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Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory*
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(Received November 17, 1955)

The most general form of the Hamiltonian of an electron or hole in a semiconductor such as Si or Ge,
in the presence of an external homogeneous magnetic Geld, is given. Two methods of obtaining the corre-
sponding energy levels are discussed. The first should yield very accurate values for the magnetic Geld in
the (111)direction for either Si or Ge. The second is a perturbation method and is expected to give good
results only for Ge.

INTRODUCTION

''N collaboration with W. Kohn, the author has
~ - recently' treated the problem of cyclotron resonance
for degenerate bands in semiconductors such as Ge and
Si. In particular, it was predicted that for such bands
there would be characteristic quantum deviations from
the usual classical result at sufFiciently low tempera-
tures. These e8ects now seem to have been observed
by Fletcher' for Ge. Working at 1.3'K to 4.2'K, and at
very low power levels, he found that in addition to the
usual "classical" absorption frequencies for light and
heavy holes placed in an external magnetic field, there
were also new absorption lines which increased in
intensity as the temperature was lowered. This is just
what one would expect on the basis of the quantum
theory, since lowering the temperature populates the
lower energy levels of the system more abundantly,
and these are the ones that show marked deviations
from the classical theory.

It is the purpose of the present paper to set up in
the most general manner possible the theory of the
energy levels in a magnetic field for holes —which
occupy a degenerate band —in a semiconductor such as
Ge or Si. This is done in Sec. I. In Sec. II this general
theory will be specialized, and the techniques available
for actually solving the resultant equations will be
given.

No numerical results or detailed comparison with
experiment mill be given in this paper. Such comparison
will be the subject of .a later paper. It may be said,
however, that although the numerical work is not yet
complete, there are already very strong indications
that many of Fletcher's new lines are indeed those
predicted by the theory given here.

I. GENERAL THEORY

(1) We shall first consider, for illustrative purposes,
the case in which there is no spin-orbit coupling, and
indeed, all eGects of electron spin are neglected. In this

*This work was performed in part at the University of Michigan
and in part at the Bell Telephone Laboratories, Murray Hill,¹wJersey.' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
See also W. Kohn and J. M. Luttinger, Phys. Rev. 96, 529 (1954).
We shall refer to the former paper as LK from now on.' Fletcher, Yager, and Merritt, Phys Rev 100, 74. '7 (19.55)..

case the energy levels are determined by Eq. (IV.14)
of LK. The result may be stated as follows: consider an
electron (of charge —e) in an external homogeneous
magnetic Geld of magnitude H, the direction of which
we shall call the "3" direction. The "1" and "2"
directions will be any two perpendicular to each other
and to H, which form a right-handed coordinate
system with H. Let the vector potential representing
H be A. We shall always choose for A the "Landau"
gauge

Ag ———Hx2, A2 ——A3 ——0.

The energy levels of the electron, in this external field,
are then given by solving the coupled equations'

8 ) f' 8
&( p.+-A

i~ p&+-As i F,, (r)=ZF, (r). (2)
c ) ( c )

In (2) the repeated indices n and P are summed over
x, y, s. The summation over j' is a summation over the
number of degenerate states for the band edge in
question, which would be three for Ge (say). The
quantity P is just the usual momentum operator
(1/i)(B/c)x ), and the Ii, are related to the wave
function of the system by the equation

(3)

the P; being the degenerate solutions of the unperturbed
problem. Finally the quantities D,; &, are a set of
numbers defined by

(4)

where the summation over i is over all those states of
the unperturbed problem not belonging to the degen-
erate set j, 6p is the energy of the degenerate set, e; the
energy of the ith unperturbed state, and 6nally the
p;;o are just the momentum matrix elements between
the different bands, evaluated at the degeneracy point.

In deriving (2), LK assumed that the symmetry
property D;; t'=D;, t'~ was valid. By inspection of (4)
one can see that there is no general reason for this to be
so, and it will be true only in very special circumstances.

3 Units are chosen so that A= 1.
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The only general symmetry which is valid is (D;; ~)e

=D;,&, which follows at once from the Hermiticity
of the momentum matrix elements p;; . Nonetheless,
Eq. (2) is still correct, as may very easily be seen by
carrying through the derivation just as in LK, but
without the aforementioned symmetry. 4

From this result, it follows that the cyclotron reso-
nance equations contain extra constants which are not
included in either the expression for the energy surfaces
or in the impurity state problem. To see this we proceed
as follows. Define

k =p +(%)A .

If there is no external magnetic field the diferent
components of k commute. Then in (2) only the part
of D;; e symmetric in n and P will contribute, the
antisymmetric part giving nothing since k kp is sym-
metric. Thus the expression for the energy as a func-
tion of k is a function only of the "symmetric
constants" D,, e+D,; ~~. If the external magnetic

field is present, however, then the diGerent components
of k do riot commute. In fact, we have

(k.,k„)= (1/i) (%)H,
the other commutators being obtained by cyclic permu-
tation of the indices. Therefore the "antisymmetric
constants" D;,' —D,; &~ also contribute to the energy
levels in a magnetic field.

Now for a band like the valence band of Ge or Si,
it is well known that the symmetrical constants may
all be expressed in terms of three independent ones.
The explicit representation is given by (V.9) and (V.10)
of LK, for example. At k=0 there are three real
degenerate functions which transform like x, y, s under
the operations of the cubic point group. Denote these
functions by X, I', Z, respectively. Defining a matrix
D by its elements

D;; =D;; &kkp, (7)

the symmetry of the diamond lattice requires that D
have the form

Ak.'+B(k„'+k,') Ck,k„Ck,k.
Ck,k„Ak„'+B(k,'+k, ') Ck„k,
Ck.k, Ck„k, Ak.s+B(k s+kvs)

Here A, 8, and C are the three real constants:

~ =Dxx*',
&=Dxx"",
C=Dxr*"+Dxr"'.

(9)

This result was obtained by ignoring the noncommu-
tivity the components of k in the presence of a magnetic
field. Now the question arises: how many new inde-
pendent constants are brought in by the antisymmetric
parts of the D;; &, and what is the explicit represen-
tation of the operator D in terms of them) Since all
the D;; P, are real, there will be no correction to the
diagonal elements of D. Let us take a typical oG-
diagonal term:

Dxr =Dxr*"k~ks+Dxr"*kskg, (10)

all other constants vanishing by symmetry. Defining a
new "antisymmetric constant" E by

D —D(&)+D(&l (16)

D&e& is just given by (8) with k,ke~(k ke}. For D&"~

we obtain

eE 0
D&~) =—— iII,

c 2 —i'
—ZH.

0
iH

iIIy
ZH+ s

0
(17)

Both the expression for D(~& and that for D(8& become
much more transparent if we express all matrices in
terms of "spin" matrices corresponding to spin unity.
Let us define the three matrices

The same analysis for D&x gives

Drx= C(k,k„}—(K/2s) (%)H„
and the results for the other oG-diagonal components
may be written down by cyclic permutation. Thus there
is one extra constant E which enters the energy-level
formulas. D then consists of two parts

&=Dxr "—Dxi ",
we may write (10) as

Dxr =C{k,k„}+-',K(k„k„), (12)

0
I,= 0

0

0 0
0 —i

0

where we have employed the notation

(k,k„}=-', (k.k„+k„k,)
for the symmetrized product. Using (6), (12) becomes

Dxr =C(k k„}+(K/2i) (e/c)H, . (14)

0 —i
i 0
0 0

z

0
0

0
0
0

' Thus, though the final equation (IV.14) is generally valid, the
preliminary equation (IV.13) is not. These matrices have the commutation rules of angular
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2 0 0
I,'+ I„'+I,'= 0 2 0

0 0 2

so that they correspond to unit spin. 5

In terms of the matrices just defined we have

(20)

D(8l —Ak2 (A B) (k 2I 2+k 2I 2+k 2I 2)

—2C({k,k„}{IJ„}+{k„k.}{I„I.}
+{k,k,}{I,I,}), (21)

D&~&= (e/2c)K(I, H,+I„H„+I,H, ) = (e/2c)KI H. (22)

It is possible to give the extra term D&~& a simple
physical interpretation, in the limit where the binding
of the electrons is very tight. In that case the "effective
masses" A, 8, C must be very small, and the electron
is essentially always bound to one ion or the other.
Thus we are finding how the degenerate levels of an
electron bound to an atom are split in the presence of
a magnetic field. If p is the Bohr magneton, then this
splitting is just given by

pI H= (e/zlc)I H, (23)

which is exactly of the form (22). To check this inter-
pretation, we have to show that E, as calculated from
(11) with the use of tight binding wave functions for
k=0 has the value 1/zzz. A straightforward calculation
reveals this to be true.

(2) The problem of finding energy levels in a mag-
netic field is completely described, for no spin-orbit
coupling, by the "Hamiltonian" (16), and (21) and
(22). Before we go on to the spin-orbit case, which is
the practical one, it is very convenient to obtain these
results by another method of analysis.

The Hamiltonian D must be a three-by-three matrix,
every element of which is a quadratic function of the
components of k. Now let us consider the matrices
I, I„,I, and their products. The nine matrices 1, I„
I„,I„I,', I„', {I,l„},{I„I,},{I,I,}are easily seen to
be linearly independent, and, therefore, any arbitrary
3&3 matrix may be expressed in terms of them.
(Products of more than two I's can occur, but since the
I's are 3&(3 matrices, any cubic expression may clearly
be reduced to lower orders, e.g., I,'=I„etc.) Now,
further, we can allow the I„I„,I, to transform (if we
make a coordinate transformation) just like an axial
vector, 6 since the I's are angular momentum matrices.
That is, whenever we transform coordinate systems we

z See, for example, L. L Schi8, Qzzazztzzzzz Meehazzzcs (McGraw
Hill Book Company, New York, I949), p. 144. The representation
chosen there difI'ers from ours.

6 If we let them transform like an ordinary vector, they would
all change sign under an inversion, which would violate the
commutation rules. Therefore, a canonical transformation cannot
change the sign of all the I's.

momentum, i.e.,

(I„I„)=zI„(I„,I,)=zI„(I„I,)=zI„, (19)

and also satisfy

transform I as well as k . This just corresponds to a
numerical canonical transformation on D, and cannot
change any of its characteristic values. We now require
that, expressed in terms of the I and the k, the
Hamiltonian D should be invariant under the operations
of the cubic group. Clearly this will insure that the
Hamiltonian will give us results which transform cor-
rectly with respect to the transformations of the cubic
point group, which is the symmetry group of k.

Now k transforms like an ordinary vector and,
therefore (see Appendix A), like the representation Ti
of the cubic group. Since I transforms like an axial
vector, it belongs to the representation Tq of the cubic
group. Let us classify the irreducible representations
which may be constructed with the I .

(a) The zeroth power of I contains only the unit
matrix. Therefore, it only contains the identity or A&

representation.
(b) The first powers of I are just the irreducible

representation T2.
(c) The second powers of I (that is the reduction of

I Is) contains the representation

T2X T2 A i+E+ Ti——+Tz, (24)

which (see Appendix A again) may be decomposed
into a symmetric part and an antisymmetric part, i.e.,

(T2X T2) S Al+E+Tl) (T2X Tz)A= T2. (25)

The antisymmetric part just consists of terms like
I Ip —IpI, which may be reduced by means of the
commutation rules to the vector I again, so this is
nothing new. For the symmetric part one easily sees
the quantities belonging to A&, E, and T& are, respec-
tively,

A i. I '+I '+I '= I2= 2,

E I'—I' I'—I'
Ti: {I&.} {I.I } {I*I*}.

That is, the A~ is just proportional to the unit matrix
and gives us nothing new. Thus, out of the I we can
construct four independent irreducible representations,
one belonging to each of A~, E, T~, T2.

Consider on the other hand the k . Since the Hamil-
tonian must depend on k quadratically, we ask what
irreducible representations are contained in T~)(T~.

TiX Ti=A i+E+Ti+ T2, (26)

(T XTi)z3=A +E+T,, (27)

(T,XT,)& ——T,.

Therefore, we have 4 independent irreducible represen-
tations, one belonging to each of A~, E, T~, T2. Com-
bining this with our result for the I's, we see that there
are at most 4 independent invariants made of their
products. That is, we must construct out of the I's
and k s quantities which are invariant, i.e., which
belong to A&. Only the product of two identical irre-
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ducible representations can contain the identity repre-
sentation, as may be easily verihed for this particular
group, from the direct products given in Appendix A.
It is very easy to write these four invariants explicitly.
From the symmetrical part of k products we have the
three invariants

(k„,k,)I,+ (k„k,)I„+(k„k„)I,.
Using (6) we see that (30) is equivalent to

H,I,+H„Iy+H,I..

(3o)

(31)

Therefore, the most general Hamiltonian possible is
given by

D =aik2+n2(kg2I, 2+k„'I„'+kPI,2)

+n2(f k,k„)fI,I„}+f k„k,}fI„I,}+{k,k,){I,I,))
+n4(H+, +H„I„+H,I,). (32)

This is clearly identical with (21) and (22), by suitable
choice of the n;.7 The advantage of this method over
the original one is that it can be generalized almost
word for word to the case where spin-orbit coupling of
arbitrary strength is present.

(3) If spin-orbit coupling is present, the original
sixfold degenerate level (the extra factor of two coming
from spin) breaks up into a fourfold and a twofold
degenerate one. It is generally believed that the fourfold
degenerate level lies higher and hence is the important
one for the cyclotron resonance experiments at low
temperatures. We shall deal with the fourfold case
here. The result for the twofold case is given in Ap-
pendix B. It may in fact prove possible by suitable
external excitation to make observations on the latter
case, though there is no evidence that this has been
done as yet.

Since the band edge is fourfold degenerate, the
Hamiltonian D will now be four by four. We now
introduce any three 4X4 matrices, J„J„,J„which
satisfy the commutation rules of angular momentum,
l.e.)

and
(J,J2) =iJ, etc.

J,'+J '+Jg2 ———,
' (-,'+1)= 15/4.

(33)

(34)

That is, these are the angular momentum matrices for
a state with spin ~3. It is easily seen that the following
16 matrices are linearly independent:

~ That the a; are real follows from the requirement that the
Hamiltonian be Hermiti@n,

k '+k„'+k,'= k',

k 'I 2+k„2I„2+k,2I,2, (29)

{k,k„}{I,I„)+{k„k,){I„I,}+f k,k,) {I,I,),
while from the antisymmetrical products we have the
single invariant

V fk„k,)+V2{k,k,}+V,fk,k,}
and

J,'H, +J„'H„+J,'H, .

(36)

(37)

Thus there would seem to be in general six constants
necessary to describe the Hamiltonian for the spin-orbit
case. However, an investigation of the time-reversal
properties of (36) shows that this cannot occur. In the
case where there is no magnetic field present, the
Hamiltonian of the system certainly must be invariant
under the operation of time-reversal, since the original
Hamiltonian has this invariance property. Now time-
reversal must simply change the J into —J . This is
true because the J are the matrix representations of
the orbital angular momentum operator I. for a state
with j=2. But I. is an odd operator (it contains the
velocity or momentum linearly) and therefore J is
odd. If there is no magnetic field, the terms like (29)
and (36) still occur, while (31) and (37) do not. All
the invariants in (29) contain J an even number of
times, so they are allowed by time-reversal. The
invariant (36), on the other hand contains J three
times; it therefore changes sign under time-reversal,
and is not allowed. Thus the most general Hamiltonian
for the spin-orbit case is

D P k2+P (k 2J 2+k 2J 2+k 2J 2)

+P2(fk,k„){J J„}+{k„k.){J„J,}
+{k,k,){J,J,))+P4(H.J +H„J„+H,J,)

+Py(H„J,2+H„J„'+H,J,'). (38)

1, J., J„,J., J,', J„', {J.J„), fJ„J.), fJ.J.),
f(J2' J'—)J.)=V—* {(J*' J'—)Jw)

=—V„, {(J '—J„')J.)—=V„(35)
J ', J„', J',', J.J„J.+J,J„J„
and, therefore, any arbitrary 4)&4 matrix may be
expanded in terms'of them.

Now all the results we have derived for the no
spin-orbit case apply equally well to the spin-orbit case.
J transforms as T2 for the same reason that I did.
Thus the invariants (29) and (31) are all still possible,
with the simple replacement of I —+J . To see whether
anything new arises, we must then investigate whether
any invariants can be constructed out of the cubic
expressions occurring in (35). It is very easy to see by
calculating characters that

V, V„, V. belong to T~,

J,', J„~, J,' belong to T2,

J,J„J.+J,J„J,belongs to A2.

Since A& occurs nowhere in the reduction of k kp we
have at once that this last term cannot occur, since we
cannot form an invariant with it. In the k kp decompo-
sition only fk„k,}, {k,k,), fk,k„} transform like Ti,
and only (k„,k,), (k„k,), (k„k„) or H„H„, H„ trans-
form like T2. Therefore we get only two new invariants:
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That is, five constants are necessary to describe the
energy levels. It should be emphasized that we have
nowhere made any assumption about the strength of
the spin-orbit coupling, and this means that in general
the constants P; are in no way related to the n;. (If the
spin-orbit coupling is small, however, we can relate
them. ) If we are not dealing with an external magnetic
field, but just want the shape of the energy surface, or
want to deal with the impurity problem, then the last
two terms of (38) vanish, and the band is described by
three constants. If now we choose the following repre-
sentation for the J„J„,J, :

In (41) the last t.erm is new, and represents the inter-
action of the electron's spin magnetic moment with the
external magnetic field. The quantity e is of course the
Pauli spin matrix vector. The space on which (41)
operates is the direct product of the 3)(3 space of the
I and the 2)&2 space of o, so that (41) is really a 6X6
matrix operator. This electron spin term is usually
quite small, but we include it for completeness. Now,
in the limit of infinitely weak spin-orbit coupling, (41)
may be transformed directly into the correct spin-orbit
Hamiltonian. This is done in Appendix B. The result
is the following:

0
—v3i/2

0
0

&3i/2
0
Z

0

0
Z

0
—v3i/2

0
0

&3i/2
0

(3A+ fl/4)k2 i (A 2l) (k 2J 2+k 2J' 2+k 2J '2)

—-',C((k,k„}(J,J„}+(k„k,}(J„J,}+(k,k.}{J,J })
+ (e/3mc) (mEj1)J.H. (42)

0
%3/2

0
0

0 0

0 0
0 0 0

0
0
0 )

v'3/2 0 0
0 1 0
1 0 v3/2
0 V3/2 0

Pi= (3A+8)/4,
p2= —

3 (A —&)

p3= ——,'C,

P4 ——(e/3mc) (mK+ 1),

g= 0.

(43)

Comparison with (38) shows that for the case in which
the spin-orbit coupling is very weak, we have

and write

p = (3A+~)/4,
p, = ——,'(A —a),

3= ——'C
(4o)

Therefore, the constant p& is only introduced by the
spin-orbit coupling. For Si, this correction will probably
be utterly negligible, but for Ge, in which the spin-orbit
splitting is comparable though somewhat less than the
band separation, it might have observable effects.

then we see at once that (38) is identical with the first
four rows and columns of (v. 13) in LK, which was
obtained on the basis of very weak spin-orbit coupling.
The only difference is that A, 8, and C are no longer
necessarily given by (9). Since these are parameters
which we 6t to experiment, this makes, in general, little
difference. Thus the form of the Hamiltonian is totally
unchanged no matter how strong the spin-orbit coupling

is, as long as no magnetic 6eld is present. This is no

longer true when a 6eld is present, since the last term
of (38) represents a new invariant which gives no
contribution when the spin-orbit coupling gets ex-
tremely weak (i.e., p& approaches zero as the spin-orbit
coupling does). To see this in detail, and also to see the
relationships between the n; and P; (which are very
convenient to have if we want to make estimates of
the p;), let us consider the case of very small spin-orbit
coupling. Then the Hamiltonian corresponding to the
no-spin orbit point of view is

D Ak2 (A g)(k 2I 2+k 2j 2+k 2j 2)

—2C({k,k„}(E„I„}+(k„k,}(I„I,}+(k,k.}(I,J })
+(e/2c)EI. H+p(o H). (41)

II. DETERMINATION OF THE ENERGY LEVELS

(1) In the previous section we have set up the
general Hamiltonian (38), the characteristic values of
which give the allowed energy levels of the system. We
now turn to the actual problem of determining these
characteristic values. Unfortunately it has not proven
possible to 6nd a general solution of the problem. We
have, however, developed what seem to be excellent
approximation methods which are applicable to the
experimental situation so far realized. Since we are
dealing with the upper band edge (i.e., with holes in

the valence band) the energy levels will in general
decrease as we go to more excited states. In order to
think of the energy level scheme in the more usual

way, we shall deal from now on with the negative of
(38) as our Hamiltonian. It then proves convenient to
introduce the dimensionless constants y~, y2, y3, a, and

&by

(1/2m)pi= —i~ (A+28), (1/m) (3~+1)= E, —

(1/2m)y2 ————', (A —8), (e/mc) q= —P6, (44)

(1/2m) ya ————,'C.
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When we replace D by D—, (38), (44), and (40) yield

1 ( 5ysy ks

~

—,(k.'J. +k'J +k, J.)
m 2 2

corresponds to quantizing our original degenerate states
along the direction of the magnetic field). That is,
we put

1 1 1J.= Ji——Js+—Js,
v2 v3

1 1 1
J„=—Ji+—Js+—Js,

&3) &3

—2&s({k,k„}{J,J„}+{k„k,}{J„J,}+{k,k,}{J,J,})
e e

+ ~J H—+ q(J —'H +J„'H„+J,'H.-) . (45)
C C

(47)

It is easily seen that the transformation is a canonical
one—it is just a rotation —so that the characteristic
values of (45) are left unchanged by it. Further, by (6)

(ki, ks) = (1/i) (e/c) H,
so that p and q defined by

ki ——(eH/c) &p, k, = (eH/c) &q, (48)
are canonical variables, i.e.,

(P,q) = 1/i. (49)
We shall often make use of the creation and destruction
operators a~ and a defined by

a'= (1/~2) (p+iq), a= (1/%2(P —iq) (5o)
These operators have the commutation rule

(a,at) = 1. (51)
They also have the following properties: If we call the
harmonic oscillator eigenfunctions I„, then we know
that

(52)—,'(p'+q')e„= (ata+-,')I„=(ri+-', )I„,
or

(53)CtQN„= SS
Further

al„=e&N„ i, ate„= (m+1)~u~i, (54)

if the phases of the u„are properly choosen.
In terms of these operators, we may write (45) as

eB
{O'-V.(5/4- Js')](~+-,')

SZC —y2Si —ysSs+vJs+qSs}, (55)
where /= ate,

Sl sL(as+a/2) (J12 J22 42{J1Js})
+»(" '")({JiJs}+~2{JsJs»»

S2 'Da'+at') (Jp ——J-s'+v2{JiJ })—
+i(a' at') (2{J—iJs}—%2 I JsJs})],

(56}

Ss ——1/3%2L —(5/2) Jis—2%2Js'+ (41/4)%2Js
+ (41/8) Ji+-', {Ji(Jss—Js') }].

We shall measure all energies in units of eH/mc from
now on, so we may drop this factor from (55) and all
subsequent energy expressions.

It is convenient to introduce a specific representation
for the J at this point. Although it is possible to solve
the problem with the conventional representation for
the J, we prefer to choose another which simplifies

The situation is considerably simplified if we also
transform the J in the same way as the k when we
choose a new direction of magnetic field. (This actually

' J. M. Luttinger and R. R. Goodman, Phys. Rev. 100, 673
(1955). H. J. Zeiger, Phys. Rev. 98, 560(A) (1955), also private
communication.

We shall limit ourselves to the case in which the
momentum along the magnetic field (ks) is zero. Clearly
by the commutation relations (6), which hold in any
rectangular coordinate system, k3 commutes with k&

and k2 and is, therefore, a constant of the motion. The
energy levels will depend parametrically on k3 in some
involved way. The same is true for degenerate bands,
even in the classical limit. Since the allowed values of
k3 will be thermally distributed, there will be a broad-
ening and shift of the absorption line due to k3. This
eGect has been investigated in the classical limit. s The
shift in resonance frequency depends on cv„r, where co„

is the resonant frequency and r is a measure of the
relaxation time for the holes. For co„r=7.5 the shift
was only about 3% (for Ge), and it decreases rapidly
with increasing ~„v. For Fletcher's experiments there
are cv„7's of perhaps 30 or 40, so the eGect should be
very small indeed. Further, it is possible that the effect
is still smaller in the low-temperature quantum case
since large k3 are not excited. In fact, at absolute zero,
there should be no shift at all. We therefore feel justified
in tentatively taking k3 ——0. It is easy, though tedious,
to include the k3 dependence in the calculations given
in Sec. II(2), and we hope to return later to a detailed
verification of this assumption.

With ks ——0 the Hamiltonian (45) is still not soluble
for an arbitrary direction of the magnetic field. How-
ever, if the magnetic field is in the (111)crystallographic
direction, it becomes possible to reduce the problem
rigorously to a much simpler algebraic one which
requires at most finding the characteristic values of a
4&(4 'numerical matrix. To see this we must first
express lr in its (1,2,3) components. One simple choice
for the 1 and 2 axes gives

1 1 1 1 1
k,= ki ——ks+—ks= ki ks, ——

g6 K2 v3 +6 v2

1 1 1
kv —— ki+—ks+—ks —— ki+ ks, (46)—

g6 W2 W3 +6 v2

(21 i 1 (2)lk+—k= —I—
i3)
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0 u'

s=—' —V2a' 0
0 &za'

0 0 V3/2 0
0 0 1 K3/2

V3/2 1 0 0
0 v3/2 0 0

the results somewhat in both this and the following In terms of (57) we have
section. Let us put —V2at' 0

0 42ut'
0 u'

at' 0

0
0

v3i/2
0

0 —&3s/2
0
2 0

v3s/2 0

0
—&3f/ 2

0

0
28t

-v2a'
0

za' ~zat' ()

0 0 —v2at'
(58)0 0 2a'

—v2a' zat' 0

0Jg= 0
0

0 0
02

0 1
2

0 0

0
0
0

23/2
053=—
0

—2&2

0 0
—13/2 0

0 13/2
0 0

—2%2

0
0

—23/2

Finally, (55) becomes

(yf+y~) (E+s)+$s'+ 23q/8
—gIQtm

g gQ

—q/v2

where

—gIC

(pi —ya) (X+-,') ——,'s —13q/8
0

g2u2

—g2a~2

0
(v~ —va) (&+s)+ks+13q/8

—gIQ~2

—q/V2

g gt2

g162

(v~+v~) (lq'+ s) —ss —23q/8

(59)

and

Ke must solve the Schrodinger equation

gt ——(zys+ y,)/v3,

as= (s)'(V -Vs)

(60)

Inspection shows that the following Ansatz satisfies this equation:

Cin„
C2+++2

C3u„g
C4N„

for m~&2, 3, 4,
The C's are then the characteristic vectors of the matrices

(61)

('Y&+v3) (n+s)+ss+23q/8 g~L(n+1—) (n+2)7'
—g~L(n+1) (n+2)7& (y& —ya) (n+5/2) ——,'s —13q/8

—gsLn(n —1)7& 0
—q/V2 g&L(n+1) (n+2) 71

gsLn(n 1)—7&—
0

(yz —ys) (n ——,')+-,'~+ 13q/8
—g&Ln(n —1)7&

—q/vz

g2((n+1) (n+2) 7&

gg Ln (n —1)7&—
(yy+y3) (n+ ,') —$s-2-3q/8

(62)

j. K 13/
e= (Vt—Vs)-—— for s= —2)

2 2 8

3 K 13(
s= (yt —ys)——— for e= —1.

2 2 8

(63)

and e the characteristic values.
For n(2 the Ansatz (61) no longer makes sense. If,

however, we choose C~=O, it still does, and we get
further solutions for n=0, j. by simply striking out the
third row and column of (62) and solving the 3&(3
matrix problem.

For I=—1, —2 (61) still makes sense if we put
C~=C~=C4=0. In this case, the characteristic values
may be written down at once, and are

It may easily be shown that the solutions given form
a complete set. This is best accomplished by considering
the special case g~

——
g~

——q=0, for which the set is
clearly complete. Therefore, we have reduced the
problem to a very simple algebraic one which lends
itself very easily to numerical computation once the
values of the parameters are decided on.

(2) We now consider a general method of approxi-
mation, valid for any direction of magnetic field. This
is based on the fact that if y2 ——y3 and q=0, the char-
acteristic values of (45) can be found immediately. If
the experiments performed at higher temperatures are
interpreted as being already in the classical region, then
it is possible to get estimates of yI, y2, y3 for Ge and
Si from them. ' VVe have, for germanium: y&—13.2,

' Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
From the classical limit only the magnitude of y2 and ye can be
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y2—4.4, ya—5.4. For silicon: yi—4.0, y2—+0.62,
p3 &1%30

For Ge we see that y2 and y~ diGer from their mean
value by about 10%. Further, estimates of q based on
the band theory indicate that it is indeed very small. We
may, therefore, hope in this case to solve the problem
first for p2 ——p3, q=0, and then to treat the rest by
perturbation theory. The present indications are (based
on constants about equal to those given above) that
for Ge second order-perturbation theory in (ys —ys)
and first-order in perturbation theory in q are already
quite accurate. For Si this method probably doesn' t
work at all, and for theoretical comparison one only
has the (111)direction readily available.

Let us then put y2= y3 ——g and q= 0. The Hamiltonian
(45) becomes

1 e
D=—($yi+(5/2)yjk' y{k kp—){JJp}+ sJ H . -(64)

By means of the identity

{k kp){J.Jp) =(k J)'——(J H)
2c

we may write (64) as

11 ( y)e
D= '(pi+(5/2)y—jks —y(k J)s+~ s ——~-J H . (65)

2&c

From (65) we see at once that in this approximation
the energy levels are all independent of the direction
of the magnetic field. This is true because, if we rotate
the coordinate system in such a way that H is always
in the same direction in the new system, then by a
canonical transformation on (65) we can rotate J in
the same way Ljust as in (47)). Further, of course, k
transforms like a vector under a rotation of the coordi-
nate system. But all the terms in (65) are rotational
invariants, so that D takes exactly the same form for
every direction of H and the characteristic values are
therefore independent of the direction of H.

To actually find the levels we note that with the
Hamiltonian (65), the quantity

(67)

Choosing the representation (57) for Js, we see that
the most general characteristic function of Q belonging
to the same characteristic value is

CJN„
C~N~2
C3Nn+i

C4N„+3

(68)

where the C's are arbitrary constants. Equation (68)
must then be a characteristic function of (65). This
fact is easily verified, and one obtains a 4&(4 numerical
matrix to determine the C's and the characteristic
values of (65). Rather than writing this out explicitly,
which is quite tedious, we shall at once make the
approximation of putting k&

——0. It is important to
stress, however, that this approximation is not necessary
here as it was in the previous section, and that an
investigation of the "k3-shift" could be carried out
with this method.

Putting ks ——0, (64) becomes

ki'+kss
D = Lvi+ (5/2)—1)

m 2
eII—y (ki'J is+ks'J ss+2{kiks) {JiJ's))+ sos (69)
c

b'i —V(5/4 —Js') 7(&+s)

a'+ats
7 (J '—~ ')+s(a' —a"){~~ )

2

+sJs . (70)

is a constant of the motion since

(-', k', J k)= (se/c)(HX J).k,

(J H, J k)= —i(HXJ) k.

On the other hand, the characteristic functions and
values of (66) are extremely easy to find. Using (48)
we have

e
Q=-,'k'+-J H

c
(66) Choosing the representation (57) and again measuring

energy in units of eH/mc, (70) becomes

(xi+V) (&+s)+ ss—kyat'
0
0

—V3ya'
(Vi—V) (&+s)—ss

0
0

0
0

(Vt —V) (&+s)+ sx—43at'
(71)

We notice that, for k&
——0, D breaks up into two 2)&2

matrix operators, which are uncoupled. The Ansatz

determined. The choice of sign given for Ge is, however, very
strongly supported by our current ideas of the band structure of
Ge (Sec. S of this reference). For Si the situation is not so certain
and we leave both signs as possible.

(68) still works, of course, but because of this decoupling
it is simpler to treat the two 2& 2 blocks independently.
We call the upper block "1"and write ei, Pi for the
characteristic values and functions, respectively, and
similarly we call the lower block "2", with
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Clearly for "1"we may take

alld for
82 N~

bJ N„2

Nn

(72)

(73)

In (72) and (73) if we let n=0, 1, 2, ~ we get all the
characteristic functions as long as we put a~ and b~

equal to zero for n= 0, 1. Using (72) we get

[(pi+ y) (n ——,')+ 2N jai—v3y[n(n —1)gla2 ——«iai,
(74)—VSy[n (n—1)jlai+ [(yi—y) (n+-,') ——',«fa2 ——«ia2,

for e&~2. For m=0, 1 we must only take the second
equation, which yields

«i(0) = 2 (vi —v) —k« ~i(1)= 2(xi v)—k«— (75)

The characteristic values of (74) may be written down
explicitly since we have only a 2&2 matrix. They are

«+(n) =Vin —(2Vi+ V
—2«)

&{$yn (yi «+ 2y—))—'+3y'n(n 1))', —(76)

for n&~2. From (75) and (76) we see that ei(0) and
ei(1) are just &i+(n) for n=O, 1. Similarly, using (73)
we get

k.= (1/v2) (cki—k2+sk, ),
k„= (1/V2) (ck,+ k,+ck,),
k.= —ski+ck3,

(80)

where s=—sino, c=—cos0. We shall also make a canonical
transformation on the J's, so that the relation betweenJ, J„, J, and Ji, J2, J3 is also given by (80). Using
this, and putting 43=0, we get

D=Do+%+D2,

D = [y +y'(J '—5/4) $ (cV+-', )

r I li(Ji J2 )+2l2{J1J2jj+KJ3)

Di =-
~

(3c —1)(s)[4c{JiJ3) —s (Ji J2 )j(1V+-')
2(

—3s'[4sc{JiJ,) —(3c'—1)(JP 5/4) fl—,

enough for detailed comparison with experiment.
Therefore, one must use perturbation theory on the
difference between (45) and (64). We shall not even
write down the perturbation for an arbitrary direction
of H, but shall confine ourselves entirely to the magnetic
field in the (110) plane. This plane contains all the
directions for which experiments have been done so far.
If we call 8 the angle between the 6eld and the s-axis,
then we can choose the (1,2,3) coordinate system so
that

[(yi—y) (n ——,')+-,'«jbi —V3y[n(n —1)f~bg embi, ——

(77)
v3y[n—(n 1)j~b —+[(y +y) (n+-,')——,

' )b = b,
for e&~ 2. For m=0, 1 we have

&2(0)=2(Vi+'Y) t«~ ~2(1)=8(7i+'Y) 5«(78)
The characteristic values of (77) are

3c4—10c'+3
+8sc{JiJ3)l2+—

)
X[(Ji'—J2')li —2{JiJ2)ling I,

D~ qj (5/4)sc(3c' —2—)—Ji«+«(15c'—10c'—1)J,'

(81)

«2+(n) =&in —(27i—&+2«)
+[[yn+ (7i—«——,'y) j'+3y'n(n —1)jl, (79)

and again e2(0), «2(1) are just e2+(0) and e~+(1), respec-
tively.

We shall call a set of characteristic values which are
obtained by just increasing e by integer steps in some
function a "ladder. " The spectrum then consists of 4
ladders, the 1+, 1, 2+, 2 ."It turns out that it is quite
convenient to keep the levels grouped this way, not
only for ease of -visualization, but also in considering
selection rules for absorption.

The case discussed here reduces exactly to that of
Appendix C in LK, if we put ~=0. We now see, how-

ever, that it has considerably more application than
was indicated there.

(3) Now actually experiment shows that the levels
even in Ge are not the same in all directions, so that
the results of the previous section cannot be accurate

'OIn the classical limit the spacing between levels becomes
uniform within any ladder. The plus ladders then correspond to
the level spacing of the "light" holes, the minus ladders to the
level spacing of the heavy" holes,

9sc' 3s'
+ {Ji(J2'—J3'))+ (3c'—1){J(J '—J '))

41
+—[sc(2—3c')Ji+s'(1+3c')J3j i.

16
Here

y'= «[(3c'—1)'y2+3s'(3c'+1)y3 j,
y"= -', [(3—2c'+36')y2+ (5+2c'—3c')y3j,

~=1(v«—v~),

li ———,
' (a'+ at' ),

l2= (~/2) (a' a"). —

(82)

Several remarks should be made about (81). Do is
the unperturbed Hamiltonian. It only reduces to (70)
if p2 ——p3= &. However, as one easily sees, it is soluble
by exactly the same technique as was used on (70).
The reason we absorb some of the perturbation into
the zeroth-order Hamiltonian is that as a consequence
D& has no diagonal matrix elements in the Do represen-
tation, so we need not do 6rst- and second-order
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perturbation theory on D&, but only second order. It is
also possible to split D2 into a first-order part (by
taking the J33 and J3 terms) and a part which has no
diagonal elements. The zeroth-order Hamiltonian can
still be rigorously diagonalized, if we include this
diagonal part of D2 in it. However, since we have not
as yet gone beyond the first order in q this split has no
advantage, and we have not made it.

The characteristic functions of Do are again given by
(72) and (73) where we have

[(vl+v') (n —2)+2K]al ~37 [n(n 1)]'a2 61al

n=2 3)

—v3y"[n(n —1))~al+[(yl—y') (n+2) —2K]a2
= ega2 n= 0, 1, 2,

with the characteristic values

(83)

6 (n, 1+)=y,n —(-,'y, yy' ——,'K)

a {[y'n—(,'y'+y, -«)]'+—3y'"n(n 1)l'*, —(84)

where for the plus sign e= 0, 1, 2, , and for the
minus sign rI,= 2, 3, 4 ~ ~ . Similarly,

[(~,—~') (n ——,')+-',.]b,—VS~"[n(n—1)]:f,= „b,

(83)—v»"[n(n —1)]'&1+[(vl+v') (n+ 2)—2K]&2

=c2b2 n=0, 1, 2,

with the characteristic values

6(n, 2+) =y,n —(2yl —y'+2K)

a( [y'n+ (yl —K—12y')]2+3y"n(n —1)}l, (86)

Finally, a word may be said about the energy levels
in the twofold degenerate case. From Eq. (b.9) of
Appendix B, the Hamiltonian is just that of a free
particle with an isotropic effective mass, spin one-half
and an intrinsic magnetic moment. Since orbit and
spin are not coupled, we can find the energy levels of
each part separately. These are

eII
6„+= -', (A+28) (n+-,')

eII A+28
(24nE —1)+ 432 (89)

2mc 3

Oscillating electric fields will cause transitions between
e and m&1, so that the second and third terms will not
affect cyclotron resonance experiments at all. On the
other hand, oscillating magnetic fields ("spin reso-
nance") will produce transitions between the & states
and would, therefore, provide a direct measure of E.
An estimate" of E for Ge, based on the band theory
gives something like E= —13/2n. This indicates that
such spin-resonance experiments on free holes would
see an effective g-factor which was very large. A similar
but more complicated situation will hold for the fourfold
degenerate band. This large effective magnetic moment
may -conceivably be connected with the failure to
obtain spin resonance at the expected place for holes
bound loosely to impurity centers. These questions
remain to be investigated, however.

ACKNOWLEDGMENTSwhere n,=0, 1, 2, . for the plus sign, and e= 2, 3, 4
for the minus sign. The explicit matrix representation
of D1 is

r2 r3r1
&3i4 „~

D1—
2 r3'

0

r3
r 42

)
r1
0
r 1+

rl
r2+

where

I would like to thank Professor W. Kohn for innum-
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r, = 'v3s2(3c2 1)(a'+-a~2)—
r,= (3c'—1)[-'(c'—3)at' —s'(X+-')]
r3 sc[(3c'-——1)(21V+—1+a')+ (3c'—5)at2].

Similarly, for D2 we have

APPENDIX A. THE CUBIC GROUP

We list in Table I the character table for the cubic
group, and the reduction of all direct products.

TABLE I. Character table for the cubic group. '

where

Pl P2
& P2 P6

4 P3 P6

p4 p3

P3 P4

P6 P3
P6 P2

P2 Pl

Pl
———,

' (3c4—2c'+8),
p2=243s (3c —1)

P3 ————,'v3sc (3c'—1),

p4 ———,'sc (3c'—5),

p3 ——
2 (27c4—18c'—10),

p6 ——(9/2) sc (3c'—1).

(88)

Represen-
tation

A2
jv
T1
T2

16CB

1
1.—1
0
0

1204l

1—1
0
1—1

12S4

1—1
0—1
1

6Cg

a The following relations hold: At XAt =A&, A& XA2=A2' AIXB =B;
A XTi =Ty, A& XT2=Ts) A~XA2=. Ai; AsXB =B; A2XTg =T2, A2XT
= Tt, B XB=Ay+As+B; B XTi =T+Ts, BXT2 =T&+Tg, Tt XTy =A)
+B+T&+Tel Tt XT2 =A2+E+Ti+T2; T2XT2 =Al+B+Tl+T2.

"I am grateful to Professor Kohn for this estimate, It is closely
related to the estimates of Dresselhaus, Kip, and Kittel in refer-
ence 9.
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APPENDIX 8

In this appendix we obtain the Hamiltonian for the
very weak spin-orbit case directly from that for the
no-spin orbit case (41). Call the six degenerate wave
functions for the no spin-orbit case g;, i= j., 2, , 6.
The correct "zero-order" functions for the weak spin-
orbit case are given by (V.11) and (V.12) of LK. Call
these collectively ft, l=1, 2, , 6. Then the ft are
related to the gi by a relationship

ft=2; g'(ill), (b.i)

where the (ill) are some numerical coefficients.
Let the matrix elements of D (from 41) be D,, in

the g; representation. Then in the ft representation
they will clearly be

(b 2)

where (l I i)—= (i I
l)*.

By means of the explicit representations (V.11) and
(V.12) it would now be a very straightforward matter
to obtain the (ill) and, therefore, Dtt . It is, however,
much more convenient to proceed as follows: If we

think for a moment of the original functions X, I', Z as
functions which transform under the full rotation group
like x, y, z, then the functions g; are states of orbital
I= 1 and spin —', in the (mr. ,ms) representation. Further,
the functions (V.ii) and (V.12) are then formally those
for j= ssand rs, respectively, in the (j,m) representation.
Therefore, the transformation matrix (ijl) is identical
with the transformation from the (mr„ms) basis to the

(j,m) basis. If we want the fourfold degenerate part
we need only consider the submatrix with j=~3, if we

want the twofold degenerate part, then we take the
submatrix with j= ~~.

When two identical representations, (say R) occur
in a direct product, we can ask: what irreducible
representations occur if we consider only those functions
symmetrical in the two representations, and which
occur when we consider only those antisymmetrical in
the two representations? We call the former (RXR)s
and the latter (RXR)&. One can easily see that the
characters of any element T are given by

xs= s[x(2')'+x(&)3

in the symmetrical case, and

x~= sLxP')' —x(&')j
in the antisymmetrical case, Using this, we obtain at
once, the following:

(2'tX2's) s= At+&+&t,
(&tX &r)~= &s,

(TsX &s)s =A t+&+&t,

(&sX &s)~= &s.

tr—+s J, (b.4)

where J is any 4X4 representation of the angular
momentum for j=2. Similarly

(jmjI I jm')=y'(jmj J.j jm').

Considering again the ~~ state, we get

from (V.11), so that y' also is unity, and we have

I~sJ. (b 5)

Finally, to find such quantities as (I Itt), we make use
of the fact that (I Itt) ,'8, ttIs is a—n —irreducible tensor
of the second rank. Then, once again, "
(j ml (I Ie) s& eI'I jm—') =

y"(jmj(J Jtt) ',J'& —
tt I

-jm')

To determine y" we once more consider u =P =s and
the —,'~ state.

(l-'I J*—lJ'I l l) = (l)'—l(15/4) =1,
so that p"= 3. Therefore, we may write

or
(I-Ie) s~-ttI'~—s ((J-Je) sJ'~-e), —

{I-Itt)~s(J-Jtt)+ s&-tt (b.6)

Substituting (b.4), (b.5), and (b.6) in (41) we get

D= '(3A+B)k' '(A -B)(k 'J '+—k-'J—'+k 'J ')
——,'e({k k„)(J' J„)+{k„k.)(J„J,)+{k,k,){J,J,))

+ (e/3me) (mE+1)J H, (b.7)

which is just (42).
It is even easier to obtain the two by two matrix

corresponding to the twofold degenerate state. We
obtain at once,

(b.8)

where J in (b.8) is a 2X2 representation of angular

'2See E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951), p. 59 G.

I et us consider the j=~3 part 6rst. Then we need
quantities like, I, tr, {IItt) expressed in the (j,m)
representation for j=-', . These are easy to find. Con-
sider any vector V . Then the matrix elements

(jm I V I
jm') are given by

(ymj V.jjm')=p(jmj J jjm'), (b.3)

where y is independent of m"; and J is the total
angular momentum operator, orbit plus spin. To deter-
mine y one considers some simple matrix element.
Thus for e, let us consider (-,'sja-,

l
—,'ss), which equals

unity from (V.11).On the other hand, (ss I J, l

—', s) = —,',
so that p=3 for 0. Thus we may write that as far as
matrix elements for j= ~ are concerned,
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momentum j=—',. (We could write, for example, J= Iso.)
Substituting in (41) again, we get

D—+Is (A+28)Ic'+ (e/6mc) (2'—1)J H
= Is(A+28)ks+ (e/12mc) (2'—1)e H. (b.9)

If we leave off the J H term and choose the represen-
tation (39) for J I in (b.7)], then (b.7) and (b.9) agree
exactly with (V.13) of LK. It is easily seen by the

. methods of Sec. I that the form of (b.9) is the most
general possible for the twofold degenerate case.
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Experimental Cross Sections for Charge-Changing Collisions of
He+ and He++ Ions Traversing Gases*
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Ion beams of He+ and He++, in the kinetic energy range 100 to
450 kev, are held in arcs of circular orbits in a magnetic 6eld.
When a few microns of gas are admitted the beam is attenuated
by charge-changing collisions, since with change of charge the
ion is lost from its orbit. Cross sections for such charge-changing
collisions are designated by 0.;f, where i is the initial positive ionic
charge in electron units and f the charge after the collision.
(o10+cr») has been directly measured for He+ in hydrogen,
helium, and air, and (on+a so) for He++ in the same gases.

Other observers have measured the equilibrium ratio He+/He++
attained in a field-free beam after many collisions, and combining
these data with our observations allows calculation of 0.10 and cr»
separately if one assumes 0.02 negligible compared to the other
cross sections. The electron loss cross sections cr» increase with

energy for helium and air throughout the measured region and
are of the order 10 '7 cm2; r» for hydrogen vs energy shows a
broad maximum at about 370 kev and 0.98)(10 '7 cm~ per hy-
drogen atom.

The capture cross sections F10 decrease rapidly in the measured
energy range and in the region 200-450 kev those measured in
helium agree, within the estimated experimental error, with
theoretical calculations of H. Schi6.

In attempting the resolution of the sums (cr21+a20) into the
separate cross sections it is found that the errors in the measure-
ments accumulate to such an extent that the individual values
become very unreliable. An auxiliary experiment designed to
increase the accuracy of our knowledge of the separated capture
cross sections 0.~0 and 021 is in progress.

1. INTRODUCTION

HE discovery by Henderson, ' in 1922, that an
appreciable fraction of the alpha particles

emitted from natural sources have an orbital electron
attached, and thus are He+ ions, initiated a series of
researches in which the capture and loss of electrons by
moving helium ions were studied. The results on 0,

particles prior to 1933 have been summarized in the
Handblch der Physik by Geiger, ' and the same volume
contains a review of work on the more general aspects
of charge changing collisions, by Riichardt. '

The status of the problem as of June, 1953, has been
recorded by Allison and Warshaw. '

Experimental researches on this problem may be
roughly divided into two categories: (A) studies of the
equilibrium ratios of the various charge states attained
after a suKciently large number of charge-changing
collisions; (8) studies of the collision cross sections for

individual charge-changing events.

*This work was supported in part by a grant from the U. S.
Atomic Energy Commission.
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