*1g'e')+i(g~

I
L~i*,x*1

I
g"')

dt —(gnl F (x*) I
g's') =ifLexp( —kg/k T)

—exp( —&g'/kT))(gn
I
&i*l g'n'). (2.43)

An important general conclusion can be drawn from
Eq. (2.42): The right side of this equation vanishes
in the limit A(g g')/kT +—0 so tha—t, if 7(=0 at any
time, it remains always zero. Once in thermal equi-
librium, an arbitrary spin system, subjected to arbi-
trary external fields (contained in Zi), will therefore
remain in thermal equilibrium provided that the sepa-
ration of its energy levels is negligible in comparison to
kT. Correspondingly, a deviation from the equilibrium
population of the spin states under the inhuence of
external fields can only be expected to occur to the
extent to which the 6niteness of the temperature is
considered. s

The special form of the Boltzmann equation, obtained
in I, was used to investigate the validity of the phe-
nomenological equations for the macroscopic nuclear
polarization. While a rather wide range of validity could
be established, it was found that even under the rela-
tively simple earlier assumptions there were cases where
the phenomenological equations were not valid. In
these cases one can obtain the desired answers by erst
solving the Boltzmann equation; the resulting form of
the distribution matrix leads then through (2.6) to
expectation values such as those of the components of
the polarization which directly determine the observed
nuclear induction signals.

This last procedure will throughout be used in this
paper since one cannot expect, under far more general
conditions than in I, to arrive at a complete macroscopic

This observation is not in contradiction with the Overhauser
effect, where one obtains a nuclear polarization, far in excess to
that of the equilibrium distribution. It is essential that the spin
system contain here also electronic spins: While energy differences,
due to a change of orientation of the nuclear spin in the external
constant magnetic 6eld, can be indeed neglected in comparison
to kT, this is not the case for the other and far greater energy
difkrences of the spin system which occur in a change of the elec-
tronic spin. Indeed it is the ratio of these latter energy differences
to kT, which measures the magnitude of the observed effect. A
recent theory of J. I. Kaplan (Phys. Rev. 96, 238 (1954)g is, on
the other hand, invalidated by the foregoing observation since it
claims a strong nuclear polarization even if one disregards the
separation of the electronic levels with respect to kT. For a further
discussion of the observations oi A. Honig t Phys. Rev. 96, 234
(1954)g to which the theory of Kapian refers, compare A. Abragam
(Phys. Rev. 98, 1729 (1955)j.
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—(gl x I g')+i(gl I E,xjl g')

+Z.{(1„"+1., ")(glxl g')

—2 exp (Sp/k T)I'« "(g+p I x I

g'+ p) }
=i{I:exp(—&g/kT) —«p( —&g'/kT) j(g!Ei

I
g'),

with the simplified forms
(2.44)

I'« "=~E n-(f)n- (f p)-
u, ts' 4

description by means of phenomenological equations.
There may be special situations where this is possible
without making the same initial assumptions as in I,
but they shall here not be investigated. Instead, solu-

tions of the Boltzmann equation will be found for
particular external fields and particular spin systems
which are of interest; the resulting expressions for the
distribution matrix will then be inserted in (2.6) to
obtain the expectation values of the relevant spin
functions Q which deal with the macroscopic polariza-
tion.

It is permissible, for most of the later purposes of this

paper, to exclude a degeneracy of the unperturbed spin

system. A state of this system is then uniquely charac-
terized by the eigenvalues g of Eo and the preceding
equations of this section are greatly simplified by the
omission of the index v. In particular, one obtains in

this case from (2.42) and from the expression (2.16),
obtained through the replacement of 0.* by p and the
omission of v,

which follows from the fact that the density matrix p
is by definition Hermitian, so that the same holds in
view of (2.5) for the distribution matrix 0.

3. EFFECT OF A WEAK EXTERNAL FIELD
WITH A SINGLE FREQUENCY

It shall be assumed in this section that the principal
part AEO of the spin energy includes all terms which do
not explicitly depend upon the time. The additional
small part AE& consists then only of'the contribution by
an external time-dependent field, to be indicated by the
notation E~=D. In particular this field shall here be
chosen to be monochromatic with a circular frequency
co, so that one has

—D—D+e isa t+D—s i cot— (3.1)

The eigenvalues g of Eo shall not be degenerate and
no common difference shall exist between any two of
them. It is then implied by the conditions, symbolized
in (2.33), that all the finite differences and double dif-
ferences, given by (2.24) and (2.26) respectively, shall
be large compared to the relaxation coeKcients r of
Eq. (2.45) as well as to the effective magnitude IE&I,
given by that of the terms D+ and D in (3.1). In fact,
the reference to a "weak" field in the title of this section
is made in the sense of this relation of orders of magni-
tude and it can equally well be considered as a condition
upon the particular choice of Eo. The treatment of
"strong" fields, to be presented later, will be essentially
based upon a diferent separation of the spin energy.

Inserting (3.1) and using the identity

(gl&olg') =g&„,

one obtains from Eq. (2.44)

and

&&I'(f)(gf~lGlg+p, f p, N')—
x(g'+p f p l'IGI—g'fg)df (2.45) (glxlg')+i(g g')(gl—xlg')+i{(glLD'xjlg')~'"'

r« exp( aP/kT)I'g, „——g,„—(2.46)

(2.48)t =1/Q, exp( —hg/kT),

E.(gl&l g) =1 (2.49)
and

Z. (glxlg) =o (2.50)

following from (2.37), (2.41), and (2.40), respectively.
It shall finally be noted that

(g I x I
g') = (g'I x I

g)*,

as a consequence of (2.47) and the relation

(gl~lg') =(g'l~lg)*,

(2.51)

(2.52)

of Eqs. (2.17) and (2.18), respectively.
The distribution matrix is here further given by

(gl ~l g') ={exp( —&g/kT)&gg +(glxlg'), (2 47)

as a consequence of (2.35) and (2.38), with the

equalities

(glD'I g') = (g'ID'I g)* (3.3)

The general solution of (3.2) contains terms in x
which satisfy the homogeneous equation and decrease
exponentially with time constants of the order 1/I I'I.
These transient terms shall be omitted in order to obtain
the particular solution of (3.2), pertaining to stations. ry
conditions. The corresponding matrix x has diagonal
elements, independent of the time and nondiagonal
elements which alternate with the frequency ~. Kith

+(glLD, xjlg')~ '"'}+K.{(1'„"+I',, )(glxlg')
—2 exp(kp/kT)I'„. (g+pl xlg'+p)}

=i{/exp( kg/kT) —exp( A—g'/kT)—]
&«(gID'I g')~""'+(g ID-I g') e-'"'}. (3.2)

The fact that E& shall be a Hermitian operator requires,
according to (3.1), that the matrix elements of D+ and
D, appearing in (3.2), satisfy the relation
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lI'l and lD+l small compared to lg
—g'l for gag', this

solution can be seen to differ appreciably from zero only
if ~ lies close to one of the different resonance values

lg
—g'l. Selecting a particular resonance frequency

co &
——a—b by specifying g=a, g'=b and a)b, the

deviation of ~ from this resonance frequency is given by

(3.4)

and is assumed to be small compared to the difference
between the specific resonance frequency ~ & and any
other resonance frequency co«. All the nondiagonal
elements of y except those between the states a and b

are then negligible; in view of (2.51), the latter can be
written in the form

(blxla)=«'"' (alxlb) =&*& '"' (35)

with the asterisk, as in (2.51), (2.52), and (3.3), indi-

cating the conjugate complex. Using further for the
diagonal elements the abbreviation

(glxlg) =x., (3.6)

the stationary solution of (3.2) is then characterized
by the complex number s and the set of real numbers x,
which are all independent of time.

The relations between these constants result from the
the various values of g and g' in (3.2), yielding in par-
ticular for g=b, g'=a

(ho& —ir,b)s+(bl D+l a)(x,—xs)
={[exp(—Ab/kT) —exp( —Sa/uT)](blD+la) (3.7)

with the abbreviation

r.,-g, (r..+r„)—2r. s. (3.8)

For g=a, g'=b, there results the conjugate complex
equation to (3.7) in view of the relation (3.3), yielding

(alD lb)=(blD'la)*, (39)

and in view of the equality

(3.10)

This equality follows from the definition (3.8), together
with the fact r, so= rs,' which can be verihed by (2.45)
for p=0.

One obtains further for g= g'= g,

Q„r„&[exp (kp/kT)x~„—x,]
= —Im{(alD lb)s); (311)

fol g=g =6)

P„r» [exp(aP/I T)x~.—»]= 1m{ (a I
D lb)s}.(3»)

and finally, for g =g'0 a,,b,

pp r„&[exp(fip/kT)x, +„—x,]=0. (3.13)

It shall be noted that the quantities I'«&, obtained from
(2.45) with g=g' for all values of g, including a and b,
are real and positive in view of the Hermitian character
of G. They represent in fact the probability per unit

time of a transition of the spin system from g to g+p
through its interaction with the molecular surroundings
so that the necessary energy kp must be furnished by
the latter. The probability per unit time F,+„,,+„&for
the inverse transition differs in view of Eq. (2.46) by
the factor exp(fop/kT) which is indeed the relative
probability that the molecular surroundings are ready
to absorb rather than to emit the energy hp. The con-
tributions P~s F„"and Q~s Fbp to the first term
of Eq. (3.8) represent therefore the inverse life time of
the states a and b, respectively, and are real and positive.
The same holds for the remaining term, dealing with
relaxation processes without exchange of energy between
the spin system and the molecular system, since it can
be written in the form

r-'+r '—2F "= 2 n (f)n- (f) I (afglGlafN')
u, u' 4 —(bf~l G

I

bf~')
I

df,

using again the fact that the elements of G in (2.45)
are those of a Hermitian matrix. It follows therefore
that the expression (3.8) is likewise real and positive.

In the derivation of (3.7), (3.11), and (3.12) there
appear actually also terms with time-dependent factors
e+'"', e+""'; in consistency with the assumptions made
here, their rapid variation permits, however, the neglect
of these terms. Besides, they are rigorously absent if
among the matrix elements of D+, involving the states
a and b, only (blD+la) and its conjugate complex
(al D

l b) are different from zero. This is analogous to
the well-known special case of a nucleus in a strong
homogeneous field, where one can easily obtain a rigor-
ous solution if one has a rotating rf field and where an
oscillating field gives raise to additional rapidly varying
terms. These terms cause merely a very slight modi-
fication of the solution, obtained by retaining only the
component which rotates in the sense of the nuclear
precession. '

Equations (3.11), (3.12), and (3.13) represent a set
of linear inhomogeneous equations for the determination
of the constants y, in terms of s and s*. The deter-
minant of these equations vanishes since the corre-

- sponding homogeneous equations have evidently a
finite solution with x, proportional to exp( —kg/kT).
Nevertheless, the inhomogeneous equations have
likewise finite solutions since they do not form an inde-
pendent set. Indeed, the sum of their left sides vanishes
identically since it can be verified with the use of (2.46)
that

P rag exP(aP/bT)xg, v
——P rag x,

for any set of values z, . The indeterminacy, caused by
this identity, is removed by the additional condition

Z. x.=0,
9 F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
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yg= TOI, (3.15)

which follows from (2.50) and (3.6). There exists thus
a solution of the Eq. (3.11) to (3.14) for the quantities
y, in the form

and from (3.15)
Tg $

x,=t'[exp (—Ab/k T)—exp( —ka/k T)], (3.22)
Tab 1+s

where the positive quantity

where the abbreviation

I=1m((alD Ib) s) (3.16)

r.b T.b
I

D
I

'

(a )s+(r.b)s
(3.23)

has been introduced and where each of the values T,
is determined by those of the different quantities I'«&
and has the dimension of a time. I.et further

(3.17)

has been introduced.
Instead of the diagonal elements x, of x, introduced

in (3.6), one can also use those of the distribution
matrix 0-. Denoting them correspondingly by O.„one
has from (2.47)

so that
X.—Xb= T.bl (3.18) a.= (g la I g) = f' exp( —&g/kT)+x (3 24)

Expressing I through (3.16) in terms of s and z* and
inserting (3.18), the Eq. (3.7) and its conjugate complex
represent two simultaneous linear equations for these
two conjugate complex quantities. Solving them and
inserting the result in (3.5), one obtains

(b
I x I a) = (a I x I

b)*

= f [exp( —Ab/kT) —exp( —Aa/kT)]

(b ID+I a) (»+'r. b)
X e'"', (3.19)

(»)'+ (r.b)'+I'.bT,b I
D

I

'

where (3.9) and the notation

o-, represents the "population" of the state g, i.e., the
probability to find the spin system in that state.
(3.21) and (3.22) can then also be written in the form

1
0-,—0 b

——
/ [exp (—ka/kT) —exp (—Ab/kT)], (3.25)

1 $
and

o,=f exp( —Sg/kT) —t [exp( —I'ba/kT)

Tg—exp( —Ab/kT)] . (3.26)
T,b 1+s

The normalization condition P, o;=1 is satisfied in
view of (2.48) and the relation

IDI'=(blD'la)(aID Ib)= l(blD'la) I' (320) P, T,=O (3.27)
have been used.

The matrix element (b IXI a) of (3.19) has the same
form as the expression M,+sM„, obtained by solving
the phenomenological equations" for the transverse,
components M, and 3f„of the macroscopic polarization
under the inhuence of a rotating rf field with circular
frequency co. The determination of the two expressions
leads in fact to the identical problem in the very special
case, where the spin system consists of a single repre-
sentative nucleus with spin 1/2 and where it was shown
in I that the Boltzmann equation is equivalent to the
phenomenological equation. By comparison with the
very much more general result (3.19), it is seen that
T,b and 1/r, b are related to the effective longitudinal
relaxation time Tj and to the efI'ective transverse
relaxation time T2, respectively, for the resonance
between the two levels a and b of the spin system. They
are both real and positive; this was already shown for
I', b and will be seen below to hold equally for T,b.

Inserting further the value s from (3.5) and (3.19) in
(3.16), and using (3.20), one obtains from (3.18)

Xa Xb= Tab»
$

=f'[exp( —Ab/kT) —exp (—Iba/kT)], (3.21)
1+s

which follows from (3.14) and (3.15). The phenomenon
of "saturation" is exhibited by Eq. (3.25) in the sense
that the populations a, and Ob approach equality with
increasing values of s; it is for this reason that the
quantity (3.23) is properly referred to as the saturation
parameter.

The Eq. (3.26) represents the quantitative formu-
lation of the "general Overhauser effect. "It states that
even for states gWa, b which are not directly affected by
the alternating field, one is lead in general to a deviation
of the population 0-, from the value, corresponding to
thermal equilibrium and attained in the absence of the
alternating field, i,e., for s=0. This deviation is caused
by transitions, due to relaxation processes, and refiects
the readjustment of the stationary populations, neces-
sitated by the direct eGect of the alternating field upon
those of the two particular states u and b. The possi-
bility of an enhanced nuclear polarization, pointed out
by Overhauser, ' is directly based upon this mechanism
and shall be illustrated below in a particular case.

The problem to solve the Eqs. (3.11), (3.12), (3.13)
and hence, with the additional condition (3.14), to
obtain the quantities T, of Eq. (3.15), can be rewritten
by introducing, besides the abbreviation (3.16), the
notations

"F.Bloch, Phys. Rev. 70, 460 (1946). Vg ——exp (Irbg/k T)xg, (3.28)
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P, (V, —V.)/R.g. —— J, —

Q, (V, —V )/R;=I,
Qg (Vg. —Vg)/R« ——0,

(3.31)

(3.32)

(3.33)

of a dc circuit with various junctions g, including a
and b, in which V, represents the voltage at the junction
g, E« the resistance between two junctions g and g'
and I the stationary current, entering at the junction
c and leaving at the junction b. To complete the analogy
with an ordinary dc circuit, it is seen from the definition
(3.29) that, just as every quantity I'«&, every resistance
R« is real and positive and from (3.30), that it is equal
to E, , Given the resistances and the current I, the
voltages V, at all the junctions are determined except
for a single additive constant. "This constant is, how-
ever, necessary for the determination of the quantities
x, through (3.28) and it is actually to be obtained from
the condition (3.14)which takes here the following form:

P, V, exp( —hg/kT) =0. (3.34)

The equivalence with the circuit problem will first be
used to show that the quantity T,i, of Eq. (3.17) is
always positive. Indeed, assuming the current I to be
positive, none of the voltages V, for g&u, b can be
higher than that at the junction a where the current
enters nor lower than that at the junction b where it
leaves. It follows on the other hand from (3.34) that
some of the voltages V„ including V and Vq, must be
positive and some others negative so that, necessarily,
V is positive, and V~ negative. Since, in virtue of
(3.28), x, and yq have the same sign as V and Vt,

respectively, it follows that their difference (3.18), and,
hence, T g is indeed positive. The same conclusion is
reached if I is assumed to be negative since the inversion
of the sign of the current is accompanied by that of all
voltages and hence also by that of x, and x&.

A particularly simple interpretation of T,& is obtained
from the equivalent circuit problem if one makes the
assumption ~hg~&&kT which is usually satisfied for a
nuclear spin system. One has then, from (3.28),
y,—V„and hence, from (3.18), V —Vb T,g. This—
last equation states that the time T ~ is in this case to
be obtained as the eGective resistance, measured

"This statement excludes, of course, cases where certain groups
of junctions are completely isolated from the remaining circuit.
Such junctions can be at an arbitrary common voltage, but this
indeterminacy can be avoided by treating an insulation as the
limiting case of a very high resistance; the procedure is equivalent
to the treatment of a forbidden relaxation transition of the spin
system as the limiting case of a very small transition probability.

and
R, ,+„=exp (hg/k T)/I'„", (3.29)

so that one obtains from (2.46) for g= g' the relation

(3.30)

Equations (3.11), (3.12), and (3.13) take then the
form of the Kircho8 laws:

with
g (m j teer) = (d05$j+WtÃrm j

Mp= 2Hpp8/h&

(3.35)

(3.36)

where p, is the magnetic moment of the electron and W
the hyperfine structure frequency. %e shall further
choose the notation

(3.37)

and choose the frequency of the applied rf 6eld, in
accordance with (3.4) to be

~=~o+ W/2+&ar, (3.38)

i.e., in the neighborhood of the resonance frequency for
a transition between the states u and b in which the
electron changes its spin orientation while the nucleus
remains at my= 2.

As an essential assumption for the Overhauser eGect,
it shall further be postulated that relaxation processes,
leading to a change of m&, occur only through the hyper-
fine structure coupling so that they cause only transi-
tions in which mr+m j remains unchanged. Besides,
there exist usually much more frequent relaxation

between the terminals u and b of the equivalent circuit.
Equations (3.31), (3.32), (3.33) are equally valid if

the voltages are related to the quantities 0, instead of
y„ i.e., if one replaces (3.28) by

V, =exp(hg/kT)og. (3.28a)

Indeed, in view of (3.24), this definition of V, differs
from that of (3.28) merely by the additive constant f
One has then

P, V, exp( —hg/kT) = 1, (3.34a)

which takes the place of the condition (3.34) and repre-
sents, through (3.24), the normalization condition
(2.49).

To illustrate how the consideration of the equivalent
circuit can be used to discuss the enhancement of the
nuclear polarization, we consider a representative spin
system which consists of an atom with atomic spin J
and nuclear spin I, coupled by hyperfine structure; this
represents a slight modification of Overhauser's case'
where the electronic part of the spin system was repre-
sented by the conduction electrons in an alkali. In
analogy to this case it will be assumed that one deals
with a single valency electron in an s-state and, for
simplicity, with a nucleus of spin 1/2. The external
magnetic field Ho shall be strong enough to cause
Paschen-Back eGect in the sense that its energy of
interaction with the electron moment shall be large
compared to the hyperfine structure splitting while its
interaction with the nuclear moment shall be considered
as negligible.

The energy values of the spin system, divided by k,
have in this case the form



114 F. BLOCH

FIG. 1. Equivalent
dc circuit for the
Overhauser eRect.

simultaneous change of mg, would in the diagram of
Fig. 1 correspond to additional finite resistances between
ac and bd. The resulting fact, that the voltage at c is
thereby brought to a value intermediate between that
of a and b, causes the population 0-, to become more
nearly equal to 0-, thus diminishing the effect of
saturation upon the nuclear polarization.

I cR

exp(k~p/kT) —1 sII=—
3 exp(k&pp/kT)+3 1+s

(3.42)

i.e., an Overhauser effect in the sense that for s)&1 the
polarization is not governed by the separation of order
hS" of the nuclear levels but by the much larger
separation A~p of the electronic levels.

It should be noted that a deviation from the ideal
situation, considered here, i.e., the admission of re-
laxation processes in which ml changes without a

processes, affecting the electron alone, through transi-
tions in which m J changes while m~ remains unchanged.
This means, with the notation (3.29) and (3.37), that
one has relatively small values for R,~ and R,~, a finite
and relatively large value for R&, and R~=R .=R&&

The equivalent circuit diagram has, therefore, the
aspect of Fig. 1 ~ Since no current can pass through the
connections bc and cd, one has therefore immediately

V5= V,= UH

and, hence, from (3.28a),

o b ~ o ~ 0'g —exp (—kb/k T):exp (—kc/k T):
exp (—M/k T). (3.39)

This relation, together with (3.34a), i.e., P, o,=1,
and (3.25) leads in a simple manner to the values of the
populations 0-, and, hence, to the nuclear polarization,
defined by

rr =a.+o b
—(a,+oa)

=1—2(o,+a~)/(a. ,+op+ad, +op). (3.40)

According to (3.26), one has for s=0

o, :o p
——exp( —ka/kT): exp( —hb/kT)

and one obtains in this case with (3.39) from (3.35),
(3.37) and (3.40)

IIp ——tanh(fuvp/2kT) tanh(kW/4kT), (3.41)

i.e., a vanishing polarization in the limit (kW/kT)~0
The enhancement of the polarization by saturation is
most easy to see in this limit by neglecting in the
exponents kW/kT but retaining kppp/kT in consistency
with the assumption cap))W, made in (3.35). From
(3.39) and (3.25), one obtains then

4. NUCLEAR SPIN SYSTEM IN A STRONG
EXTERNAL FIELD

The general equations of the preceding sections have
been developed without specifying the nature of the
spin system. By interpreting the term kE in Eq. (2.1)
in an appropriate manner, it is in fact not even neces-
sary that this part of the total energy refers to a system
of spins. 'The general Boltzmann equation (2.34) can
equally be applied to other systems, provided that its
condition of validity (2.33) is satisfied and the results of
Sec. 3 allow likewise a more general interpretation of
the effect of external perturbations which can be arbi-
trary as long as they are sufficiently weak and periodic.

Further specifying assumptions are, however, neces-
sary in order to relate the results to particular cases.
It shall be assumed, in the- following sections, that o~e
deals with a system of nuclear spins which are exposed
to a constant external magnetic field Hp in the 2:-direc-'
tion. The part of the spin energy kE, due to this field,
will be denoted by hB and Hp shall be sufficiently
strong so that 8 contains the principal contribution to
E. The additional part of the spin energy shall be
relatively small; it shall consist of the mutual inter-
n,ction energy hC between the spins and of the con-
tribution which is due to an external time-dependent
6eld H~, perpendicular to the s-direction, and which
shall be denoted by kD in accordance with the notation
of Sec. 3.

The spin energy, divided by k, has then the form

E=B+C+D. (4 1)

The various nuclei in the system will be denoted by
the index r; nucleus r shall have the spin I„, the mag-
netic moment p„and the gyromagnetic ratio y, =p, /kI„. .

The notations

and
m, '= I,„,

m„+=I,+ i'„,

(4.2)

(4.3)

shall further be used where the operators I „I„„,I,„
represent the g-, y-, s-component, respectively, of the
spin vector I„.The first part of (4.1) is then given by

where
8= —Q, p~,m„p,

6)&=p&Hpz

(4 4)

(4.5)

represents the Larmor frequency of the nucleus r,
exposed to the constant field Hp„.

The distinction between Hp„and the external field
Hp arises from the chemical shift, mentioned previously
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Hp„(1——+p,)Hp, (4.6)

with a numerical constant ~„, characteristic for the
electronic environment of nucleus r. This modification
is of minor importance in cases where one deals with a
system where all nuclei of finite spin are diGerent. The
various values of y„and, hence, those of or„are here
normally to be considered. as greatly different and in-
commensurable so that the eigenvalues of 8 are far
from being degenerate. The correction e„HO is, however,
important if the spin system contains two or more
nuclei of the same kind but placed in different environ-
ments in regard to their surrounding electrons. The
difference of the chemical shift, measured by the values
of ~„, removes here a degeneracy of the eigenvalues of 8
which would otherwise exist because of the equality of
the corresponding values of or„. The removal of this
degeneracy is complete unless the system contains
groups of nuclei which are not only identical but have
also the same electronic environment. Such nuclei are
called equivalent and their case shall be discussed
below.

The form of the second term in (4.1) depends upon
the type of spin system, to be considered. In the case of
a crystal, the coupling energy kC is primarily due to
the direct dipole interaction between the nuclear
moments, which was mentioned above in connection
with Eq. (2.22). In the same connection it was pointed
out that this direct interaction is ineGective for the
spin coupling within molecules in a liquid and that
there remains here only a much smaller coupling, due
to an indirect interaction via the surrounding electrons.
It must be invariant against rotation and bilinear in
the spin operators of the nuclei and has therefore the
form

(4.7)

where the quantities J„,=J,„represent a set of fre-
quencies, independent of the external 6eld and charac-
teristic for the molecule under consideration. Using the
notations (4.2) and (4.3), one can also write

C=-; P J„,(m„Pm, P+m, +m,-) (4.8)

Originating from the field Hi, the last term of (4.1)
6nally the form

D= —Q„y,(Hi. I,). (4 9)

As in the case of the Geld Ho, the chemical shift calls,
strictly, also for a distinction between the eGective
field Hi„, acting upon the nucleus r and the external
field Hi. Being here only of subordinate significance,
this distinction shall, however, be omitted to obtain the
simpler form (4.9). Introducing the conjugate complex

in the discussion of Eq. (2.22). It causes a slight
modification of the eGective field, acting upon the
nucleus, which is proportional to Hp, so that one has

quantities
h„+——,y, (Hi.aiHi„), (4.10)

and using (4.3), as well as the fact that Hi is perpen-
dicular to the s-direction, one can also write (4.9) in
the form

D= —P,(h,—m,++h,+m, ). (4.11)

The diGerent orders of magnitude, appearing in the
contributions to E of Eq. (4.1), require a discussion of
its separation into a large part Eo and a small part EI.
A possible type of separation is obtained by letting

Eo——8,
Ei C+D——.

(4.12)

(4.13)

g= QP MPmgl (4.15)

where m„represents the magnetic quantum number of
nucleus r so that the left side of (4.14) symbolizes the
order of magnitude of the diGerent I armor frequencies
or„as well as that of any finite diGerence or„—or, between
two of them. In a strong field Ho, the former are nor-
mally of sufhcient magnitude to satisfy (4.14) and the
same holds for the latter if all the nuclei of the spin
system are of different kind. In the presence of identical
nuclei which are not equivalent, one deals, however,
with considerably smaller frequency diGerences which
are only of the order of the chemical shift and may not
be sufficient to justify the condition (4.14) and hence
Eqs. (4.12) and (4.13).The procedure to be followed in
this case would consist in separating from 8 the small
contribution, due to the chemical shift, and including
it in EI rather than in Eo. The corresponding change in
the eigenvalues (4.15) of 8 would appear in a redefi-
nition of the I armor frequencies or„by replacing in

(4.5) Hp, by Hp. One would thus be led to an equality
between those values of or„which refer to identical
nuclei and hence to a degeneracy of the values (4.15),
so that the additional quantum number v could not be
omitted in the general Boltzmann equation (2.34) or in

(2.42). In order to avoid this complication, it shall be
assumed below that the chemical shifts are sufficiently
large to allow their inclusion in Eo.

An unavoidable degeneracy of the eigenvalues (4.15)
appears, however, if the spin system contains groups
of nuclei which are equivalent in the sense that they
are not only identical but have also the same electronic
environment and, therefore, the same I armor fre-

quency. This situation arises for example in the case
of crystals; in fact, one deals here with a very high
degeneracy of the eigenvalues (4.15), due to the large
number of equivalent nuclei, so that the additional
quantum number v of Eq. (2.34) is essential and charac-

Besides the other conditions, implied by (2.33), this
requires that

ill»(ICI, IDI, Ii'I) (4.14)

In view of (4.4), the eigenvalues of 8 are in this case
given by
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terizes actually a very large number of states with the
same eigenvalues. As was pointed out in Sec. 2, the
static dipole interaction between the nuclei, i.e., the
term C in (4.1), may be considered to enter in the form
(2.22) into the spin energy. The elements of this matrix
which are not diagonal in e will cause a partial removal
of the above mentioned high degeneracy but the high
order of the corresponding secular problem renders a
rigorous treatment prohibitively dificult. Without
entering into details, it shall be mentioned here that
the problem is closely connected with the existence of
spin waves in a crystal and that the removal of the
degeneracy by the dipole interaction of the nuclei may
be qualitatively accounted for by the introduction of a
"spin temperature" which is not necessarily equal to
the temperature of the molecular surroundings.

A situation, similar to that of crystals, appears strictly
also in the case of liquids and gases which is of par-
ticular interest for the further purposes of this paper.
To the extent, however, to which the spin interaction
between different molecules can be neglected in com-
parison to that within one molecule, it is here possible
to consider the spins in a single molecule, rather than
those contained in the whole macroscopic sample, as
the representative spin system. This greatly simplifying
procedure will be followed for the purposes of this paper;
it represents a justi6ed assumption in regard to the spin
energy since the interaction between diGerent nuclear
moments enters likewise in the form of the average
value hE of Eq. (2.22) over the molecular surroundings,
leaving a noticeable "static" part of the form (4.8)
only within the same molecule where the relative dis-
tances and angles between the nuclei remain unchanged.
The corresponding contribution to hE from the inter-
action between nuclei in different molecules can, how-
ever, be omitted since their relative motion is not only
random but so rapid that the interaction is almost
altogether of the "high-frequency" type, leaving only a
negligible contribution to the average value (2.22). A
more serious restriction by the simplifying procedure,
chosen here, is implied in regard to relaxation mecha-
nisms where the high-frequency terms of the direct
dipole interaction are of importance. While it permits
the rigorous treatment of intramolecular relaxation, it
still demands, as in I, that the fields, acting upon the
nuclear spins in a molecule and originating from
neighboring molecules, depend upon the variables of
the molecular surroundings alone. One can claim no
more than qualitative validity for the treatment,
presented here, in cases where one deals primarily with
intermolecular relaxation, due to the interaction of
identical nuclei in diferent molecules. On the other
hand, this situation can in practice be avoided by suf-
6cient dilution with molecules which contain only nuclei
with spin zero or with I armor frequencies suSciently
removed from resonance conditions so that their spins
remain in thermal equilibrium with the molecular sur-

roundings and can thus be considered as forming part
of the latter.

Even under conditions where it is possible to consider
the nuclear spins in a single molecule as the represen-
tative spin system, there occur frequently cases of
equivalent nuclei. While the ensuing degeneracy of
(4.15) demands here rigorously the retention of the
index i in Eq. (2.34), this does not cause a serious com-
plication as long as the number cV of nuclei in an equi-
valent group is not too large. Besides, it is known"
that the total spin I of such a group is a good quantum
number with regard to the total spin energy kE.
Assuming further that the total spin of an equivalent
group does not change in relaxation processes either,
the behavior of such a group becomes the same as that
of a single nucleus of spin I with the same gyromagnetic
ratio as the individual nuclei in this group. The actually
existing degeneracy can thus be by-passed by attribut-
ing to each equivalent group independently the various
possible spin values I with their proper statistical
weights. In the case of equivalent nuclei of spin 1/2,
I can assume the values I=~2V—v, where v is an
integer, satisfying the condition 0~v~ —,i7 with the
corresponding statistical weight

(Xq (1V ~

E v) Ev —1)

&0=&+C, (4.16)
'2 E. L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070 {1952).

for a given value of v and, hence, of I.
To simplify the treatment, it shall be assumed below

that one deals either with molecules where there exist
only equivalent groups of the foregoing type so that the
degeneracy is immaterial or where it is absent, due to
the fact that there exist no equivalent nuclei. The fol-
lowing discussion will therefore be based upon Eqs.
(2.44) to (2.52), obtained in Sec. 2 by the simplifying
omission of the index v.

The separation of the spin energy, indicated by
Eqs. (4.12) and (4.13) does not impose any conditions
upon the relative magnitudes of

~
C ~, ~

I'
~

and
(
D

(
. It

permits, in particular, the treatment of cases where the
effects, due to the field Hi and those due to relaxation,
measured by t

D
~

and
(
I' (, respectively, are comparable

or large compared to the coupling eGects, measured by
j
C

~
. Referring to them in this sense as cases of "strong"

field or "strong" relaxation, they shall be considered in
Secs. 6 and 7. On the other hand, this separation
demands in view of (4.14) that the coupling effects are
small compared to any internal chemical shifts in a
molecule. Although this condition is frequently satisfied,
there are also cases where they are comparable.

In order to consider such cases of relatively strong
spin coupling, one can introduce another type of
separation, given by
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and hence
E] D, (4.17)

d
8= (M,+—iM„)=e ( +tii—)ti

dt dt
(4.20)

Since it contains all that has to be known about the
nuclear system in order to determine the signals, the
complex quantity S will be used as a measure and will
be referred to, for brevity, as the "signal" itself. The
angular braces in (4.20) indicate the expectation value
and p, , y„stand to the x- and y-component, respec-
tively, of the total magnetic moment of the spin system.
Using the notation (4.3), it is therefore

ti.+iti„=P„(ti.,+i'„„)= ~t P, y„m„+, (4.21)

and hence, with the general definition (2.6) for the
expectation value of a spin function

As a consequence of (2.33) one obtains here instead of
(4.14) the conditions

(I a I, I
cI)»(IDI, fr I), (4.18)

which, indeed, do not restrict the relative magnitudes
on the left side and permit therefore in particular the
treatment of cases with comparable coupling and
chemical shift.

This treatment is, on the other hand, restricted by
the necessary relative smallness of ID I, expressed by
(4.18). The same restriction was required in deriving
the results of the previous section for a periodic per-
turbation in the sense that they refer to a "weak"
alternating field and these more general results shall be
applied below to a nuclear spin system in a strong
constant 6eld. It shall be noted that the case

IIll»lcf»(IDl, lrl) (4»)
can be treated either with. the separation given by
(4.12), (4.13) or with that, given by (4.16), (4.17) so
that the choice between the two is here a matter of
convenience.

Before entering into more specific considerations of
a nuclear spin system, an expression will be derived
which relates the solution of the Boltzmann equation
to a quantity S, representing a measure for the directly
observed signals of nuclear induction. Except for proper-
ties of the receiver circuit, the signals are determined by
the components M, M„of the nuclear polarization,
perpendicular to the s-direction of the strong 6eld Ho.
Denoting the number of representative spin system,
i.e., in our case the number of molecules, per unit
volume with e, S will be defined by

that

In view of the condition (2.33), the rate of change of
0*, measured by the quantity v—frl, IEil of Sec. 2
must be small compared to the nonvanishing values

lg —g'I. It is therefore permissible to retain in the
double sum of (4.23) only the terms with gag' and to
keep in these terms only the time derivative of the
exponential. Using again (2.14) to go back to the dis-
tribution matrix a-, one can thus write

&=i&~ & 2 (g' g)(g—"v'IZ ~.m+I gv)(gvl~l g'v')
g ti g '0 r

(4.24)

It should be noted for later purposes that the magnitude
of the matrix elements of m„+ in (4.24) is restricted in
view of the forms (4.12) or (4.16) of Ep. Indeed, sub-
stituting these forms in the identity

(g' g) (g'v'I ~—+
I gv) = (g'v'I Ep,~+j I gv),

and observing in the commutator (Bpz„+j, with
given by (4.4), that ipt„+ commutes with pit/ for s&r,
while Lm, P,m,+j=nz„+ as a consequence of the com-
mutation rules for the components of the spin vector I„,
one obtains

(g' —g+~ ) (g'v'Im. 'I gv)

for EO=BIo
(4.25)

I (g'v'I LC,m,+]
I gv) for E,=B+C.

The matrix elements of nz,+ vanish therefore in the case
Ep ——8 if g' —g+pi„AO and they are negligibly small in
the case Ep=&+C if lg' —g+~ I»ICl

Using (2.38) and noting that, as a diagonal matrix,
ttp does not contribute to (4.24), one can also write

&=+~2 2 (g' —g) (g'v'I 2 ~.~.'I gv) (gvl x I
g"').

gS, g

(4.26)

Finally, if there is no degeneracy which requires the
retention of v, v', then (4.26) can further be simplified
to

&=+~ E(g' —g) (g'IE v.~.+I g) (gl x I
g'), (4 27)

which will later be used in the evaluation of signal mag-
nitudes.

8= fiN P Q —{(g'v'
I P y,nz„+

I gv)
g~ g'~' dt r

&& (gv I
~*(t)

I
g'v')v '" '") (4 23)

8=he—Trl Q y,nz, +0(t)j. (4.22)
5. NUCLEAR SPIN SYSTEM %'ITH STRONG

SPIN COUPLING

The distribution matrix o. shall be expressed by the
transformed distribution matrix p.* through (2.14), so

The situation to be considered in this section, refers
to the form (4.16) of Ep and the corresponding con-
dition (4.18) for the various orders of magnitude. The
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effect of the coupling term C of (4.1) shall thus be
strong, compared to that of the field Hi and to the
effects of relaxation, but its magnitude relative to the
chemical shift shall not be subjected to any restrictions.

It is therefore possible to apply the results of Sec. 3,
provided that H& contains only a single frequency ~.
It shall actually be assumed that one deals with a
rotating field of magnitude II & and with arbitrary phase,
neglecting in the usual manner the very small effects'
which arise in the normal presence of an oscillating field
with amplitude 2Hi. One has then from (4.10)

, + ~%i(o)t+(I))r = 2 "g'r (5 1)

Inserting in (4.11), one thus obtains D in the form (3.1)
with

D+= —-', Hie+" Q„y„m„+. (5.2)

In order to apply the results of Sec. 3 to the signal
g of (4.27), one has to remember that for a frequency
co in the vicinity of the resonance frequency a—b, there
appear in (4.27) only the matrix elements (a IX I b) and
(bl)(la) of Eq. (3.19) for g=a, g'=b and g=b, g'=a
respectively. The contribution from g=b, g'=u can,
however, be neglected; it contains in the numerator of
(3.19) the factor (blD I a) so that, in the corresponding
term of (4.27), there appears the product

(alZ. v,m,+I b)(bIZ. &,m„+la) (5.3)

An appreciable contribution from the matrix elements
in the numerator and denominator of this expression
arises here only from those terms in the summation over
r for which the corresponding frequencies co, are very
nearly equal to u —0 and therefore also very nearly
equal to each other. This near equality of their Larmor

In view of the restricted magnitudes of the matrix
elements previously mentioned as a consequence of
(4.25), the second and first factor in this product
contain appreciable contributions only from those
terms in the summation over r for which ~„differs by
no more than an amount of order ICI from the reso-
nance frequency a—b and its negative b—a, respectively.
Except in the highly accidental case where some of the
values cv„are within the order

I Cl equal and opposite
to some other values or„, the presence of appreciable
terms in both factors is therefore excluded so that the
product (5.3) and hence the contribution to (4.27) from

g =b, g'= u can indeed be neglected.
The contribution from g=a, g'=b yields, however,

from (4.27), using the conjugate complex of (3.19) and
Eq. (5.2),

g= kiH)&rbt I exp( —)M/kT) —exp( —))ba/kT) j(a—b)

l(bIZ. v. 'I )I'(~ —'1. )
X

(~ )'+(I'- )'+I'. T.» 'I (bled. ~.m."I ) I'/4

)(e t(ttt+tt) (5 4)—

frequencies occurs normally only for identical nuclei
with equal values p„of their gyromagnetic ratios, so
that one can write

8= ~~iH)krbl Lexp( —I'bb/kT) —exp( —ha/kT) j(a—b)p, '

I (bl Q„m„+Ia) I'(Ace —if'. )
X

(~~)'+(I' b)'+I' bT.» 'Hi'I (bl & m 'I a) I'/4

y e t (t—t t+b) (5 5)

where the selection of the single value y„which appears
in this formula can be expressed by the approximate
relation

y„IIp
—u —b. (5.6)

The sign of near equality indicates the neglect of the
chemical shift of Eq. (4.6) and of terms in a bof ord—er

I
C I; it does not lead, normally, to an ambiguity in the

choice of the single value y„, appearing in (5.5), and of
the corresponding single kind of nuclei which con-
tribute appreciably to the signal.

The above expression for S has the same form as
that obtained for M,+iM„ from the solution of the
phenomenological equations" with the real and imagi-
nary part of the numerator in (5.5) resulting in the
parts of the signal which are in phase or 90 degrees out
of phase, respectively, with the rotating Geld. The
equivalent longitudinal and transverse relaxation times
are identi6ed by the equations

and
(Ti).b= T.bl (b IZ. m.+I a) I'/4

(T2).b = 1/I'. bt

(5 7)

(5.8)

The resonance line is here uniquely characterized by
the natural width I',& and by the intensity, defined

respectively.
It was shown in I that the two procedures are

equivalent in the case of a single nucleus r with spin 1/2.
With only two states a and b, corresponding to m„= ——,

'
and m, =—'„respectively, one has here (blm„+la)=1.
A simple check is here obtained by assuming in Eq.
(5.3) of' I that ««1 in which case the quantity C»' of
this equation has the same significance as the inverse
of the time T b in the relation (5.7), yielding thus in-
deed the same result Ti T,b/4. A complete ——quanti-
tative check with the phenomenological result is here
further obtained by replacing the frequencies u and b

in (5.5) by ~i AH)) and —i2yH)), respectively, with
y= 2)i/k.

A further simplification of (5.5) arises if Hi is suf-
ficiently small so that the term, proportional to H&', in
the numerator can be neglected, and if (a,b)«kT. One
obtains then

I (bI & m.+I a) I'(~~ if'.b)—
S=-',iH, ni (a—b)'y,'-

(~ )'+(I'.b)'

)( e
—t(rut+))) (5 9)
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through integration over Ace in the form with

7i

Int=e'&"t+" Sd(ho&) = IIi—ei (a—b)s
4 2 kT

The intensity ratios of a group of lines with relatively
small differences of their resonance frequency is thus
measured by the absolute squares of their corresponding
matrix elements

l (big, m„+its)l'.
Xo special assumption has been made, so far, about

the coupling term C of Eq. (4.16), except that it has
to be large enough to satisfy the condition (4.18). Its
presence affects, however, not only the resonance fre-
quencies a—b of the spin system and the matrix ele-
ments (him„+l a) which determine the intensity, but it
enters also in the natural line width, affecting it dif-
ferently for different lines in a spectrum. At the same
time the line width will of course depend upon the
nature of the coupling between the spin system and the
molecular system. In order to investigate in a general
manner the dependence of the line width upon both
these features, it is convenient to expand the interaction
term f of Eq. (2.1) in the form

(5.11)
77

which represents a generalization of the Eq. (4.2) of I.
The symbol r„stands here actually for a group
(ri, rs r„) of positive and negative integers,
including zero, and Ii,'r represents, in analogy to (4.4)
of I, a spin function with the property

(m„l Ii,rr
l
Sii, ) =»mrrrbm„, m, '+T... (5.12)

defined in a representation in which all the operators
sos„s of (4.2) are simultaneously diagonal with the mag-
netic quantum number m„as eigenvalues. The b symbol
in (5.12) is defined to be unity if m„—m, '= r„ for all
values of r a,nd to be zero otherwise, and the index )
characterizes one spin function I~"out of the generally
several which satisfy the condition (5.12) with indi-
vidual corresponding numbers I~m„". The operators
Iit, '" in (5.11) act upon the variables of the molecular
surroundings a,lone, i.e., they are diagonal either in
the quantum numbers m„or (g, tt) of the spin system.
The operator pair F~", F),—"as well as I~'" I~ '" shall
be Hermitian conjugate in order that G represents a
Hermitian operator.

While the more general definition (2.17) of the
relaxation coefFicients could equally well be used and
would not add any substantial difFiculty, the following
developments will be restricted to the simpler form
(2.45). One obtains then, in analogy to (4.8), (4.9), and
(4.11) of I,

(5.16)

which follows from (2.45) in view of the Hermitian
character of G, is satisfied since the two relations

and
~gl, rr, rr —(@»P, rr, rr )a

(g l
I "lc ) = (g l

I '"l g )

(5.17)

(5.18)

are valid because of the Hermitian conjugate character
of two operators with equal and opposite upper indices
r7 ~

The values of the coeKcients C of Eq. (5.14) depend
upon the properties of the spin system only insofar as
they contain the transition-frequencies p. The effect
of a small spin coupling upon these coefficients will
therefore be negligible since it affects only very slightly
the eigenvalues g of Ett and hence their differences P.
On the other hand, even a small coupling will have a
considerable effect upon the matrix elements of the spin
functions if it is comparable to the chemical shift and
it will thus appreciably affect the values (5.13) in a
manner which does not involve the properties of the
molecular surroundings.

In order to demonstrate this general feature in the
case of particular relaxation mechanisms, it is con-
venient to make an assignment of the indices ) and the
corresponding operators Iq", Iii,'" such that (5.11)
corresponds to an expansion in powers of the spin vector
components of the individual nuclei. Retaining first-
and second-order terms in this expansion, one can write

G —p I rsp —rs+p p I TTI rt'Ir —TsTt' (5 ,1—9)
STS STS t7t'

The 6rst term implies that X refers here to one of the
nuclei s and that for X= s, one chooses r,=0 for res,
while r, can assume the values 0, 1, —1 with the

"The expression (5.14) represents a generalization of the
Fourier-transform J, obtained by Y. Ayant (J. phys. radium 16,
411 (1955)j from the quantum-mechanical analog of a classical
correlation function k(v). H one assumes in (5.14) ) =t', ~„=T„',
writes Fz'"= g and assumes no degeneracy of the molecular system
by suppressing the indices I, I', one finds indeed

C'ii "'"'"=(&~/~)~( P), —
where I and Z have the same significance as in Eq. (9) of Ayant.
His relation (10) between J(P) and J(—p) is then seen to be
equivalent to (5.15) by observing that

@,&&y t Tr, Tr —@,&&y t
—Tr t T7

t

in view of the Hermitian conjugate character of Fy" and Fg

X (f~l 6;"
l f p,—ts') (f p,—~'l I'& "'

l
fl)d f, (5.14)

and the relation

C t' "' "=exp(lp/kT)C» """' " (5.15)

It will further be noted that the condition
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notation
I,'= mS' I,+'= m, ~

8 ) S S

more closely analogous to that of Eq. (4.5) in I than
that introduced in Eqs. (4.2), (4.3) of this paper. Cor-
respondingly, it is

and

n. (f)n- (f P—)F(f)
um'

X(fmIF "If p, —I')(f—p, I'IF& "'I fN)df. (5.25)

F,'= y,II„—', F.+'= —-', y, (II,.'&iII„,'), (5.21)

(q. S )/r —3(q, r)(S .r)/r, (5.22)

between the nuclei s, t with magnetic moments p„p~,
respectively, and with a relative distance vector r. For
molecules in a liquid or a gas the small variation of the
magnitude r can be neglected since the principal vari-
ation of the vector r arises from the change of orien-
tation, due to rotation of the molecule. Introducing
polar angles q and 8 to characterize the orientation of
r, one obtains here from the comparison of the term
sAt in (5.19) with (5.22)

F«"——c,&(1—3 cosV) .

where the vector H, ' represents a magnetic field, exist-
ing at the location of the nucleus s and originating from
the molecular surroundings.

Similarly, the second term in (5.19) implies the
assignment of A to a pair s, t, of nuclei with the same
significance of the operators I,", I, ' as in (5.20). For
s='t, it contains thus the terms, corresponding to
quadrupolar relaxation in analogy to Eq. (4.6) of I
and with the corresponding relation of the operatorsF„" "' to the gradients of the electric field E,' at
the position of the nucleus s. In contrast to the first
term which expresses the feature of "external" dipole
relaxation, the second term of (5.19) contains besides
for s~t the mechanism of "internal" dipole relaxation,
arising from the direct dipole interaction

As a further great simplification, it will be assumed,
besides, that the fields H, ', Hi', acting upon two dif-
ferent nuclei s and t are uncorrelated so that (5.25)
vanishes for s/t. If one assumes isotropy of the mo-
lecular surroundings, which is indeed realized in liquids
and gases, only the coefficients

PTSTS —C) 'I)TS
88 8 (5.26)

have to be retained in (5.24) and can be seen, in view
of (5.21), to satisfy in this case the relation

48&'=24 &'=2@8&—'=C &
S

so that one obtains from (4.24)

(5.27)

~=MS ur g) (5.29)

small compared to ~, and a&~. Using (4.4) and (4.8),
one has here

Eo=B+C= —(~sm8'+~imP)
+JLm, 'mio+~i (m,+mi +m, m~+) j, (5.30)

I'- "=& ~ "((glI'Ig+P)(g'+PII 'lg')
+l (g I

I 'I g+P)(g'+Pl I'
I
g')

+l(glI'lg+P)(g'+PII. 'Ig')) (528)

To illustrate the eGect of a spin coupling of the type
(4.8) upon the line width and relaxation time, equation
(5.28) shall be applied to the simple case of a spin
system, consisting of two identical nuclei s and t of
spin 1/2 with Larmor frequencies ar, and &u&, respec-
tively, which are separated by a relative chemical shift

with

F P '= F i
' '= c (-' ——' sin'i))

+' '=F &' +'= —c, &
—', sin8 cosine+'~

F +'+'= ——' sin'8e+" ~
)

(5.23)

with the four eigenvalues g=a, b, c, d, given by

a= co+-,'J, b=-'(P+ J') ~—-'J

c= ——,
' (b'+ J') &——,

'J, d = —(u+-', J,
where

CO=& COS Orq .

(5.31)

(5.32)
c„=ap,y,/r,

and where the angles q and 8 must be considered as
variables of the molecular surroundings.

The insertion of the operators Fi, '" in (5.14), corre-
sponding to these various relaxation mechanisms, and
the further evaluation of the desired expressions for the
line width through (5.13) and (3.8) is straightforward
but too lengthy to be carried out in this paper. It will
be assumed, instead, that one deals only with the first
term in (5.19), i.e., with external dipole relaxation. One
obtains then, from (5.13) and (5.14),

8E TST)

From the representation (5.12), the matrix elements of
I„' for r= —1, 0, 1, and r=s, t, required in (5.28), are
obtained in the form

(g"II;Ig"')= Q (g" Im, +r, m )(m,milg"')I. ;,
msmg

(533)
and

(g"II;Ig'")= P (g"Im„mg+r)(m. m Ig"')Ii
msmg

(5.34)
with

.-~'= " '=, I 1'= .— '=o, I ~ =~2, ( 35)

(5.24) for r= s, t.
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The transformation functions, entering in (5.33) and

(5.34), are in our case given by

(aim, m,)=(m,m, la)=6m, ,b—,

(b I
m, mc) = (m, mc I b) =al&mc —,-&mc, +Pl&yacc&mc--*, )

(5.36)
(cl m, mc). = (m, me[ c) =/~8m, ', h—m-c a—'bm;', bm. c

(dim, m~) = (m.mc
I
d) =5m .'bmc—

intensity:

1 1~ )i 1 iqI'. =Pl + I+ I
+

~ T2 1+e Tlc J L T2t 1+e Tl

)1 1 1q ~1 1 1 q+ I+~I +
&T2, 1+e "T&ci &T„1+e-"Tfc)

(5.42)

with
n=1 —P=-'[1+8/(P+ J')~] (5.37)

and one obtains from (5.33) and (5.34), with (5.35)
and (5.36),

(b[I' a)=(a[I 'lb)=(d[I'lc)=(c[I 'ld)
=(c[I,'Ia)=(a[I 'fc)=(&[H[b)

=(bloc 'ld) =V'P,
—(c[I.'I a) = —(a[I. 'Ic)= (d[I 'Ib)

=(b[I.-'[d)=(b[I 'la) =(a[I 'lb)
= —(d[D[c)= —(c[I 'ld) =v'~, (538)

—(a[I.'I a) = —(a[I 'I a) = (~II.'Id) = (d[Ic'I &) = 2,

—(b[I.'Ib) = (b[I 'lb) = (c[I.'I c)
= —(c[I 'I c) = l(n —p)

—(bl~, olc)= —(c[I,o[b) =(bli 'lc)
= (c I

I,'
I b) = (nP) ',

with all other matrix elements of J, &', I, &+' equal to
zero.

By neglecting the slight variations of the coefFicients
C„& of (5.28), due to chemical shift and coupling, i.e.,
with

@ c b~y c c~—@ 6 d~—@ c d~— @ ra—. @ b c~@ 0 —(5 39)

the line widths, resulting from the above formulas, can
be conveniently expressed in terms of the longitudinal
and transverse relaxation times T1„and T2„respec-
tively, which the nuclei r =s, t would exhibit separately,
i.e., under the conditions considered in I.

In Eqs. (5.3) and (5.4) of I, the quantities 2C n' and
C»' can then be replaced by C „"and 4 „', respectively,
so that

+ —co— 4 "—e "4
(1+e ")Tg„(1+e")T,„

with

j.
@0

T2r 2T1r

K= &co/kT.

(5.40)

(5.41)

From the general expression (3.8) for the line width
and with (5.28) and (5.38), one thus obtains the follow-

ing for the widths of the four lines which have a finite

(111)(111
+ I+~I +

(T2c 1+e" T~,J ET2, 1+e" T~c)

Although they were derived under very special sim-

plifying assumptions, these expressions exhibit some
interesting features which can be expected to occur
similarly in more general cases: In the first place it
should be noted that they contain not only the trans-
verse relaxation times T2„T2& which would solely
determine the line width in the case of separated nuclei,
but also the corresponding longitudinal relaxation times
T1„T1&.The significance of these features is best seen
in the limit J/b-+0, where, according to (5.37), one has
for 8)0:n= 1, P=O. Considering in particular the line

a, b, its frequency, according to (5.29), (5.31), and
(5.32), is given in this case by a—b=co,+—',J and cor-
responds in fact to a transition caused by the applied
rf field, in which the nucleus t changes its quantum
number ms& by unity while the other nucleus s remains
in the state m, = —-', . Nevertheless, there occur also
transitions of the nucleus s, due to the relaxation, which
shorten the lifetimes of the initial and Anal state a and
b and hence contribute to the line width F,~ in the form
of the term L1/(1+e ")$(1/T~,) in addition to the term
1/T2, which would alone be present for the separate
nucleus t. Similarly, there appears the contribution
L1/(1+ec)$(1/T~, ) in the width I',d of the resonance
line corresponding to the transition in which nucleus s
remains in the state m, =-, . For co)0, this is the lower
of the two states of the nucleus s and no relaxation
transitions can therefore take place in the limit of very
low temperatures, i.e., for ~—&~; this furnishes the
reason for which the line width is in this limit given by
1/T2c alone.

Another feature of interest lies in the fact that the
line widths (5.42) show a strong and different depend-
ence upon the ratio of the coupling constant J to the
chemical shift b, entering through (5.37) in the con-
stants n and p = 1—n. In the usual case K((1, one obtains

)1 1y (1 1
+—I+ I +

2T„i «T„ 2T„)'
(5.43)

J1 1q )1 1
+ I+&I +

L, T2, 2Tg, ) ET2c 2Tg.)
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( p
R.b R„——=4I y I

=R„
&T„T„i
( +
&T„T„&

1(1 1 1 1
b=

I +
ap E Tet T2t 2 Till 2T«)

~ad= ')

and the effective resistance T ~ is given by

(544)

with

)1 1
T.b=

I
—+

(Ri R2+p)

p1 1
p=I —+

(Rb Ri+R2)

(5.45)

(5.46)

With the matrix elements

(b I
m,++m,+

I a) = (d I
m,++mt+

I b) =gP+ga, '
(5.47)

(cI m,++mt+I a) = (dIm, ++mt+I c) =gP —Qa,
and derived from (5.38), corresponding to (5.45), with
the expressions

T:=T.b=
I

—+
ERi R2+p)

T..= Tb.=
I

—+
R,+p&

(5.48)

one obtains from (5.7) with (5.44), (5.45), and (5.46),

1(T«—1+—
I

a—+p I
(v'a+v'p)',

Till+ Tit2q ( , Tit Tit

TillTit 1
I

Tit Ti $e
(T)..= 1+—

I P + —
I

(v'--CP)',
Tie+ Tlt 2q i Tie Tit)

(5.49)
Tie Tit 1 ( Tlt Tlt $1+—

I
a +P—I

(v'a —4P)',
Ti,+Tit 2q & Ti. T«)

T1sTl t 1 ( Tit Tie
(Ti)bd= 1+

I p +a
I (Ca+Up)~T„+T„2qE T„

and hence two pairs of lines with different widths except
in the case T1,=T1&=T1, T2,——T2&

——T2, where all four
lines have the same width, 1/T2+1/2Ti.

To complete the discussion of the case, considered
here, the corresponding expressions (5.7) for the eRective
longitudinal relaxation time of the different resonance
lines shall likewise be derived for the case ~&&1. As was

pointed out in Sec. 3, T ~ is in this case the effective
resistance in the equivalent dc circuit, measured between
the terminals u and b. Expressing them likewise in
terms of the relaxation times of the separate nuclei, the
resistances of this circuit are here found to be

with
(1 1i

q=1+ap
I

+ l(Ti +Tit) —4 (5 5o)
&T2t T2t &

As observed in the case of the line widths (5.42), the
above expressions show a strong dependence upon the
ratio of J and 5, apart from the more obvious one of the
"intensity factors" (ga+gp)' In. fact, this depend-
ence, contained in the square brackets, exists here even
in the case T1,=T1&=T1, T2, =T~&——T2 through the
expression q of (5.50).

Assuming finally either a=1, p=0 or a=0, p=1 and
Ti, =Tit=T2, =T2t=T, one obtains from (5.49) the
common value

(Tl)eff 4T, (5.51)

and from the inverse expressions of (5.43) the common
value

(T2)etf (5.52)

for the effective transverse and longitudinal relaxation
times respectively. The two values differ thus in this
case by a factor two while they would be equal in the
corresponding case of separate nuclei.

The particular relations which have been derived
here between the effective longitudinal and transverse
relaxation times of the different lines in a spectrum are
of course based upon the underlying special assumptions
concerning the relaxation mechanism, and other rela-
tions would be obtained under different assumptions.
This fact suggests, on the other hand, that the obser-
vation and comparison of the effective values of T1 and
T2 in the different lines of a spectrum can be used to
obtain information about the actual relaxation mecha-
nism.

6. NUCLEAR SPIN SYSTEM WITH WEAK SPIN
COUPLING AND STRONG RELAXATION

It was shown in the preceding section that the line
widths of a spectrum depend in general upon the
relaxation processes, affecting all the nuclei in the spin
system, As pointed out in the discussion of the simple
example, presented by the Eq. (5.42), one obtains such
a dependence even in the limiting case where the
coupling constant J is assumed to be small compared to
the difference 8 of the Larmor frequencies, since the
width of lines due to transitions of the spin t are still
seen to be broadened by the longitudinal relaxation
time of the other spin s. This may seem surprising since
one should expect, for vanishing coupling, to 6nd the
behavior of independent nuclei, where the resonance
width of one nucleus cannot be influenced by transitions
due to the relaxation of another nucleus.

One has to keep in mind, however, that the results
of Sec. 5 were derived under the assumption of con-
dition (4.18). While it is compatible with the further
condition (4.19), i.e., with a spin coupling small com-
pared to the chemical shift, it precludes the treatment
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of vanishing coupling in the sense that the effect of
this coupling still has to remain large compared to
those due to the external rf field and to relaxation. In
order to treat cases of arbitrarily small coupling, it is
necessary to separate the spin energy according to the
scheme of Eqs. (4.12) and (4.13) instead of using the
scheme of Eqs. (4.16) and (4.17) which underlies Sec. 5.
The corresponding condition (4.14) does not restrict the
relative magnitude of the three effects, mentioned pre-
viously and is likewise compatible with (4.19). At the
same time, it allows the coupling effect also to be small
compared to that of the relaxation. In order not to
complicate matters too much, it shall here be assumed
that one still deals with a suSciently weak rf 6eld, i.e.,
one demands

(6.1)

At the same time, the magnitude of the coupling shall
be restricted only by

la I» fcl»l al, (6.2)

without any restriction of the magnitude of
f
F

f

com-
pared to that of

f
C

f
. It is in this sense that the reference

to "strong" relaxation is made in the title of this
section; the case of a strong rf 6eld'shall be considered
in the following section.

In view of Eqs. (4.12) and (4.4), one has here

Ep= Qr ~rmr .

Instead of the eigenvalue

g= —P„pp„m„, (6 4)

one can equally well use the set of magnetic quantum
numbers m, = (m~mp m„) to characterize a state
of the unperturbed spin system. Introducing further, as
in Sec. II, a set of integers 7., and using Eq. (2.21), the
Boltzmann equation (2.34) can then with omission of
the index v be written in the form

d/dt(m„f~ fm„')+i(m„f f E,~j fm„')
= (m„

f
F (p) lm„'), (6.5)

closely analogous to Eq. (3.25) of I, with

(m, f F(o) lm„')

=+{2ezp( —P K„r„)rm„m ""(m„+r„fO
f
m„'+r,)

To treat the Eq. (6.5), let

where
E=U+V,

U= Ep+C

(6.10)

(6 11)

SUS '= f(m P) (6.13)

so that the matrix, representing this operator, has the
form

(m„fSUS 'fm„')= f(m„)8m,m„', (6.14)

i.e., it is diagonal in the m„-representation with the
diagonal elements f(m„). Indicating further the trans-
formation S by a subscript, i.e., with

SO.S '=a-s, (6.15)

S~S '=~s,
one obtains from Eqs. (6.5) and (6.6)

(6.16)

—(m„ f
a s f

m, ')+iLf(m, )—f(m„')](m„f o.s f
m„')

dt
+i(m„f /vs, asjlm„') = (m„fry(os) fm„'), (6.17)

with

(m, frs(as) lm„') = g (m„f Sf m„")
m lfm illr r

X(m„"fF(S 'o.sS) fm„'")(m„"'lS 'fm„'). (6.18)

It should further be noted that the expression (4.22)
for the signal can also be expressed through the trans-
formed distribution matrix IT~ in the form

with

8= Au—Trig, y„(m„+)op s (t)],
dt

(m„+)s——Sm„+S '.

(6.19)

(6.20)

and contains the part of E which is independent of the
time, while

V=D (6.12)

represents the part due to the external rf field and is
hence dependent upon the time. A transformation
operator S, and its inverse S ' small further be intro-
duced, such that

and
—(rm„m„"+Fm„'m ' r) (m„ f

o'
f
m„')) (6.6)

U= Up+ Ui, (6.21)

To obtain S and f from Eq. (6.13) by a perturbation
method, let

I'm, m ' r=m Q rt„(f)rt„(f+Q r,(u„)P(f)

X (m,fu
f
G

f
m„+r„, f+P 7 ~„,u')

X (m, '+r„ f+Q r~„u'
f
G

f
m, 'fu)d f, (6.7)

where in our case, from (6.11) and (6.3),

Up= Ep= —Z. pp,m, P,

and from (4.8),

Ux=C=-,' Q J,g(m, 'mg'+m, +m, )
sQt

(6.22)

(6.23)

K„=kPP„/kT, Since the principal part Up of U is already diagonal in
Fm '+r„,m„+r '" exp( —Q„K„T„)rm„m——„' " (6.9) m„, one can write

in further analogy to (3.16), (3.17), and (3.18) of I. S=1+Sz+Sp+. ; S '=1—S&+Sf—Sp+ . (6.24)
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fo(m„) = —Q„oi„m„,

fi(m„)=-', Q J„m,m„
sQt

(6.32)

(6.33)

and with the corresponding operator function fi(m„')

(6.34)

Using the commutation rules of ns„' with m„+ and
m„, it is readily verified from (6.27) that

Si= o P Jqima mi /(Mq (di) & (6.35)

and one obtains, together with (6.34), from (6.31),

f, (m„) = ——,
' Q J,P(m„jm,+m, m, m,+jm—,)/(—oo, oi,)—

sQt

= ——,
' P J,P{jI,(I,+1)—m, 'jm,

sQt

—fI,(I,+1)—m, 'jm, )/(oi, —&o,). (6.36)

The expressions for the functions f, and fo could
also have been obtained by the ordinary perturbation
methods, but it is more convenient for a generalization,
used in Sec. 7, to derive them in the manner outlined
above. While these contributions to f represent only
small corrections, relative to fo, in ascending powers
of the ratio of the coupling constants J,~ to the diGer-
ences of the Larmor frequencies co, and co&, their presence
yields a structure of the resonance lines which is of
importance for the following purposes. Omitting the
corresponding small corrections to the intensity and
width of the individual lines, it is permissible, on the
other hand, to replace S in (6.17), (6.18), and (6.19) by
the unit operator, i.e., to suppress the transformation
subscript everywhere in these equations. This greatly
simplifying procedure is consistent with the condition
(6.2) and shall be followed below.

Inserting (6.21) and (6.24) in (6.13), writing

f(m. ') = fo(m')+fi(m')+fz(m')+, (6 25)

and comparing terms of equal order, one obtains, up to
the second order,

Uo fo (—m—ro), (6.26)

j Si,foj+Ui ——fi(m, '), (6.27)

j:Sz,fo)+LSi fij+S (Ui —fi) = fz(m') ' (6 28)

and hence, since fo(m, o), fi(m„') are represented by
matrices which are diagonal in m„,

fo(m„) = (m„j Uo j m„), (6.29)

fi(m, ) = (m, j Ui j m„), (6.30)

fz(m )=(m jSi(Ui —fi)jm) (6»)
With the particular expressions (6.22) and (6.23), one

obtains thus

Corresponding to (2.47) and (2.48), one can then
write

with
o'= &o+Xp

(m„j o o j
m„') ={exp(Q„~„m„)bm„m„,|=1/P exp(P„a„m„).

(6.37)

(6.38)

(6.39)

As in Sec. 5, it shall be further assumed that one deals
with an rf field of magnitude H~, rotating with a
frequency oi. Using (5.2), one obtains then from (6.12)
and with the suppression of the transformation sub-
script from (6.17):

—(m„jyjm„')+iLf(m, ) —f(m, ') j(m, j Xjm„')

+P{(I'm„~„"+pm„~„")(m„j g jm„')

—2 exp( —P, a„r„)I'm„m„""(m„+r,
j y j m„'+r„))

= —oiHit j exp(+r &rmr) exp(Pr &rmr )]
X{(m„j Q„y„m+ jm')e*'"' +"

+ (m, j P, y,m, j m, ') "'i"'+'&), (6.40)

corresponding to (3.2) except for the omission of the
terms which contain both D+ and x and are thus pro-
portional to H~'. I'his omission is consistent with the
condition (6.1) for

j
D j .

Because of the principal term fo of f, given by Eq.
(6.32), (m„jyjm„') will be essentially different from
zero only if co is in the neighborhood of one specific
Larmor frequency co& with the quantum number m&

differing from no~' by %1.There exist, however, several
resonance frequencies in the immediate vicinity of co&

with only a slight dependence on the other quantum
numbers m„due to the relative smallness of fi and fz.
In contrast to the treatment, presented in Secs. 3 and
S, it is therefore not permissible to assume that
(m„jyjm, ') differs appreciably from zero only for a
specific set of values m&, vs&'=ns&~1, ns„m, '=m, .
Instead, (6.40) represents a set of simultaneous equa-
tions for the quantities (m.m&jxjm„md=1), charac-
terized by diGerent values of ns, . While all but one of
these quantities are vanishingly small for relatively large
coupling constants J,&, they tend towards a common
value as J,& becomes comparable or small compared to
the transition probabilities per unit time between states
of diGerent quantum numbers m, . Ultimately, there
results a resonance where the structure, due to the dif-
ferent states of the nuclei s, and the dependence of the
width, due to their relaxation, have disappeared. Since
one deals only with relative orders of magnitude, it
should be noted that the same behavior occurs for
fixed coupling but increasing transition probabilities
between the various states m, . A suKciently frequent
occurrence of these transitions has thus the eGect to
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and assuming «., K&«1, one obtains from (6.40) a sys' em
of equations for the constants x(m.m&) of the form

i$cu(m, m,) cv—jx(m,m~)+ P A (m, m, m, 'm, ') x(m, 'm~')
m, 'mt'

—2+F mm. "{(xm+r„m)

where

—x(m, m&) }= c(m&), (6.42)

and

c(m~)=-,'iHgpgKg(m, ~m& ~m&+1) (6.43)

eradicate the influence of another nucleus upon the
structure and width of the resonance, owing to transi-
tions of the nucleus I,.

This general behavior will, for simplicity, be demon-
strated for the case that, besides the nucleus t, there
exists only one nucleus s in the system. Considering in
particular a transition m~ = m,+1, introducing

(m, m,
~ y j m„m, +1)=x(m, mg) e ""'+", (6.41)

have thus the form

ir ~(m, )—&ojx(m~)+ g A(m~m, 'm~')x(m~') = c(m,),
Stg tSt

(6.47)

where co and 2 indicate averages over m, . By substi-
tuting (6.46) with the solution x(m, ) of (6.47) into
(6.42), it is seen that the corrections ((m,m~) are indeed
small, of the order of the deviations of &u(m, m, ) from
their average value ~(m, ), divided by the magnitude
of the quantities Fm m ".The common part x(m, ) of
(6.46) represents thus the better an approximation, the
smaller the value of J,t or the larger the values of
rm m g so that, in the limit, the resonances are deter-
mined by (6.47). It is seen that, for a given value of m, ,
there results in this limit a single line with the resonance
frequency pp(m&) and with a width which is not affected
by the quantities rm m ', i.e., by the relaxation transi-
tions of the nucleus s. Using (6.44) and the expressions
(6.32) (6.33), and (6.36) to obtain f= fp+ fz+ fp, one
has the following in this approximation:

co(m, m~) = f(m, m, )—f(m„m, +1). (6.44) ~=~,—J,PI, (I,+1)(3(~, ~,). —(6.48)

The form of Eq. (6.42) is obtained by writing the fol-

lowing for v t =0, mt =mt

Fm„m„™=Fm~m~'+DFm~m~' ", (6.45)

where the second term in this equation as well as all
the other values of Fm„m„'" are contained in the coef-
6cients A (m,m,m, 'm, '). It will further be assumed that
these coeScients are relatively small while Fm,m, ", and
hence the transition probability between m. and m, + r „
will be allowed to be either small or large compared to
the variation of co(m, m&) with m„ i.e., compared to the
coupling constant J,t.

For pp in the vicinity of one of the values co(m, m&)

but separated by an amount, large compared to
rm m ' from the other values, only the corresponding
single quantity x(m, m&) will be essentially diferent
from zero. It leads to one of several closely spaced reso-
namce lines, each characterized by a speciic value m„
with a contribution to the width of the amount
2 QT Fm m ', arising from the last term on the left
side of (6.42). In the other limiting case of relatively
large values of rm, m,", the principal eGect of this term
is to produce an approximate independence of the
quantities x upon m, . Kith the notation

x(+-'„——',) =x+, (6.49)

one obtains then from (6.42) the following:

q+x++-,'(x+—x )= Tg, , c

q
—x———,'(x+—x—

)= Tg,c,
where

(6.50)

(6.51)

q+= i(co+—(o)+ Tg, )

T2t-
(6.52)

and from (6.43)
c=c( ,')= ,'iHg{y, K,. ——-

In the limit of weak coupling, the resonance frequency
is thus independent not only of m, but also of mt, with
a deviation from the resonance of the separate nucleus
t which decreases quadratically with decreasing J,t.

An explicit formula, containing both limiting cases
of weak and strong relaxation, can easily be obtained
if both nuclei s and t have a spin 1/2 with the same
relaxation mechani'sm as that assumed in the derivation
of (5.43). According to (6.41), one has here necessarily
mt= ——,'. Using the notations

x(m, m, ) =x(m, )+g(m.m, ), (6.46)
The signal is here found to be

g = —ia&hey, (x+y x—
),

the common part x(m&) is determined by summing
(6.42) over m„neglecting the small corrections
$(m,m~) and observing that with «,&&1 and therefore
with rm m g=rm +r„m +v g, the contributions of the
last term on the left side of (6.42) cancel each other in
this summation.

The determining equations for the quantities x(m, )

where
2cT„P;(~+y~ )+1)--

x++x =
l(v'+v )+v+v

(6.53)

(6.54)

is obtained as a result of the solution of (6.51).
Assuming throughout that T2t»T~„ the limiting

cases of weak or strong relaxation of the nucleus s are
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here characterized by the parameter Ti, (a&+—ru ) being
considered as large or small compared to unity respec-
tively.

In the limiting case of weak relaxation, one has

~ q I)&1 for co—co+ and hence, from (6.52) and (6.54),

CT1s
S +S (6.55)

q +-,' i (~+ ~)+—1/T2, +1/2Ti,

while one has
~
q+~ &)1 for co—cu, and hence,

CT1s c
x++x = = . (6.56)

q++i2 i((o —(o)+1/T2,+1/2Ti,

There result thus two separate resonances at the fre-
quencies co+ and ~ with the common width (1/T2~)
+(1/2Ti, ) in agreement with the corresponding ex-
pressions I',~

——I',q of (5.43), obtained for a=1, P=O.
In the limiting case of strong relaxation, one has, on

the other hand, both
~

q+
~

&&1 and
~ q ~

(&1 for all values
of co in the interval between co+ and co so that one obtains
here from (6.54) the following:

2CT] s
S +S (6.57)

2(q++q ) ~Lk(~'+~ )—~]+1/T2i

Strong relaxation results thus in a single resonance at
the average frequency co=-', (co++co ), with a line width
which is solely determined by the transverse relaxatioo
time of the nucleus t.

In the two limiting cases of weak and strong relaxa-
tion, one can generalize the results for the line width
obtained above, to an arbitrary spin I& of nucleus t and
to an arbitrary number of nuclei s, other than t, with
arbitrary spins I,. Maintaining the assumption of an
independent dipole relaxation for all nuclei s and t and
the condition K Kg((1, one can use the Eqs. (4.8),
(5.11), and (5.12) of I to express the relaxation coef-
ficients F~„m„'& through the relaxation times T~, T2 of
the independent nuclei. In particular, one obtains thus
for a nucleus s

F~,m, "=Fm,+.„m,+., "
1

t (m, ( m,—( m, +7,) ~

', (6.58)
4Ti,

which differs from zero only for r, = 1, Using the cor-
responding expressions for the nucleus t as well as the
relation between I'mgmg+1' and 1/T2„and following the
analogous procedure which led from (6.40) to (6.42),
one finds in the case of weak relaxation the following:

1 1 1—(m, m, ) = + LIi(Ii+1)—mi(m~+1) —1j
T2 T2) T]g

1
+ Q LI,(I,+1)—m, 'j (6.59)

sQt Tls

for the line width of a resonance transition from m& to
mi+1 with fixed values m, . For a single nucleus sAt
with I,= 2 and choosing I&= ~ so that necessarily
m&= —

~, this expression yields both for m, = —,
' and

m, = ——,
' the line width (1/T2~)+ (1/2Ti, ), in agreement

with the result of Eqs. (6.55) and (6.56).
The more general expression (6.59) is of particular

interest in molecules, containing several groups of
equivalent nuclei, so that not only the quantum
numbers m„m& but also the total equivalent spins I„I&

can assume different values. In a group s, containing an
even number of equivalent nuclei of spin 1/2, it is
possible, in particular, to have I,=O so that there
appears in this case no contribution from this group to
the last term of (6.59). In the same spectrum, the
resonance lines of the nucleus t, characterized by I,=0,
can thus be expected to be sharper than those for which
I,/0. In view of the very special underlying assump-
tions about the relaxation processes, formula (6.59)
can of course not claim general validity but it contains
features which can be subjected to experimental inves-
tigation.

As shown in the discussion of (6.42), the contributions
to the linewidth, arising from the last term in (6.59),
disappear in the limit of strong relaxation of the nuclei
s. Similarly, it can be seen that the contribution from
the second term vanishes in the limit of strong relaxa-
tion of the nucleus t so that the line width of resonance
transitions of the nucleus 3 is reduced to 1/T2, . This
result agrees with that obtained in I under correspond-
ing conditions for a single nucleus; the assumption of
"strong" relaxation was here necessarily implied since
one dealt with a resonance frequency, independent of
the quantum number m&.

The observation by Arnold, presented in the following

paper, of the disappearance of a line structure in alcohol
due to proton exchange between different molecules is
closely related to the mechanism investigated in this
section. Similarly to relaxation, such an exchange has
the effect to alter the relative spin orientation of protons
within the same molecule and to result in the limit of
rapid alterations in a single resonance line at the average
frequency of the different resonances, observed in the
absence of an exchange. It is the remarkable advantage
of the chemical exchange that it affects selectively one
proton group in the molecule without changing the spin
orientation in other groups and that it depends sen-

sitively upon the chemical composition of the liquid,
While relaxation times can also be varied, for example

by addition of a paramagnetic catalyst, this would
affect the changes of orientation of all protons in the
molecule, thus complicating the observed effects.
Another difference lies in the fact that the succession
of different. spin orientations in the case of relaxation
depends upon the mechanism involved while it is
perfectly random in the case of chemical exchange.
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7. NUCLEAR SPIN SYSTEM WITH WEAK COUPLING
IN A STRONG ALTERNATING FIELD

Similar effects upon the resonance frequencies and
line widths of a nucleus t can be expected to occur, if
the transitions of another nucleus s are caused by an
alternating field instead of being due to relaxation as
discussed in the preceding section. In analogy, these
effects should be appreciable, if they are comparable
to those of the spin coupling between the nuclei and it
is therefore likewise necessary to separate the spin
energy according to the scheme of Eqs. (4.12) and
(4.13).

It shall be assumed here that the alternating field
consists of a superposition of two magnetic fields,
rotating with frequencies coi, ~2 and with magnitudes
H&, H2, respectively. One has thus

energy E.Thus, Eqs. (6.11) and (6.12) are to be replaced

by
(7.6)U =&o+C+D1,

and
V =D2. (7.7)

In view of (7.2), neither U nor V are here independent
of the time. The time dependence of U can, however,
be readily eliminated by a first transformation

T= exp( io1,t Q„m„') (7.8)

to a frame of reference rotating with the field 1. Indeed,
writing

Oz'= TOT (7.9)

Eqs. (6.5), (6.10), (7.6), and (7.7) can be seen to be
replaced by

with

and

D=D1+Do,

D —D +e '1' ), 2 t+D e—601, 2 t
)

(7.1)

(7.2)

(m Io'r lm, ')+i(m.
l L&r e'r1lm. ') = (m l«0'r) lm ')

dt
(7.10)

D1, o+= 2' 1, oe+""—Q-„V„m,~. (7.3)

At the same time, the magnitude of the field HI will
be restricted by.

In order to obtain appreciable transitions of the
nucleus s, the frequency co& will be chosen to be close to
the Larmor frequency co„and the corresponding mag-
nitude Hi will be allowed to assume sufficiently large
values so that y,H~ can be comparable or even large
compared to C; the reference to a "strong" alternating
held in the title of this section refers thus only to the
field 1. With the frequency co2 close to the Larmor
frequency ~&, it is sufhcient, however, to assume H2
so small that only the linear terms in this magnitude
have to be retained for the discussion of the resonances
of nucleus t. As another simplifying assumption, it will
be assumed that the relaxation eQects are small com-
pared to those of the coupling C as well as of the held
H~, one thus deals with weak relaxation in the sense
of the preceding section and at the same time with
strong saturation of the resonance lines of the nucleus s.
While the combination of intermediate relaxation and
saturation could equally well be treated, it would a.dd
complicatioos which are unnecessary for the purposes
of this section.

The various assumptions, made above, in regard to
relative orders of magnitude can be formulated in
analogy to Eqs. (6.1) and (6.2) by the conditions

(7.4)

respectively, with

&r= &r+&r,

&r=&or+C+D»,

Vr=D27)

(7.11)

(7.12)

(7.13)

+or gr ~rmr
q

Dlr D1 +D1

D —D +eiD t+D —e—io 1
)

where the abbreviations

Aq=Mq M]&

6=4)2—
GOi

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

have been used. In deriving these equations, use has
further been made of the identities

Cp= TCT '= C. (7.20)

This last relation is, in fact, an immediate consequence
of the circumstance that the expression (4.7) for C is
invariant against rotations.

The expression (7.12) is analogous to (6.11) in the
sense that they are both independent of the time. In
further analogy to the Eq. (6.13), a transformation
operator S will be introduced with the property

Tm, +T '=e+'""m„+ Tm„'T '=m„'. (7.19)

Applied to Kq. (4.8), they yield

(7.5) SUrS—'= f(m, o). (7.21)
without any restriction of the magnitude of

~
D1~

compared to that of ~C~.
While Kqs. (6.3) to (6.10) of the previous section

are maintained, the conditions (7.4) and (7.5) require
a redefinition of the parts U and V, composing the spin V~S '= V (7.23)

Introducing further, in analogy to (6.15) and (6.16),

So-zS '=o-gz, (7.22)
and
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one obtains from (7.10),

d
(m—„l0 er l m, ')+iT'f(m, ) f(—m„')](m„l 0 sr l

m„')
dt

and yields

with

So Ur, Sp
' —Q——Bimbo —A,m, o)

sQt

A, =l (6,—Q I,imP)'o+y, oHio]'.

(7.32)

(7.33)
tQs

+i(m„l PVsr tTsr]l m, ') = (m, l Fe( Br) l
m„') .(7.24)

Both A, and 0, are functions of m&' with 3/s. In order
to simplify the further discussion, it will now be
assumed that the spin system contains, besides the
nucleus s, only one other nucleus t so that one obtains
from (7.31) and (7.33),

This equation corresponds to (6.17), with the expression
on the right side obtained by substituting in (6.18) as
by fT&T. Through the two consecutive transformations
T and S, the expression (4.22) for the signal takes here
the form

tane, (mio) =
~s—Jsgmgp

(7.34)
8= hip T—rLe

—'""P„y„(m„+)ea'sr(t)], (7.25)
dt and

A. (m&') =
l (A.—J„m,')'+y, 'H, ']&, (7.35)

noting (7.19) and with

(7.26)(m„+)s ——Sm„+S-'
as in (6.20).

While there exists thus a considerable analogy, after
having carried out the transformation T, with the
procedure of Sec. 6, there arises the essential dif-
ference between Ep and Eo&, given by (6.3) and (7.14),
respectively, that all terms in the former expression can
be considered as large while the term with r=s in the
latter expression must be considered as small, because of
the assumed vicinity of co& and ~, and the corresponding
smallness of A„given by (7.17).Contrary to Eq. (6.24),
the transformation operator S has therefore to be
chosen in the form

~s7. =So~rSp ', (7.36)
and

(7.37)

(7.38)

~sT=So~rSo ',

(m,+),=S,m, +S

instead of (7.22), (7.23), and (7.26), respectively.
With the same understanding, the right side of (7.24)

has to be reinterpreted, through (6.18), according toS= (1+Si+So+ )So,
S- =S; (1—Siys, —S,+" ),

(7.27) ( mlra(tTez) lm„)= P (m„lsplm„)

respectively.
Neglecting, as in Sec. 6, the minor corrections,

arising from the small contributions Si, So, . in (7.27),
the transformation subscript S in Eqs. (7.24) and (7.25)
will be considered as referring to the operator Sp alone
by reinterpreting O.sr, Ver and (m„+)s in these equa-
tions according to

The x direction has here been chosen in the direction
of the rotating field H~, so that the phase factor e+'"
in (7.3) disappears and

Di++Di = Hi Q„y„I„, — (7.29)

with I,=-,'(m, ++m, ) from (4.3).
Qoting further from (4.2) that m, '=I„, it is seen

that a rotation of the vector I, around the y-axis has
the desired property to transform U&, into a function
which depends only upon m„. Such a rotation is ex-
pressed by choosing the transformation operator

where

ei 8sI7Is
0

tans, =y,Hi/(6, —Q I,imago),
'

(7.30)

(7.31)

where Si, So can still be considered as small, but where
Sp differs Irom the unit operator.

So has the defining property of diagonalizing the
part of U&, obtained by omitting all terms which
contain the operators m&+ for tQs. Denoting this part
by Ur„one has from (7.12), (7.14), (7.15), and (4.8)

Ur, —Q h,m, ' (6——,—Q J,im(')m. ' —p,HiI, . (7.28)—

&&( "lf'(S ' So)l "')( "'IS 'I .') (739)

The further problem to determine f(m„o) and Si,
So from (7.21) and (7.27) is the same as that dis-
cussed in Sec. 6, except that the quantities U, Up and
Ui in (6.21) have now the significance

and

U=SpUTSo ',

Uo= —~~m, o,

(7.40)

(7.41)

Ui= —A.m.'——,'l (r H —I, (m, ) s) (m,+)s
+ (y,Hi —J„(m,+)e) (m,

—
)e], (7.42)

respectively, with

(ma, i+)B=Som.~+So ' (7.43)

Equations (7.41) and (7.42) replace (6.22) and
(6.23) and are obtained by separating the expression
(7.40) into a large part Up and a small part Ui. Up as
well as the contribution —A,nz, ' to U~ originate, accord-
ing to (7.32), from the part Ur, of Ur given by (7.28),
and the other contributions, due to the field II~ and the
coupling C, originate from the remaining parts of U~.
The expression Up must indeed be considered to be large
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since cui=ai, so that, according to (7.17), &~=&a~—a~, .
This quantity is of the order of those symbolized by I

8
I

in the conditions (7.4) and (7.5), and is thus postulated
to be large compared to the quantities in U~ of the
order of

I
C

I
and

I
D

I
. As in (7.32), the appearance of

mP in (7.41) without the transformation subscript
arises from the fact that 8, depends only on m&' so that
$0 commutes with m&', leaving it thus unaltered by the
corresponding transformation this transformation
sects, however, the operators no&+ so that they have
to appear in (7.42) with the subscript S.

Considering that the relations (6.26) to (6.31) remain
valid with IJa and U& given by (7.41) and (7.42), and
that the commutation rules are the same for the trans-
formed and the untransformed spin operators, one ob-
tains in analogy to Eqs. (6.32) to (6.36),

f, (m, m, ) = —a,m„ (7.44)

{J,PfI~(I~+1)—mP]m, cos8,
2hg

f ("a(Hi J~g sln8&m&)

+J' '(I,(I.+1) m')(1 ——,
' sin—'8)]m(}. (7.48)

In deriving (7.48), use was made of (4.2), (4.3) and
of the relations

fi(m.mi) = —~, (m~)m, = f(6, —J,im~)—'+y, 2Hi2$'m„

p.45)
~i—fi = ——,'f (p,H, —J„(m;),) (m„+)8

+ (a)Hi J„(m,+)—s) (mi )s], (7.46)

Si——(1/2A, )fh (Hi —J„(m. )8) (m~+)8
—(a(Hi —J„(m,+)s) (m, )s], (7.47)

fg(m, mg)= {(m,—m,
l fy,Hi —J„(m,+)s](m,—)s

4a,

Xfy(Hi —J,g(m, )s](m~+) slm. m~)

—(m.m, I fy,Hi —J„(m;)s](m,+),

XLvPiJ. ( im+)s](m~ ')slm. m~))

obtains on the other hand,

fi rgHima)

and, since in this case 8,=~/2,

(7.51)

&ST=&i+X2) (7.53)

where o-~ is independent of the time. The index 1 of this
matrix indicates that it depends upon the field H~ but
not upon the field II2 and that it differs from the
matrix o-0 in (6.37), corresponding to thermal equi-
librium, except in the limiting case H~=O. The index 2
in x2 indicates, on the other hand, an additional de-
pendence upon the field H2 and, in particular, a pro-
portionality for small values of EI2. Since V& and hence
Vsr is, through (7.2) and (7.3), proportional to II2, it
is in this case permissible to neglect terms of the order
Varx2 ~

Substituting (7.53) in (7.24), one sees for m„&m, '
that the oB-diagonal elements of 0~ are of the order of
II'I/I f(m„)—f(m„')

I
or II'I/I&l and hence are

negligible in view of the conditions P.4) and (7.5) of
weak relaxation. It is thus permissible to represent a ~ by
a diagonal matrix of the form

(m„l a i I
m„') = a i(m„)8m„m, , (7.54)

which has to satisfy the condition

(m II s(~i) lm„) =0, (7.55)

obtained for m„=no„'. From the terms proportional to
H2, one obtains further, with P.24) and (7.54):

f2 ——— f(y,H, J, m—)'+—'J '(I,(I,+1)—m, ')]m, .
2A]

(7.52)

The relation of these formulas to the observed effect
of a strong field upon the structure of resonances will be
discussed below.

In order to obtain the desired signal 8 from (7.25),
it is necessary to solve the Eq. (7.24). In analogy to
(6.37), one can write

(I„)s I„cos8,—I„sin8, ,
——

(I„)s =I., sin8, +I„cos8„
(I„,)s I„„—— (7.49)

—(m. l x2lm. ')+&ff(m )—f(m. ')](m.
l xnlm. ')

dt —(m. l
I'8(x ) Im. ')

=ufo, (m„) o( m„')—]( m„ VI„lm, ') (7.56)

tan8, (m, ) =
a,—J„m]

(7.50)

As a check it may be observed that for II&=0 and
hence 8,=0, the result for f= fa+fi+ f2agrees with that
obtained in Sec. 6 if one assumes only two nuclei s and
t and replaces co&

—co, by 6|,. In the other limiting case
of a strong field Hi, satisfying y,H&))

I
6,—J„m, I, one

which result from the transformation operator (7.30).
It should be noted that according to (7.34), 8, depends
on m~ through

for the determination of x2.
The condition (7.55) represents a system of homo-

geneous linear equations for the determination of the.
quantities oi(m„). With the definition of I' s(ai), ob-
tained from replacing in (7.39) o sr by o.i, one obtains,
by summing (7.55) over m„

P(m„lI"s(oi) Im„) =Q(m„l I'(Sa—'oiSa) Im,). (7.57)

On the other hand, it can be seen froin (6.6) that
Pm„(m„ I

I' (o.) I m„) vanishes identically for any matrix a..
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(m Il's(m. 'm. ) lm. ), (7.66)
and

The sum of Eqs. (7.55) is therefore likewise identically as linear combinations of the quantities I'm„m, "'.One has
zero, i.e., they are not independent. A Qnite solution is then
uniquely determined by the condition of normalization

P ~i(m„) =1.
mr

Postulating at the same time

P (m„l x2 Im„) =0,

it is, therefore,
Q(m„ I ~sr lm, ) =1,
mr

(7.58)

P.59)

(7.60)

I'm m '= I'm, 'm, *=—(m, I

I' s(m«m«')
I
m„'), (7.67)

where the right side of (7.67) can indeed be shown to
be conjugate complex of the right side of (7.66).

The coefficients, defined through (7.65), can also be
used to write the Eq. (7.55) for the quantities ei(m„)
in the form

&(m lrs(m„'m ') lm )~i(m, ') =0. (7.68)
mr

which is indeed the condition of normalization for the
density matrix in view of the fact that the sum of its
diagonal elements does not change under the two suc-
cessive transformations T and 5.

With the normalized solution o.i(m„) of (7.55),
inserted on the right side of (7.56), the problem of
finding y2 is similar to that, encountered in solving Eq.
(3.2). It shall first be noted from (7.13), (7.16), and
(7.3) that

with
X(m, '+r„[Ii '"Im„') (7.69)

The last three equations become comparatively
simple if one uses the form (5.11) for the interaction
operator G. In analogy to Eqs. (5.13), (5.14), and
(5.15), one obtains with the definition (5.12) of the spin
operators, from (6.7):
Fm„m„«=P 4» «'(m„l Ii, '"I m„+r„)

Vs ———-,'H, LP, y„(m„+) $e'i~'+" &

p 61)
' "= Z '

I (f) t '(f+Z ) (f)

In analogy to the procedure followed in Sec. III, x2 will
diGer appreciably from zero only if 6 lies in the vicinity
of the difference f(m„)—f(m„') for two specific sets of
values ns„and m„'. The two matrix elements

and

X(ful Fi'"I f+Q„r„id„,u')

X(f+g„r,~„,u'[Fq '"I fu)df (7.70)

C'x i, '"=exp( —P„K„T„)C»'". (7.71)

(m Ix2[m ') and (m 'Ix&lm )

will in this case have an appreciable value while all
other matrix elements of x~ are negligible. Writing, in
analogy to Eqs. (3.4) and (3.5),

Vsing further (6.6) and the definition (6.18) of I's with
5, 5 ' replaced by 50, 50 ', one obtains from (7.65)

(m„ I

I' s(m„"m„'")
I
m„')

=p p p» '"{2 exp( —p, K«r ) (m« I (Ix '")s I
m«")

Aa) = 6+f(m, ') f(m,)—(7.62)
and

(m„'[x, [m„)=ze'~' (m, [x [m, ')=s*e '~' (7.63)
X(m "'I (I~"")slm ')—(m I (I~ '"I~"")slm")

X8m««««m«« (m« I (Ii «I—i «) s I
m)8m««m«" j«(7.72)

one has then from (7.56) with (7.61),

s=-', [ ~, (m,) —~,(m„')]H2e'"
X(m«'[P„y„(m„+)slm«)/(A~ —il"m, m,)

and the conjugate complex equation for s*.
In order to express the line width I'm„m„' in terms of

the relaxation coeScients I', it is convenient to write + (m, ' I (Ii, ""I&,"")s I m, ')—2 exp (—P „K T )
X(m„[ (Iy '")s[m„)(m„'I (Ii, '")s[m,')) (7.73)(m, [1's( sr) lm ')

where the transformation subscript refers to the trans-
formation 50. Using this expression one obtains from

(7 64) (7.66) and (7.67)

Im„m„'=pm„'m„=P P C'» "{(m„l(Iz '"Iz"")slm„)

(m„l I' s(m "m'")
I m, ') (m,"[O'ST I m, '").

(7.65)

and from (7.68) the equations

Z Z C'»."{(m,l (Iz-"I,.")slm,)~,(m„)

The coefficients (m„[I's(m„"m„"')lm„') on the right —exP( —Q„K„T„)Q(m„[(Ii, ")slm„')
side are thus obtained by replacing on the left side o-»
by a matrix where the element (m„"m„'") has the value 'I(I"")

I .) ( .'))=0 (774)
unity while all other matrix elements have the value
zero and they are, through (6.6) and (6.18), expressible for the determination of the quantities O.i(m„).
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These quantities being known and inserted in (7.64),
one obtains from (7.63) the nonvanishing elements of
the matrix y2. Since the matrix 0» is given through
(7.54), the matrix ~sr and the signal S are thus deter-
mined by Eqs. (7.53) and (7.25), respectively. Writing
the latter in the form

and using (7.18) one obtains for the corresponding

contributions,

Si= —i&uilzN P oi(m, )(m IX~ y. (m+)Bl m )~ '""
mr

(7.76)
S= Si+Sz, (7.75) and

(m„~ P,, y„(m„+)s
~

m„') (m„'
~ P „y„(m„+)s

~
m„)

Sz ————H.[ai(m„)—0 i(m„')]Izzz (2&vi —a)z) e*

2 iTm„'m„

f
(m„'JP, y„(m„+),z fm,) f'

A(o+zTm„m„'
&
—

f [~zi+zzl I (7 77)

tane. =q,H,/a„

A,,= [6,'-+y,zHiz]'.

(7.79)

(7.80)

l''or the same reason, from (7.44) and (7.48) one obtains

fo fz ——0 and henc——e f= fi or, from (7.45) and (7.80),

f(m, ) = —A,m, = —[~,'-+~.'H, ']-:m, . (7.81)

In applying formula (7.77) to this case it is important
to note that, contrary to the case of absence of the
tield Hi, (m, '~ (m,+)8~ m, ) is different from zero also for
quantum numbers other than m, '= ~, m, = —~». In fact,
one has from (7.49), with ( m+)z (I„)s+,——i(I„,)s, the
matrix elements

an(.l

(+-', ~
(m.,+),q

~

~-,')=+-,' sin8„(7.82)

(~-', ~
(m,+)s

~

W-,')=&-', (1~cos9,), (7.83)

which are all diferent from zero for finite values of H»

and hence of 0$ The resonance conditions of the ex-

In the absence of the field H» one has, according
to (7.30) and (7.31), SO=1. The transformation sub-

script in (7.76) and (7.77) can therefore be omitted
and (m, )8 can be replaced by m„+ with matrix ele-

ments (m, '~m„+~m„) which differ from zero only for
m„'=m, +1. Si as well as the first term in the curly
bracket of (7.77) vanish therefore in this case, and there

appears only a signal with the frequency ~2 of the field

H~. For finite values of H», there exists however not
only the additional part S» of the signal with frequency
co», but in general also a contribution to S2 with the
combination frequency 2'» —co2.

The results obtained above will first be illustrated in
the very simplest case where the spin system consists
only of a single nucleus s with spin 1/2. The absence of
another nucleus $ is for our purposes equivalent to the
assignment I~=0 and hence vs&=0, The dependence- of
$, on m& through (7.50), and according to (7.35), that
of 3, through

.4, (m, ) = [(6,—J„zzz,)z+yazHi']*, (7.78)

disa, ppears therefore in this case so that one has here

pression (7.77) are obtained by letting 6~=0 so that
according to (7.62) and (7.18), the resonance values of

cv& for given +» are dedned by

~,=~,+a =~,yf(m, ) f(m, ')— (7.84)

Excluding the case m, =m, ' which occurs only if

~» ——(d2, i.e., if the two fields H» and H2 are indistinguish-

able, (7.84) leads according to (7.81) to the two possible
resonance values:

for

~z+=~i+[& '+v 'HP]*'

1
RS = —1S$ $

(7.85)

for

(uz =(ui —[6 '+y 'H ']'

m$ m$2 ~

(7.86)

cvz+ (oz = 2[6,z+y, 'Hiz—]'*, (7.87)

it is thus possible for a known deviation 6, of the

I.armor frequency ~, from co» to calibrate the value of

p,H» and hence of H» purely in terms of measure+1

For A, =co,—~»&0, one obtains in the limit H»=0:
co&+=(d„~2 =2'» —co, . While the first value expresses
the obvious fact that resonance occurs in this case at
the frequency co„ there exists no physical reason for the
resonance to occur at a second frequency. The apparent
paradox disappears, however, by considering that one

has in this limit cos8,= i so that for nz, = —m, '= ~~, the
matrix element (m, '~ (m,+)s ~m, ) vanishes according to
(7.83), leaving in the signal, given by (7.77), a finite

amplitude for the proper resonance frequency ~2——co,

alone. The same conclusion is reached for 6, &0, with

the role of co2+ and co2
—inverted and with the fact that

one has in this case for cosg, = —i.
f.'or finite values of H» there occur, however, finite

resonance signals of frequency ~& both for co2=cv&+ and

By measuring the difference of these two

resonance frequencies and noting from (7.85) and (7.86)
the relation
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frequencies. "According to (7.77) there occurs at each
of the two resonances co&=~&+ and M2=o, 2 not only a
resonance signal of frequency ~2 but also one of fre-
quency 2'&—co2 which, in principle, can equally well be
used for the calibration of H~.

In order to calculate the intensity of the signals it is
necessary, according to (7.77), to know not only the
matrix elements of (m,+)s but also the quantities
oi(m, .). In the case of a single spin I,=st, the only
possible relaxation mechanism is that of external dipole
relaxation, represented by the first term of (5.19). In
analogy to (5.26), the coefFicients C~&,""have here the
form

(7.82) for the diagonal elements of (m,+)8, one obtains

T2, cos8, sin8,KS

St—— i—cuihrsy, —— e '"", (7.92)
4 Ts, cos'8, +Tr, sin'8,

or, with (7.79)
(D,T„)(y,HiTs. )

gI = —j~~QNP, —=
4 (&,&s,)'+(v.»)'Ti.Ts.

which is indeed the dispersion-signal obtained from the
phenomenological equations for (yHi)'TrTs&)1 and with

the equilibrium polarization

7's —@ 7S
SS S (7.88) Ate —,'key,——x,= (np, '/kT)Ho.

1 1
+ 0

T2s 2Tls2T1.
T2s coses

Corresponding to (5.40), they can be expressed through Likewise, using (7.91) and (7.83) to obtain 8& from
the relaxation times, and one has for x, =hei, /kT«1, (7.77), and defining the intensities in analogy to (5.10)

by integrating in the vicinity of each resonance over
iico, one obtains for the signals with frequency cps and
(2(ei—ur):

Equation (7.74) takes„:then the form

P c,"{(m,l(l,-"I,").lm, ,)o,(m, )
7 s.=-—&

—exp( —K r )P(m I (I ")slm ')
ms'

&& (m, '
j (I;)8 l

m. ,)o &(m, ') }= 0, (7.90)

with m, =+-,' for the determination of the two quan-
tities oi(+-, ). Evaluating the matrix elements in this
equation according to the transformation equations
(7.49) with I,e= I.„ I,+' =I„&iI„„expanding in

powers of I(., with the neglect of quadratic and higher
terms, and inserting the values (7.89) in (7.90), one
can see that (7.90) has the solution

Tgs cosmos
'

~i(a-', ) =-,' 1a—,(7.91)
2 T28 COS 0~+ Ti~ Slil (),

which satisfies the condition of normalization

~r (s)+~i(—s) = 1.

It shall be noted, as a check, that for H~=O, i.e., 0,=0,
the expressions (7.91) approach the proper equilibrium
values -', (1&-,'x,), obtained from the Boltzmann factors
exp(x, m, ) for small values of x, . For finite values. of Hi
there appear, however, deviations from the populations
at equilibrium and in the limit of large values of H~,
i.e., for 8,=7r/2, one obtains oi(-', )=oi(—-,')=,'-, i.e.,
an equalization of the population due to saturation.

Inserting (7.91) in (7.76) and using the expression

'4 The application of this procedure is shorn by W. Anderson
LPhys. Rev. 102, 151 (1956)7. Except for the minor variation to
provide frequencies co~, other than ~I, by a dc 6eld iiiodulation
which is equivalent to a frequency modulation, this fact has been
independently remark. ed and applied to crystals by A, G. Red6eld,
Phys. Rev. 98, 1787 (1955).

Int (ops) = W—Hskex, y,so~s—
16 Ts, cos'8,+Ti, sin'8,

X (1+cos8,)' (7.93)

Int (2o~r —o~s) =a—H shnx, y, '(2e~i —(vs)
16

T2s cosos
X— —sin'8. , (7.94)

Tee cos 88+ Tip Sill Og

respectively, where the upper sign refers to the choice

m, '=~, es, = —
~ and the resonance frequency co~+ of

(7.85), the lower sign to m, ,'= ——',, m, =st and the
resonance frequency o» of (7.86). It is seen that for
Hi=0 and 0.=0, only the intensity (7.93) with the
choice of the upper sign remains different from zero
and gives in this case the proper behavior of a resonance
at cu2=co~+=~, in a weak field H2. All four intensities
are further seen to vanish for 6,,=0, i.e., for 9,=m/2
so that, according to (7.87) the corresponding value
o~s+—e~s ——2y,

l
Hi

l
for the calibration of Hi can, experi-

mentally, be reached only by extrapolation.
Finally, the line width of the di8erent resonances

appears here from (7.73) in the form

+1.
r „..= P 4,"{(m,l(1;"I:),lm.)

rs=-1

+ (m,.' l (I;"I,"')s l
m. ') 2exp (—x, r,,)—

&&(m, l (I, ") lm. ,)(m, 'l (I,") lm, ')}. (7.95)

Inserting the values (7.89) and neglecting x,«1, one
obtains thus the common value

1 1tr1 1y
I";, , =I' „„= ——

l

———
l

sin'(), . (7.96)
T2s ~ T20 Tls~
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The first term in the curly bracket of (7.77) is therefore
absent and the signal A2, which represents here the
resonances of the nucleus t, can thus be written in the
for m

|t/

S~ —— I—I~-[o i(m, m, ) —a.l(m, ', m, +1)liny, '
2

I (m. 'I e""""'"'lm ) I'I (ml+1lml+lml) I"
X

hcu+iT'm„m„'
Xe—i(ca2 &+b2l (7 ]03)

In the absence of the 6eld H», one has 0,=0 and hence
9=0. The first expression in the numerator of (7.103)
has therefore the form bm, m, ', i.e., the resonances of
nucleus t are unaccompanied by transitions of the
nucleus s. For finite values of H», this is however not
the case and a resonance of the nucleus t requires for
its specification not only the corresponding transition
ml —~md+1 of nucleus t, but also the simultaneous
transition m,—&m,

' of nucleus s, leading thus to a larger
number of resonance lines than is observed. in the
absence of the Geld H»."The quantities

I(m. 'le"&- "lm)l =W...~ (7.104)

in Eq. (7.103) represent the probabilities that the spin
s with component m, in the z-direction has the com-
ponent m, in a direction obtained from rotating the
s-axis by the angle 8(m&). They are given by the well-
known formula of Alajorana. " In the special case of
I,=—.,', they have the values

W;;=W', ;=cos'I 0(m, )/2],
(7.105)W. ;=W; = sin'Le (m )/2g.

The evaluation of the intensities requires further a
knowledge of the values o.l(m„), to be obtained from
the solution of (7.68) or (7.74). This solution will

depend upon the type of relaxation mechanism which
is assumed and will in general be rather complicated.
It will be assumed, for simplicity, that one is dealing
again with a spin 1/2 for both nuclei s and t and with
the same independent dipole relaxation underlying the
discussions in Secs. V and VI. Introducing the further
simplification T», ——T2, and with relations, analogous to
(7.89), for the nucleus t, assuming likewise Til ——Tl~,
one finds, up to linear terms in K, and Kg.

From the principal term f& of f, given by (7.44), it is
seen that the resonances under consideration occur
only if

ml'= m(+1, (7.98)

without, however, any restriction of the quantum
numbers m„nz, '. Since the matrix of ns,+ is diagonal
lii the qllailtlllll number ml, tile suill Q p 'ypmp ill

Eq. (7.77) can, in view of (7.98), be replaced by
the single term y, (m,+)s=y,5om, +So ' Using .the form

(7.30) of 50, one finds

(m, .'
I (m,+) s I m„) = (m, ', m, +1 I

e""'m,+
Xe "' Im„m,). (7.99)

Since 0, is diagonal in m&, this can also be written in

the form

(m, 'I (m,+)slm.,.) = (m, 'le "&"'ll" lm, )
X (m,+1 I m,+

I
m, ), (7.100)

Contrary to the case H»=0 with 8,=0, the. line widths
depend thus not only upon the transverse but also upon
the longitudinal relaxation time of the nucleus s, so
that their. measurement in its dependence upon H»
would allow the determination of both of T~, and T», .

The results obtained above could equally well have
been derived from the phenomenological equations
since they have been shown in I to be equivalent to the
Boltzmann equation in the case of a single spin of
value 1/2. However, the treatment presented here has
the advantage of a considerable analogy with that of
more complicated cases which require necessarily the
use of the Boltzmann equation. Such a case is met in

going back to a spin system of two coupled spins s and t.
With the frequency co» of the held H» in the vicinity of
the I.armor frequency ~„one obtains here appreciable
resonance signals, due to the field H&, not only if co&

is likewise in the vicinity of cv, but also if it is near the
I.armor frequency ~& of the other nucleus t. Kith
I1,»y, IIi, corresponding to the condition (7.5), the
former resonances have in this case negligible intensities
and only the latter ones shall therefore here to be con-
sidered. With &v2=lo&, one has from (7.17) and (7.18)
6—6& and the resonance condition hen=0 requires
therefore, according to (7.62),

f(m„)—f(m, ')—a, . (7 97).

where the abbreviation

0(m, )=8,(m +1)—8, (m, ) (7.101)

ha, s been introduced with the dependence of 0, and
hence of 8 upon m& given by (7.50). While

(m, +1lm,+ m, ),

and hence the matrix element (7.100) is finite, one has

(ml
I
m,+Im, +1)=0 and hence

(m, . I (m,+), lm ') = (m I
e *""'"lm, ')

X(m, lm, +Im, +1)=0. (7.102)

~i(m, m,)
1 (1+p) cosa~+ p cos9+ cos(8+—8—

)
1+K m, B &gKg )

4 (1+p)' —p' cos'(8+ —0 )

(7.106)"This fact has also been pointed out by A. L. Bloom and J. Q.
Shooiery /Phys. Rev. 97, 1261 (1955lg who have independently
treated the case of irradiation with two frequencies. In the absence
of a rigorous theory they were not able, however, to give exact
expressions for the intensities in regard to their dependence on
changes of population, expressed by the square bracket in (7.103).

"See for example I". Bloch and I. I. Rabi, Revs. Modern Phys.
17, 237 (1945}.
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with the upper or 1ower sign for no&= ~ ~ and where the
abbreviations

(7.107)p= Tg,,/2T)„

For H~ ——0, 8+=8 =0, (7.106) reduces to

~, (m, m, ) = —,'L1+a,m. y~(m, &,

(7.109)

(7.108)

have been used. According to (7.50), the last equation
is equivalent to

y,Bg
tan8+ =

~s~g~st

which, for ~„~&4&1, represents indeed the equilibrium
population of the state m„vs~.

The expression (7.106) can first be used to calculate
the signal from the nucleus s given by the part S~ oI'

Eq. (7.76). Since the matrix, representing (m&+)s has
no diagonal elements, one has

Sg ———i(oghey, P o.g(m, mg)(m, m, ! (m,+)8!m.m, )e
—'""

msmg

(7.110)

or, with (7.106) and with the diagonal elenMnts of

(m,+)s, obtained from (7.49) and (7.108),

z, 2(1+p) (sin28++sin28 )+P sin(8++8 ) cos(8+—8 )
Sy = —icuykey, — g

—2' 1 f

(1+P)'—P' cos'(8+ —W)
(7.111)

Inserting further (7.106) in (7.103) with m~ ———
~~ and

using the expressions (7.105), where, according to
(7.101) and (7.108), 8(m~) =8(—2) =8+—8, one obtains
the desired expression $2 for the signal from the nucleus
t. While vs&' ———,

' and m&= ——,
' for all resonances, m, and

ns, ' can independently assume the values &2 so that

one is led to four separate resonance lines. Their
int;ensities will accordingly be designated byInt(m„m, ').
Under the same assumptions about the relaxation
mechanism which led to (7.106), one obtains also the
corresponding line widths, to be denoted by I'(m„m, ')
The result for both is given by the following formulas:

cosa+ —cos8 (8+—8 q
Int(&g) &g) —47IH257$+g Q)2 Kg+ !cos'!

2 1+P/1+cos(8+ —8 )j ( 2 j (7.112)

I'(+2, &-,') = +—(1—cos8+ cos8 )+—— —(1+cos8+ cos8 —2 sin8+ sin8 ),
T2$ 2 T2s 4Tg,

cos8++cos8 (8+—8 i
Int(+2& Wk) = g'ICH2k s'rg Ms Kg+'— sin

~
l,

2 1+PI 1—cos(8+—8 )g E 2

1 1
I'(&2, W-', )= +- — (1+cos8+cos8 )+ (1—cos8+cos8 +2sin8+sin8 ).

T2g 2T2S 4Tg,

(7.113)

(7.114)

(7.115)

While the simplifying assumptions T~, ——T2, and T~&——T2&

were made in deriving the expressions (7.112) and
(7.114) for the intensities, the distinction between Tq
and T2 for the nuclei s and t has been left in the expres-
sions (7.113) and (7.115) for the line widths. Contrary
to the case of vanishing 6eld Hj, they show that for
6nite values of H~ and hence of 0+ and 8—,the line widths
for the resonances of the nucleus t depend not only
upon the longitudinal but also upon the transverse
relaxation time of the nucleus s.

To complete the results for the resonances of the
nucleus t, the corresponding resonance frequencies ~~
are obtained by letting 6~=0 in (7.62) so that, in
analogy to (7.84), they are given by

~,=~,+f(m„) f(m, '). —

With ms& and m~' having the fixed values ——,
' and ~

respectively, one obtains from the principal term fo of
Eq. (7,44) the contribution D, =&a,—co~. The other Int(&-,', &~) =-„'mH2kn~&pg c09. (7.117)

terms f~ and f2 depend both on m, and m, so that,
up to the second order in H~ and J,~, one obtains for
the resonance frequencies

( 2mm, ') =co,+fg(m„,') fg(m,—';2—)—
+f2(m„——,') —f2(m, ', —,'), (7.116)

where, in evaluating the second-last and the last term
from (7.48),8, is to be replaced by 8 and 8+, respectively.

While the dependence of the intensities, line widths,
and resonance frequencies upon the 6eld H~ is rather
complicated, these expressions become simple in the
limiting cases of very small and very large values of B&.
Since in both these cases 8+=8, the intensities (7.114)
of the resonances for m, /m, ' vanish and there appear
only two resonances, corresponding to m, =m, '=&-';.

According to (7.112), their intensities have in both
limiting cases the common value
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For Hr-—-0, 0+=0 =0, one obtains from (7.113) the
common value

reached for
Hr' L+ +t/7 vt]j, (7.122)

(7.118) yielding the minimum separation

(S~,),„;„=2I„,$~„~,/~, ~,j'. (7.123)

for the line width which checks the corresponding
results of Secs. 5 and 6, and the two separate resonance
frequencies are here given by

1 ~st
ops(~5~ + s) =ott~kI«+

4a,
(7.119)

In the limit of strong fields, one has, on the other
8+=8 =~/2 and one obtains hence, besides the value
(7.117) for the intensities, the common value

(7.120)

for the line width and from (7.116), (7.45), and (7.48)
the two resonance frequencies

~s(+s, ~k) =~ — I:~t'Hr'+sI t'j
2d, g

( &8 VtHr)
+ II t (7»1)

Ey,B»

'r See %V. A. Anderson, Phys. Rev. 102, 15i (1956).

where higher inverse powers in H» than the first have
been neglected. It is seen that, except for second order
terms, proportional to 1/5t —1/(cat —a&,), the separation
of the two resonance frequencies disappears, for large
values of Hr, proportional to 1/Hr, and a strong effect
of this type has indeed been observed. " Besides pro-
ducing a shift quadratic in H», the second order terms
have, however, the effect of leaving a separation which
is linear in Hr. By minimizing the last term in (7.121),
it is seen that the smallest value of the separation is

Since it is assumed in (7.121) that. ytHr«ht, it is neces-
sary, for the validity of the last two equations, that
(pter, /y, ht)~&&1. One deals therefore necessarily with a
separation Rv2&(J, &, i.e., with a considerable reduction
of the separation bco2= J,&, obtained for Il» ——0.

Because of the fact that strong rf fields of a suitably
chosen frequency are able to reduce the separation of
certain resonance lines, this method represents a useful
tool to identify the nuclei which cause a structure in
the resonance of other nuclei. The above discussion
shows that further information about the interaction
of nuclear moments in molecules may be gained by the
observation of the accompanying effects upon line
widths and intensities.

VIII. CONCLUSIONS

The Boltzmann equation (2.34) covers a wide range of
phenomena, arising from the combined effect of external
fields and relaxation. While it serves as a general basis
for the treatment of these phenomena, special attention
has been given in this paper to features which a,rise in
the nuclear resonance spectra of liquids. Many of these
features can be and have been foreseen in a qualitative
manner but it seemed worthwhile to demonstrate
through specific examples their methodic and quanti-
tative derivation. By similar methods, a considerable
extension of the results to many actually existing cases
could be achieved; for molecules in a liquid, such an
extension calls particularly for the inclusion of internal
relaxation. By adapting the theory to the circumstances
of speci6c measurements and by comparison with the
experimental results, it should prove of value for ob-
taining a more quantitative insight into the interplay
of spin coupling and relaxation.


