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It is certain that the long tail of the peak extends
far beyond the critical field, so that there is extra flux
in the sample after the sample has become normal
conducting according to the Silsbee hypothesis. London®
found a similar tail for the resistance approach to
normal resistance when the transition is made with
current alone in zero field. Theoretical description of
the paramagnetic flux behavior beyond the peak is not
available.

In conclusion one notes the similarity in behavior of
the superconducting metals tested, and the agreement
with Meissner’s theory, at least beyond the threshold.

JAMES C. THOMPSON

These facts support the argument that the effect is a
property of the intermediate state. The fast response
time coupled with the reversible nature of the transition
again emphasizes the dependence on current and field,
not on method of measurement or history of the
specimen.
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The octahedral sites in the spinel structure form one of the anomalous lattices in which it is possible to
achieve essentially perfect short-range order while maintaining a finite entropy. In such a lattice nearest-
neighbor forces alone can never lead to long-range order, while calculations indicate that even the long-
range Coulomb forces are only 5%, effective in creating long-range order. This is shown to have many
possible consequences both for antiferromagnetism in ‘“normal” ferrites and for ordering in ‘“‘inverse”

15, 1956

ferrites.

I. LATTICE OF OCTAHEDRAL SITES

HE ferrites are a class of oxides of iron-group
metals, many of them of technical importance as
ferromagnets, which crystallize in the spinel structure
or structures closely related to it. The ideal ferrite has
the formula 4B;0, (e.g., NiFe;Os) and the smaller
metal ions 4 and B occupy certain interstices between
the large oxygen ions, which latter are arranged in an
approximation to the cubic close-packed structure.

F1G. 1. Photograph of a model of the spinel lattice. The dark
balls are oxygen; the tetrahedral sites are connected to their
neighboring oxygens by four diagonal bonds, the octahedral by
six vertical and horizontal ones.

The structure is shown in Fig. 1.1 The distortion of
the lattice of oxygen ions is such that a cell of 32 oxygens
has cubic symmetry again. There are, for each oxygen,
one interstice surrounded by an octahedron of oxygen
and two surrounded by a tetrahedron ; half of the former
and only one-eighth of the latter are occupied by metal
ions. This means that in the unit cell there are 8 “tetra-
hedral sites” and 16 ‘“octahedral sites.”

In a “normal” spinel, the 8 4 ions occupy the 8 tetra-
hedral sites, the 16 B ions the octahedral ones. In an
“inverse” spinel, 8 of the B ions occupy the tetrahedral
sites, the other 8 and the 8 4’s occupying the octahedral
sites. Ferrites are known which range all the way from
purely normal to purely inverse. We are here interested
in two problems, both having to do with ordering on the
octahedral sites: (a) the problem of atomic ordering in
inverse ferrites; (b) in normal ferrites with small or no
magnetic moments on the 4 ions, the problem of anti-
ferromagnetic ordering of spins.

To attack these problems we need to study carefully
only the crystal lattice of the magnetic ions, particu-
larly that of the octahedral sites. The occupied tetra-
hedral sites form a diamond-type lattice, the octahedral
sites (see Fig. 2) a somewhat more complex cubic
lattice which could be generated from this tetrahedral
site lattice by displacing it through half the cube edge
and then placing an atom at the center of each bond,

LT. F. W. Barth and E. Posnjak, Z. Krist. 82, 325 (1932).
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rather than at the original sites. The lattice of octa-
hedral sites is thus identical with the lattice of oxygen
atoms in high-temperature cristobalite.

The fact the consequences of which we wish to explore
in this paper is the following: on this lattice one can
create perfect order, in so far as nearest neighbors are
concerned, and nonetheless have a finite entropy; in
other words, assuming nearest neighbor interactions
only, one can find a number W of configurations of
N(x) A atoms and N(1—x) B atoms which all have
the lowest possible energy, W being such that InW is
proportional to XN. This statement can be proved
explicitly when x is % or less than or equal to § (corre-
spondingly, also >%) and seems likely to be true for all
other values @ fortiori since % and % are the values at
which the best-looking long-range ordered arrange-
ments occur.

II. THE ZERO-POINT ENTROPY

Of course neither of our two problems corresponds
exactly to the situation in which this lattice can be
shown rigorously to have a zero-point entropy. This
situation is essentially the Ising model with only
nearest neighbor forces. In the prob’em of ordering of
metallic ions in the octahedral sites, one can expect the
Ising model to be statistically sound, since there are
only two states of each site, and the problem is essen-
tially classical; but the interaction is not only between
nearest neighbors because a large fraction of it is
Coulomb energy.? However, we shall later show that
the Coulomb energy of the different structures of
perfect short-range order does not differ by very much;
in particular, we calculate explicitly the energies of a
class of structures containing 2¥! members and find
them all within 59, of the lowest. Thus there will be
considerable meaning to a calculation of the zero-point
entropy in this case.

In the case of antiferromagnetic ordering, the inter-
action will probably be short-range, because of the
rather large distances and long chains of atoms con-
necting those B-sites which are not nearest neighbors;
however, the counting of states and the whole statistical
problem will be complicated by the fact that spins are
quantum-mechanical vectors and not classical scalars
as in the Ising model. Thus we have no hope of making
quantitative estimates of zero-point entropy in this
case. However, two lines of evidence indicate that none-
theless most lattices which have zero-point entropy in
the Ising model will also be at least disordered at
absolute zero in the real quantum theory of antiferro-
magnetism. First, if one thinks of the spins as classical
vectors these lattices usually have an even greater
zero-point entropy due to the extra freedom of rotation.?

2 de) Boer, van Santen, and Verwey, J. Chem. Phys. 18, 1032
(1950).

3Not quite always; the triangular lattice [G. H. Wannier,
Phys. Rev. 79, 357 (1950)] is an exception in which one can find
an ordered configuration of real vectors.
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Fic. 2. (a) Perspective view of the lattice of octahedral sites
in spinel; (b) Projection of octahedral site lattice on (100)
plane.

Second, Stern* has shown that the antiferromagnetic
spin wave theory indicates that such systems will not
order.

4 F. Stern, Phys. Rev. 94, 1412 (1954).
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In this section, then, we present some results relating
to the Ising model ordering problem, as applied to the
lattice of octahedral sites of the spinels.

First we discuss the 50-50 problem: x=3%. Here we
find that our problem is very closely related to the old
problem of the zero-point entropy of ice. The lattice
we are discussing can be seen to be made up of tetra-
hedra of sites connected at their corners [ see Fig. 2(a)].
These tetrahedra are themselves arranged in a diamond
lattice. If, instead, they were arranged in a lattice of
hexagonal symmetry (as in high-temperature quartz
rather than cristobalite) the resulting lattice would be
identical with ice. We have, then, a lattice which we
might call “cubic ice.”

We wish to put on our sites an equal number of +
and — signs, in such a way that we get the maximum
number of +-—pairs. This can easily be seen to be
possible only by putting on each tetrahedron two +’s
and two —’s; if any tetrahedron has three +4’s and
one —, or vice versa, the effect is merely to substitute
one like pair for one unlike pair, which of course is
unfavorable.

In ice, the corresponding criterion of the Pauling
theory® is that two of the protons be near the oxygen
(which is at the center of the tetrahedron) and two
farther away. This seems very similar and is actually
an identical criterion, for one can divide the tetrahedra
of our lattice into two sets with opposite orientations
such that all those in one set touch only those in the
other. Then let the +’s on one set mean ‘‘proton near
the oxygen atom,” and vice versa for the other set, and
the identity of the two problems is obvious.

Pauling has estimated the entropy in the ice problem,
and since this estimate is immediately applicable here
and since we shall use a similar method later we repeat
his derivation. If we take only one of the two sets of
tetrahedra (both contain N/4 members, where IV is the
number of sites of the lattice), we can make 6/
arrangements satisfying the condition that two -+ and
two — be on each, since there are 6 arrangements of
each tetrahedron.

Now we approximate the number of these that are
acceptable to the second set of tetrahedra by saying
that the probability that any one of these tetrahedra is
correct is 4 (as it is) and that the probabilities of
different ones are uncorrelated (as they are not). Then
we have

Wamy= @V (O)V'= VD)V, (1

Spe3=k InW=R In(y/3)=0.202R. @)

(Note that all entropies quoted in this paper are per
mole of octahedral sites, which is 3 mole of ferrite.)
Onsager® has proved rigorously that this estimate is
actually a lower limit; one might estimate that it is
probably no more than 10-20%, wrong.

5 L. Pauling, The Nature of the Chemical Bond (Cornell Uni-

versity Press, Ithaca, 1938), p. 303.
6 L. Onsager (private communication).
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The case of x=7 is also of special interest since

lithium ferrite (LiFesOs) corresponds to this, and is
actually one of the few ferrites which do have long-
range order. One can here set a rigorous lower limit
(see Appendix I) of $>0.081R. Pauling’s method gives
§=0.131R, and is probably again an underestimate by
a small factor. This answer is obtained as follows:

The first set of tetrahedra has 4¥/* configurations of
14 and 3—. The probability of any single one of the
second tetrahedra then being 14 and 3— is 4(3)(3)?
= (2)3. In the spirit of Pauling’s technique, we reduce
the total number of configurations by this factor for
each tetrahedron. Then

W= @Wxa,

) 3)
S=1RIn(27/16)=0.131R.

For values of « less than , the zero-point entropy is
obviously finite. We can find (actually in an infinite
number of ways) a set of N/4 sites, none of which are
neighbors of each other. We have x/V atoms to assign
to these sites, which can be done in

GN) /LGN —Nx) (V) 1]

ways. The logarithm of this number is proportional
to N.

Values in this range, as well as in the range  <x <%,
are not of particular interest, although it is almost
certain that all possible values of x lead to a zero-point
entropy. This is the major conclusion of this section.

III. THEORY AND EXPERIMENT ON
ATOMIC ORDERING

If the forces between atoms in ferrites were short-
range, we should predict that there would be no cases
of long-range ordering on the octahedral sites, but
rather that short-range order should set in at a rather
high temperature. However, some of the forces are
Coulomb ones and no doubt there are other forces of
longer than nearest neighbor range.

We have calculated Coulomb ordering energies of
various structures with x=% and % in order to verify
our guess, based on the last section, that there should
not be a very great Coulomb energy difference between
the different structures of perfect short-range order.
In Fig. 3 is shown the ordered structure postulated by
Verwey, Haayman, and Romeyn’ for Fe;Os (again
showing only the octahedral sites). The lattice of octa-
hedral sites, when visualized from a 100 direction, can
be seen to be made up of lines of atoms laid down in
011 directions. The lines in the same 100 planes are
exactly twice as far apart as their own internal spacing,
which is d=a/2V2, a being the cubic unit cell edge. In
successive 100 planes of the cell these lines lie at 90° to
each other: 011, 011, 011, etc.; while the lines two
planes apart fall in the spaces of the previous set. In

7Verwey, Haayman, and Romeyn, J. Chem. Phys. 15, 181
(1947).
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two of the possible sets of 100 planes these lines of the
reference 7 ordered structure are alternating ABAB
etc.; they also have a particular relationship to each
other (lines of the same 100 plane “in phase,” i.e.,
A closest to A and B to B). It is easily seen, however,
that any structure made up from a set of 011 and 011
alternating lines having any relative phase whatever is
one of the short-range ordered structures for x=3%.
These do not make up all short-range ordered struc-
tures, but only a set of ~2¥! of them, since there
remains only the freedom to choose one 100 plane of the
lattice arbitrarily.® The Coulomb energies of this set
of structures can be quite accurately calculated by the
original Madelung method.?

In the Madelung method, one divides the lattice into
neutral lines of atoms and calculates both the seli-
energy and the potential at external points of these
lines. This potential falls off rapidly with distance,
making it easy to sum up the interactions of the lines
with each other to rather good accuracy. In the present
case the method is particularly suitable because the
lines in successive planes do not interact, since they
cross each other exactly half-way between the two
kinds of charges. Thus it is only next-nearest neighbor-
ing lines which interact; third nearest again do not and
further neighbors can be neglected.

The self-energy of ordering of the lines is, for order-
ing of charges ¢; and ¢, and on the same basis (per
molecule, i.e., pair of octahedral sites) as reference 1,

Egri=— [(Q1—Q2)2/2d:| In2
=—0.9802 (91— qg)z/a,

The potential caused by an alternating line at a distance
nd directly opposite one of the positive atoms of the
line can be written, to three-figure accuracy,

Popp = (4/ d)K o(nerr).

Each line has 6 next-neighbor lines with which it can
interact, two at #=2 in its own 100 plane and four at
#=V3 in the next-neighbor plane. At most four can be
(on the average) opposite in sign; the most favorable
case is that in which these are all the #=V3 lines, which
happens to be the order of reference 7 (Fig. 3). One can
show by adding up expressions of the form (5a) that
the additional energy is then

(Einter) min™= _00206 (91—' Q‘z) 2/(1,
leading to a total energy
Er=—1.001(g1—¢2)%/a (6)

(4)

(Sa)

(Sb)

in accordance with reference 1. The most unfavorable
case is that of all lines “in phase,”” which has an

8 Not in the structure of reference 7, but in all others, one finds
hexagons of alternating 4 and B, in general a number of order N
of them. These may be rotated through 60° without changing
short-range order. These two operations (sliding lines and turning
hexagons) probably generate all possible structures,

9 E. Madelung, Physik. Z. 19, 524 (1918).
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Fi16. 3. The Verwey-ordered structure on the octahedral sites
(projected on 100 plane).

energy of ‘
(Einter) max = +00310(91—‘ 92) 2/(1) (7)

with a total of —0.9492. All of the 2¥% structures it is
possible to make out of alternating lines lie between
these limits and thus within 59, of the minimum; one
suspects that actually the remainder also lie primarily
in this range.

The total ordering energy (6) is of order of magni-
tude 2-3 ev, i.e., >10*°K. The extra energy to be gained
by long-range order is, however, of order a few percent
of this or 500-1000 degrees K. This may be still further
reduced by polarization screening effects, so that the
transition temperature 100°K for Fe;O4 is not sur-
prising.® However, it seems certain that Fe;O4 will be
short-range ordered far above the transition tempera-
ture. In fact the observed entropy change in the transi-
tion has been found to be little more than 0.3R! per
mole of octahedral sites rather than the R(In2)=0.69R
to be expected in a transition from complete disorder to
complete order, in rough agreement with Eq. (2). Long-
range ordering on the octahedral sites is observed in no
other ABy04 inverse ferrite, although the normal us
inverse ordering, with its only slightly larger motivation
in Coulomb energy, often occurs. This fact is probably
explained by the above considerations: that the energy
to be gained by long- as opposed to short-range ordering
is very small, while the entropy change is still large. (We
appeal here to the qualitative relationship 7'« Au/As.)
Thus the transition temperatures are too low and the
ions are not mobile enough to permit ordering.

There does exist one proven case of atomic ordering

10 J. H. Van Santen, Philips Research Repts. 5, 282 (1950),
has shown that Coulomb and other long-range effects should in
any case tend to create short- rather than long-range order and to
lower transition temperatures. It is however not clear whether
our considerations are logically independent of Van Santen’s, so

that we do not rely on his effect.
1 J. E. Kunzler (private communication).
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on the octahedral sites: the ferrite LiFesOs, which has
been shown! to have 1 Li to 3 Fe ordered on these sites
and to have a transition at 1200°K. The ordering energy
of the observed arrangement has been computed else-
where! to be

Eops=—0.712(q1— ¢2)*/ a. 9)

In Appendix II we calculate the energies, not of this
but of a group of structures of multiplicity 27! included
among the linearly ordered structures. All of these
structures have lower Coulomb energies than (9), the
lowest being

Enin=—0.751(q1—¢2)¥/ a, (10)

some 5% below (9). This indicates that Coulomb energy
is not the motivation for the long-range ordering, which
suggests that perhaps some kind of valence force is at
work here due to the chemical dissimilarity of Li and Fe.
Under these circumstances we do not consider it too
surprising that the transition temperature is so much
higher than that of Fe;Oy, since these unknown forces
are clearly in control of the situation.

IV. ANTIFERROMAGNETISM ON THE
OCTAHEDRAL SITES

Our comments on this subject are necessarily very
brief and qualitative, both because (as already men-
tioned) the theory cannot apply directly to quantum-
mechanical vectors and because the observational data
are sketchy and unclear.

First we should emphasize that the present notions
cannot, unfortunately, help to explain the complex
patterns observed by Corliss and Hastings!? for ZnFe;04
and ZnCr,O, since in these substances what short-
range order exists points to a ferromagnetic nearest-
neighbor interaction.

For classical vectors with nearest neighbor interac-
tion, instead of the 6 best ways of arranging each
tetrahedron there are an infinity: all ways in which
Stot=0. For quantum-mechanical vectors S, there are
only 251, but of course the situation is much more
complicated than that. One can only expect that for
reasonably large S the classical behavior is not too
badly approximated. If so, the least-energy state may
be any complicated combination of vectors pointing in
various directions, with actual long-range order only
enforced by what one expects to be rather small second-
neighbor forces.

Antiferromagnetism in the octahedral sites has been
invoked in the theory of Yafet and Kittel,”® which
suggests that with antiferromagnetic coupling on the
octahedral sites and a relatively weak coupling of these
with the tetrahedral sites, the octahedral sites will
remain antiferromagnetically ordered but will turn to
some extent into the direction opposite to the tetra-
hedral sites, thus giving a total magnetization which

121, Corliss and J. Hastings (private communication).
18Y. Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).
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however will not be related simply to the atomic mo-
ments. We suggest that this phenomenon may occur
but that the order on the octahedral sites will be, at
least at higher temperatures, short- rather than long-
range.
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APPENDIX I. RIGOROUS LOWER LIMIT TO THE
ZERO-POINT ENTROPY IN THE 3-1 CASE

We here exhibit a group of ordered states of the 3-1
order problem on the octahedral sites which have an
entropy 0.0809R. In order to do this it is useful to look
at the lattice from still another viewpoint, along a 111
axis. In the 111 direction there are planes of atoms in a
triangular lattice of triangle edge 2d, interspersed be-
tween denser planes (3 times as many atoms) which
have the so-called “kagomé” lattice.* Figure 4 shows
this lattice with the atoms in the two adjoining planes.
Note that each small triangle in the kagomé lattice is
associated with an atom in one of the two neighboring
planes, either above or below the plane; these triangles
and the atoms associated with them form tetrahedra
which must contain three 4 and one B atom apiece to
satisfy the perfect nearest neighbor ordering.

Our set of states are those in which, in all of these
tetrahedra, the B atom is in the triangle belonging to
the Kagomé lattice. Figure 5 shows a small portion of
the Kagomé lattice having this structure: 4,B. Now
we associate with the points at the centers of the large
hexagons of the Kagomé lattice plus or minus signs
according to the rule that every 4 atom represents a
+— bond, every B a +-+ or ——. That this rule
works is clear from Fig. 5. These + and — form a
triangle lattice in the perfect antiferromagnetic order;
and from any arrangement of such a lattice we can
make a perfect arrangement of the 4,B kagomé lattice.
But the zero-point entropy of the triangular lattice has
been calculated by Wannier?-15 to be

(S0)a=0.323R, (A1)

so that, since there is one triangle site to every four
octahedral sites, we get the zero-point entropy of our
set of states to be

Soot(43B)>154=0.0809R. (A2)

This is the result quoted in the text.

(1;‘5?). F. Newell and E. Montroll, Revs. Modern Phys. 25, 373

BT, ‘Wahl has pointed out that due to a trivial error in the last
step Otl;g glllélal numerical result for So in Wannier’s paper is 0.323R,
not 0. .
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Fic. 4. (111) pI‘O]eCtIOIl of the lattice of octahedral sites, showmg
the “kagomé” plane lattice and adjacent 51tes

APPENDIX II. COULOMB ENERGIES OF
SOME STATES OF THE 3-1 CASE

We calculate here the Coulomb energies of a still
different set of states of the 4 3B case. This set of states
resembles those of the 4B case which we investigated
in Sec. III very closely. In fact, we again divide the
lattice into lines in 011 and 011 directions. However,
we make only one set of lines alternating, the other set
being all 4. This gives us a 3-1 ratio and makes the
nearest neighbors of all B atoms 4. Again we can expect
that the best arrangement will put coplanar lines in
phase, those out of the plane and only V3d away out of
phase. This happens to be the ordered situation one gets
by taking the triangular lattice planes of Appendix I
to be B and all of the Kagomé planes A. We should
mention that the ordered structure observed by Braun!
for LiFe;O3 belongs to neither this group nor to that of
Appendix I; we stated in the text that its Coulomb
energy is quite poor.

Our technique now is to make 4 be a charge of —1,
B of +3 (we must have a neutral lattice to get con-
vergent answers). We can eliminate the contribution
of the all-4 lines by a trick. We consider the ABAB
lines to be the superposition of +1 +1 41 --- and
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F16. 5. A portion of the kagomé lattice with 4B ordering and
the equivalent triangular lattice.

+2 =242
3—1 3—1=1 1 1 1
+2-2 2-2 (A3)
=91+l]2-

The all-4 lines have charges —1=g¢;. ¢1 and g¢; taken
together are simply the ordered arrangement of FeOy,
and have an energy

Eq.03=— (1.001/a) X (2)? (A4)

per pair of sites. The alternating arrangement g, simply
does not interact with either ¢; or ¢s because in both
cases there are as many 4 — as -+ pairs at any dis-
tance. Thus Eq. (A4) gives the entire contribution
including self-energy of ¢; and gs.

The energy of g¢. is simply exactly the same thing we
calculated in Sec. ITI, except that there are only half as
many sites and (Ag)?=16. It depends on the relative
phasing of the lines and varies from

Eq2m1n= - (1001/(1))( (16/2),
to (AS)
Egomax= — (0949/&))( (16/2),
so that for the whole lattice we add (A4) and (AS) and
take into account that the charge difference is 4; we get

Enin=— (0-75 1/d> (A9)2;

(A6)
Emax= - (0725/0') (AQ)Q-



Fi1c. 1. Photograph of a model of the spinel lattice. The dark
balls are oxygen; the tetrahedral sites are connected to their
neighboring oxygens by four diagonal bonds, the octahedral by
six vertical and horizontal ones.



