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TAnr. E V. Approximate percentage correction to (I) from
C~ and CL,.
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& For these values Cx is negative (see text).
b For these values Cx and CL, are negative (see text).

"See Table XVI, H. Bethe, Pundbrech der Physeh (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 1, p. 443.

A comparison of our values ot fr, with those obtained
by Honl" shows a close check as indeed it should since
they were both obtained in the same approximation,
i.e., using hydrogen-like wave functions. Like Honl we
observe that for Hl, ——0.35 this approximation gives a
value ot fr, which is much too high. Since the oscillator
strength per electron for hydrogen for a transition
2p—+is is" —0.139, we can set an upper limit for fr, of
about 1+e4(0.139)=1.1. Thus we see that our calcula-
tions of BL, and C~ for 8L, &0.45 are not reliable. Lacking
a more accurate calculation of an asymptotic formula
for this region (Z &30), it is reasonable to proceed as

follows: Calculate fr, using Hartree wave functions for
the desired atom, and then with this fr, and a correspond-
ing Xr, from Table IV, write Br~4(1+fr,) ln(16rlr, /lw, r,).

V. SUMMARY OF EFFECT OF X- AND L-SHELL
BINDING CORRECTIONS

In order to summarize the effect of the E- and
I.-shell binding corrections, in Table V, we give for
various Z and incident proton energies the approximate
percentage correction to the simple formula (I) intro-
duced by Cz and CL,. Since the erst two terms of Bz,
given by (2), may be written Sx(8&) In{rlx exp/Tx(8')/
Sx(8rc))), it is apparent that for rlrc &exp) —TJr(8')/
Sx(81c)j, Cx must assume negative values to prevent
8& from incorrectly becoming negative. A similar
situation holds also for Cl,. Consequently, for low
enough energies the C~ and Cz, corrections become
large and negative.
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Transport and Deforiaation-Potential Theory for Many-Valley Semiconductors
with Anisotropic Scattering
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A transport theory which allows for anisotropy in the scat-
tering processes is developed for semiconductors with multiple
nondegenerate band edge points. It is found that the main effects
of scattering on the distribution function over each ellipsoidal
constant-energy surface can be described by a set of three relaxa-
tion times, one for each principal direction; these are the principal
components of an energy-dependent relaxation-time tensor. This
approximate solution can be used if all scattering processes either
conserve energy or randomize velocities. Expressions for mobility,
Hall effect, low- and high-field magnetoresistance, piezoresistance,
an(I high-frequency dielectric constant are derived in terms of the
relaxation-time tensor. For static-6eld transport properties the
effect of anisotropic scattering is merely to weight each component
of the e6'ective-mass tensor, as it appears in the usual theory, with
the reciprocal of the corresponding component of the relaxation-
time tensor.

1. INTRODtICTION
' 'N the last few years, it has been become clear' that
& - most of the well-studied semiconductors have energy
band structures greatly diferent from the simple model

Now at Birmingham University, Birmingham, England.
'For a brief review of some of the evidence, see C. Kittel,

I hysica 20, 829 (1954).

The deformation-potential methoa of Bardeen and Shockley is
generalized to include scattering by transverse as well as longi-
tudinal acoustic modes. This generalized theory is used to calculate
the acoustic contributions to the components of the relaxation-
time tensor in terms of the effective masses, elastic constants, and
a set of deformation-potential constants. For n silicon and n
germanium, one of the two deformation-potential constants can
be obtained from piezoresistance data. The other one can at
present only be roughly estimated, e.g., from the anisotropy of
magnetoresistance. Insertion of these constants into the theory
yields a value for the acoustic mobility of e germanium which
is in reasonable agreement with observation; a more accurate
check of the theory may be possible when better input data are
available. For n silicon, available data do not sufBce for a check
of the theory.

which had nearly always been assumed in earlier theo-
retical work. Whereas this simple model LFig. 1(a)j
assumed a nondegenerate band-edge state with wave
vector K=O and spherical surfaces of constant energy,
many or most actual band structures seem to be either
of the "many-valley" type t Fig. 1(b)j, with several
nondegenerate band-edge points Kto and ellipsoidal
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energy surfaces around each, or of the "degenerate"
types LFig. 1(c) or 1(d)j, for which the presence of
two or more band edge states of the same energy and
wave vector causes the energy surfaces to have more
complicated shapes. Of these nonsimple models, the
many-valley model of Fig. 1(b), which seems to occur
for the conduction bands of silicon and germanium, is
the easiest to treat theoretically. The transport proper-
ties of this model have been discussed in several
papers. ' 4 All these papers have assumed that the scat-
tering processes which the electrons or holes undergo can
be described by a relaxation time which may depend on
energy but-which is independent of position over a
constant-energy surface. A qualitative study of the
adequacy of this assumption' has shown that it is
probably quite good for the contributions of neutral
impurity scattering and intervalley lattice scattering,
and in nonpolar crystals for that of optical mode scat-
tering as well. However, the assumption is only some-
times good for scattering by acoustical modes, and it is
usually quite poor for ionized impurity scattering.

There is thus a need for a tractable theory of
transport phenomena based on less restrictive assump-
tions regarding the scattering processes. The first of
the two objectives of the present paper is to develop
such a theory, for the many-valley model. Since a
rigorous treatment of the most general type of scattering
law would be very diKcult, we shall undertake to solve
the Boltzmann equation by an approximate method
to be described in Sec. 2, which is applicable when all
scattering processes either conserve energy or randomize
velocity and which should give very good results when
the anisotropy of the scattering processes is not too
extreme. Instead of a single relaxation time r (e) charac-
terizing all states of energy e, this approach makes use
of three relaxation time functions 7i(e), rs(e), 7s(e),
assigned respectively to the three principal directions
of the energy surfaces of a valley. These 7 (e) are, of
course, explicitly calculable from the scattering prob-
abilities S(K—&I'). In Sec. 3, we shall apply this method
to the calculation of mobility, piezoresistance, Hall
effect, magnetoresistance, and high-frequency dielectric
constant, describing all of these eGects in terms of the
three r (e)

The second objective of this paper is to generalize
the deformation-potential approach of Bardeen and
Shockley' to the many-valley model, and with it to
express the r (e) for pure acoustical scattering in terms
of constants describing the shifts of the band edge
energies with strain. This will be done in Secs. 4 and 5.
The calculations, though straightforward in principle,
are rather tedious because they involve integrations of

s S. Meiboom and B. Abeles, Phys. Rev. 93, 1121 (1954); B.
Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).' M. Shibuya, J. Phys. Soc. Japan 9, 134 (1954); Phys. Rev.
95, 1385 (1954).' C. Herring, Bell System Tech. J. 34, 237 (1955).

~ Reference 4, Appendix A.' J. Bardeen and %. Shockley, Phys. Rev. 80, 72 (1950).

(&3
SIMPLE

(b3
SIMPLE MANY-VALLEY

Kx
Kx ~g

(c3
DEGENERATE DEGENERATE MANY" VALLEY

Pro. 1. Different types of band structure for a semiconductor,
illustrated by the forms of the surfaces of constant energy in wave
number space. The band edge points K(') are represented by heavy
dots.

anisotropic scattering probabilities over ellipsoidal
energy surfaces. In Sec. 6, we shall apply the theory to
the quantitative correlation of mobility, piezoresistance,
and other data for e-type silicon and n-type germanium.

—f(K)S(K~K')fdK'. (1)

It is easy to show that the integral in (1) can be greatly
simplified if S randomizes velocity in the sense that

S(K I') =S(K—+K'*)=S(K*-+I'),

where K* is the state in the same valley as I but with
opposite velocity. For this case, the part f of f which-
is odd under the inversion K+~Ka contributes nothing
to the integral of the 6rst term. The total contribution
of f is thus determined by the second term, and is of
the form f (K)/r(K), this being a definition of a
relaxation time r(K). Since the first-order effect of a
small electric ield or temperature gradient is to
produce a departure from equilibrium which is odd, any
scattering law of the type (2) permits easy solution of
(1) for all except "hot-electron" phenomena. Here we

2. SPHERICAL HARMONIC DEVELOPMENT OF THE
DISTRIBUTION FUNCTION

Let f be the distribution function for the electrons
or holes in K-space, S(K—K ) the transition probability
into unit volume of K-space due to scattering, so that,
when nondegenerate statistics apply, the Holtzmann
equation is

~f(K) (~f(K) i
+~ Lf(K')s(K' K)

r)( ( r)1 ) fields
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wish to consider the more general case

S=S,+S„ (3)

Since S. conserves energy, the changes brought about
by this type of scattering can be described by equations
of the form

where the subscripts r and c, which we shall use through-
out the paper, stand for "randomizing" and "conser-
vative" respectively; S, satisfies (2), and S, represents
energy-conserving intravalley processes, i.e., processes
K—+ some K' on the same constant-energy ellipsoid.
Thus S, contains a factor 8(e—e'). For such a case, and
for infinitesimal electric field, the contribution of S„to
(1) can be described by a relaxation time, while the
contribution of S, possesses the simplifying property
that it does not mix the f's of different energy surfaces.
Thus the solution of (1) reduces to the solution of a
two-dimensional integral equation on each energy
ellipsoid.

The form (3) includes most of the situations which
occur in semiconductors. Intervalley and optical mode
scattering satisfy (2) to a good approximation, because
the matrix element is nearly independent of the posi-
tions of K and K' in their respective valleys. ' Normal
impurity scattering and acoustical mode scattering
conserve energy, or nearly so. However, electron-
electron collisions, which have a moderate e8ect when
ionized impurity scattering is pronounced, ' are not
describable in this way. The fact that electron-electron
collisions mix diferent energies without randomizing
velocities prevents the considerations of this paper from

applying with any exactitude to the high carrier concen-
trations at which degenerate statistics occur. However,
it is not hard to generalize the results at each stage so
that they are applicable to a hypothetical case where

(1) and (3) apply with Fermi statistics, and we shall
indicate from time to time how this generalization is to
be made.

It is convenient to define new coordinates, in whose
space the energy surfaces become spheres, by changes
of scale in the three directions corresponding to the
principal axes of the ellipsoids:

q =A(E E&'~)/(m. *)-:, —

Ae =—(e—eg( =-', p',

f—f"'=&F~-(~)y ~-(~/~) (6)

7 L. Spitzer, Jr., and R. Hirm, Phys. Rev. 89, 977 (1953).

where m * is the eGective mass in the nth principal
direction, e(K) is the energy, and Et, =E(K"') is the
band edge energy. This transformation, besides sim-
plifying the treatment of scattering processes which
conserve energy, has the further advantage, which we
shall use later, that the changes in time due to a mag-
netic field become simple rigid rotations in q space.

To make use of the new coordinates, let the departure
of the distribution function from equilibrium be
expanded in spherical harmonics in q space:

the coefficients being, of course, functions of q. For the
other type of scattering postulated in (3), that which
randomizes velocity, we have for odd l an analogous
equation

~F~-(~)
(hami S„il'm')F)„(q), (8)

For infinitesimal electric Geld, the only case we shall
consider, only terms with odd l occur in (6), whether or
nor there are magnetic Gelds or periodic time varia-
tions. Thus, the Boltzmann equation (1) reduces to a
set of simultaneous equations in the F&„for each value
of y (or energy).

Note that if S„randomizes the final state over an
energy surface, instead of merely satisfying (2), the
right-hand side of (8) reduces simply to F& (rp)/r—,(p).
This is the case for the principal S„-processes, vis. ,
optical mode and intervalley scattering. '

All the transport properties mentioned in the intro-
duction can be described in terms of the dependence of
the current on the magnetic and electric fields and on
time or frequency. The contribution of each energy
shell to the current is a linear combination of the coef-
Gcients F~ for /=1. The central ideal of the present
section is to note that if the terms t'// in (7) and (8)
are not too large, the Ii& can be derived fairly accu-
rately by neglecting the terms f) 1 in (7) and (8), the
error being of the second order in the neglected coef-
Gcients. This conclusion follows from a consideration, in
physical terms, of the structure of the simultaneous
equation system to which we have reduced the Boltz-
mann equation:

The electric field feeds the Fi from f&'&.

The magnetic Geld, producing a rigid rotation in

q space, feeds each F& only from P& of the same l,
i.e., it does not mix 1's.

S,+S, feeds each F& from many F&, but, by
hypothesis, feeds the Ii

& more strongly from each other
than from the P~ ~ with I'&1.

Thus, if the coefficients (1m
~
S,+S„~l'm') for /') 1 are

taken as small quantities of the first order, the F& ~ for
l'=3, 5—will be of the first order, and their eAect on
the feeding of the F~ will be of the second order.

A preliminary investigation of scattering processes in
semiconductors' has shown that the anisotropy of scat-
tering in q space, though often appreciable, is not
usually very extreme. Thus, it is reasonable to hope
that the approximation just outlined will be a good
one in most cases. To make this expectation more
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quantitative, we have investigated, in Appendix A,
some special scattering functions for which (1) is
exactly soluble, and have compared the exact answers
with those computed by neglecting terms l&1 in (7)
or (8). For a given electric field, the current computed
in the latter way is always too small; this is a general
consequence of the positive-definiteness of the dissi-
pation function. However, the results of Appendix A
suggest that the error will usually be only a few percent
if the relaxation time r(K) of a carrier, or some similar
measure of the eGectiveness of S, does not vary by more
than a factor two or so over an energy surface. Some
rough estimates' have indicated that the anisotropy of
the scattering due to acoustic modes is usually, though
not always, no worse than this. The range of anisotropy
to be expected for impurity scattering is less certain,
but clearly slight to moderate amounts of impurity
scattering cannot take the over-all scattering function
out of the domain of applicability of the present
method.

It remains to express the l=1 terms of (7) and (8)
as integrals of the scattering probability. If the basis
for the Ii~ is chosen to consist of functions trans-
forming as x, y, s, the coeKcients (1m(S~1m') become
second rank tensors S p. If the crystal has two or more
symmetry planes through K "&, as we shall assume, the
principal axes of this tensor must coincide with those
of the constant-energy ellipsoids. When the coordinate
axes are chosen in these principal directions, the sum
of (7) and (8) must have the form

8Fi.(y)

-s
with analogous equations for y and s; 7, r~, r, are the
eigenvalues of a relaxation time tensor z or r p reci-
procal to S p. The contribution of the velocity-ran-
domizing processes to (9) is given by (1) and (8), with
only the second term of (1) contributing; we may
calculate it by putting p, for f, since Yi, ~ p, . For
Maxwellian statistics, we find

J~@~(Bf/8$) spdQp J' P~fdQ(p

p,'S„(y~q')dy'dQ„~"p,'dQ„, (10)
J 0

4

where dQ„is the element of solid angle in q space and
S,(q—+rp ) is the scattering probability into unit volume
of q-space. For Fermi statistics, a little algebra shows
that the second equation of (10) should be modified by
inserting a factor

C
1—fi"(q')]/Ll —f"'(y)] in the

integrand of the numerator. To get the contribution of
the energy-conserving processes, let S, be equivalent to
a scattering probability A(rp -rp') into solid angle
dQ„' at q' on the sphere p'= p, i.e., S,(q-+rp')
=ha(y —y')/p'. With f~q, as before, we Gnd, for

either statistics,

y.(qr,
' p,)—A(~q')dQ„'dD„

r-(~)

Equations of the same form as (10) and (11) of course
hold for y and s also.

The calculations of Secs. 4 to 6 will be devoted to
cases where the K"& are on threefold or fourfold axes
of symmetry, since these are the cases which occur for
the conduction bands of silicon and germanium and
since they are simpler to treat than band edge points of
lower symmetry. The simplicity arises from the fact
that the energy surfaces must be ellipsoids of revolution,
and the concomitant fact that the three 7's reduce to
tWO: r = rI I r = ry = rg, We Can ShOW that fOr SuCh

cases the A in (11) can be replaced by its azimuthal
average, defined as

(A(rp .q'))=average on n of h(D q +D rp'), —(12)

where D is the operation of rotation through angle n
about the preferred axis of the valley, i.e., about the
s-direction. This replacement is obviously justified for
the integral defining r„';for r~ ', we need merely
note that use of A(D p ..D cp') inst-ead of A amounts
to computing r~ ' with respect to a rotated set of x,y
axes, hence must give the same result.

3. TRANSPORT PROPERTIES OF MANY-VALLEY
SEMICONDUCTORS

We have seen, in Sec. 2, that the Boltzmann equation
(1) simplifies greatly when all scattering processes
either conserve energy or randomize velocity. Under
these conditions scattering does not mix the distribu-
tions in diGerent energy shells, at least if we limit
attention to departures from equilibrium which are of
the first order in the electric field or temperature
gradient. Moreover, to this order the rate of change of
the distribution due to the electric field or temperature
gradient depends only on the equilibrium distribution,
while the rate of change in any energy shell due to the
magnetic field depends, again, only on the distribution
in this energy shell. Therefore, the Boltzmann equation
can be solved independently for each energy shell ddt
of each valley i and the resulting current contributions
dj(" can be added vectorially to give the total current
j corresponding to the given fields. Since all the
transport properties mentioned in the introduction are
describable in terms of the dependence of j on the
electric and magnetic field vectors, the temperature
gradient, and the frequency, the theory of all of these
phenomena reduces to the calculation of shell contri-
butions dj~'&. In this section we shall calculate these
shell contributions and combine them, in the approxi-
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mation which describes the scattering by the relaxation
time tensor ~(Ae) whose components are given by (9)
to (11). We shall not assume axially symmetrical
valleys except in places where the equations are sig-
nificantly simplified by this assumption.

It turns out, as one might expect, that the calcula-
tions using the present assumptions parallel very closely
the more familiar ones' 4 based on the assumption of a
single relaxation time for each energy shell. We shall
start by proving the theorem that for static electric and
magnetic fields the contribution dj~" of any energy
shell to the current depends on the effective-mass
tensor m* and the relaxation-time tensor ~ only through
the product m~'~, i.e., involves only the three
quotients re/me* This .follows at once from the Boltz-
mann equation. The time rate of change of the partial
current vector dj&') due to the electric field is propor-
tional to the acceleration &em* 'E of the charge
carriers, with a factor of proportionality which depends
on the energy and the unperturbed distribution function.
The contribution of the magnetic field to Bdj "&/Bt is
just &e times the sum of the Lorentz accelerations
&(%)m ' (vXH) suffered by all the charge carriers
in the shell, since the Lorentz acceleration, unlike that
due to the electric Geld, does not displace any velocity
vectors across the boundary of the energy shell. How-
ever, the sum over the whole shell of vXH is proportional
to dj&"XH so that the combined contribution of the
electric and magnetic Gelds to the time rate of change
of current is a linear combination of m* 'E and
m~' (d j &'& XH). On the other hand the contribution of
the scattering processes to the time rate of change of
the partial current vector is equal to —~ 'dj(').
Therefore the mass tensor and the relaxation-time
tensor occur in the Boltzmann equation only as the
product of ~ with m* ' [see Eqs. (13) and (14) below).
If components are referred to principal axes, the
transport properties involving static Gelds always have
the reciprocal of each effective mass, 1/m„*,weighted
with v„.However, for transport properties involving
alternating electric fields —such as the high-frequency
dielectric constant discussed below —the form of the
weighting is somewhat diferent.

Thus we have shown that a simple weighting of mass
tensor components by the relaxation-time tensor com-
ponents holds for the partial current vectors of all the
static-field transport phenomena. In general, however,
each of the components of the relaxation-time tensor
depends on the energy of the shell, so that these com-
ponents must be included in the Maxwellian average of
the partial currents dj&". If all of the components of
the relaxation-time tensor depend on the energy 6&
in the same way then all the static-Geld transport
properties can be obtained from the formulas of the
older theory based on isotropic relaxation-time con-
stants~4 by the simple prescription given above, i.e.,
by weighting m»~' and m~* ' with 7» and 7-~, respec-
tively. The explicit calculations below confirm this

and also show how r~ and r„occur in the Maxwellian
averages over shells.

The remarks that have been made above enable us to
write down at once the Boltzmann equation for the
current contribution dj(') of an energy shell of any
particular energy Ae relative to the band edge. Let us
choose a right-handed coordinate system oriented along
the principal axes of the valley, and let 8 e,=1 if nPy
is an even permutation of 123, —1 if an odd permuta-
tion, zero if any two of these indices are the same. With
the upper sign for electrons, the lower for holes, the
transport equation is

Bdj~~') 25g PEad+( g &p, y~apyIIyd jp&i) dj &i)

8$ C

(13)

where de&') is the equilibrium number of carriers in the
energy shell in question, per unit volume of crystal. For
static-field problems, the left of (13) is to be set equal
to zero; the three equations (13) then involve, as we
have already noted, only the combinations of r /m„*.
For any H, these can be solved as simultaneous equa-
tions for the dj &". Although for large magnetic Gelds
H a solution of (13) by determinants is the most con-
venient, an iterative solution is simplest for small B.
Writing (13), with left side zero, in the form

where

0=
2a ' Ed &i)

3kT

Oae= («a/ma*e)g, Sac,+„
we can express the solution in terms of the series for the
reciprocal of the tensor (1&O):

X (8.eWOe +Q, Oe,O„„).(15)

Paa (i) = (16)

where the angular brackets represent Max wellian
averages, (Ae) = —,'kT, etc. For a cubic crystal the
average of (16) over the diBerent valleys is the same as
the average over e in a single valley, so we have for the

Mobility

The leading term of (15) gives the conductivity oo
at H=O, or equivalently the mobility p. The contribu-
tion of the ith valley to the conductivity tensor can be
expressed as m&'&ep, e&'&, where n&'&= fde&'& is the con-
centration of carriers in states of the ith valley, and
where p p&') is diagonal relative to the axes of the ith
valley. From (15), we find
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total mobility

00 f—E.Q 1&tj(4&

ne

where N=Q rs&4&.

net'= (1/)
3(do) m *

Ha11 Effect

The Op term in (15) gives the low-leld Hall con-
ductivity; the contribution of the ith valley to this is

'j-"'
&ape (~) =

BEpBH&

es22i'& (/&, Or.rp) b.p,

c (ao)

((Aor„) 2(hor2. )) '
+

0 m»* m2.*

(19)

Low-Field Magnetoresistance

In a similar way, the third term of (15) gives the
low-field magnetoresistance, or more properly, magneto-
conductivity. We find for the contribution of the ith
valley, in the principal axis system of this valley,

~'j."'
0.

p
~(~)=

2 l9EpBH&BHg

(/& «arPrl) (~) pPOlaS+%. SPCl r)
(2o)

(Ac) 2m *mp*m&,*

The total magnetoconductivity tensor is again obtained
by summing on valleys. For axially symmetrical valleys,
the results all come out in the form

1 4)sj me4 (64r&s)
&eppes= f30

2 BEpBH~BHs c2(d, c) m4.*2

(nor, 2r„) (acr, r, P)-
+g2i +g&2 (21)

m~*~mll* m~*mll*'

where e is the total density of carriers and the coef-
ficients g„,depend on nPyB Table I give. s values of the
g„,and relates the 0. p~q to the magnetoresistance
constants b, c, d introduced by Seitz, ' and defined by

(j H)' d(i.'H.'+io Ho'+ j.'H. )= 5H'+c
EPO );

(22)
'F. Seitz, Phys. Rev. 79, 372 (1950).' G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1950).

Summing this on valleys gives the total a p~, equal to
%(oo&4a/c)8 p„,where &4& is the Hall mobility. For a
cubic crystal with axially symmetrical valleys, we find

(2(/&. 4ri&rg) (/&. Or~2) )
3(~o)

~
+

@II ( m)1*m2.* m4.*2 )

TABLE I. Low-field magnetoconductivity components for cubic
crystals with axially symmetrical valleys, referred to the crystal
axes. Tabulated quantities are the coeKcients g30, g», g», respec-
tively, in Eq. (21) for r„p~p.

Component, referred to
crystal axes

Type of Valleys (direction of a K&s))
100 111

0eaaa = —~0(5+&+&)
= —oo(np /po& )2~oo'~

O P P = oot—& oo (—&la/O) 2

= —oo( np/p o& 2) loo'"
—rp(IJ,II//c)'

0aPOP SITOe+ 20'O(&OP/O)

0, 0, 0

1 1 1
3& 3p 3

—2/9, 4/9, —2/9

—2/9, —5/9, —2/9

1/9, 5/18, 1/9

where Ap=p —po is the change in resistivity p of a
specimen, due to a small field H, for a given direction
of j. We have put bars over the letters in an effort to
avoid confusion between the magnetoresistance constant
c and the velocity of light.

Hl ml /rl+H2 m2 /r2+Hs ms /rs

where Hl, HS, Hs are the components of H along the
. principal axes of valley i. This is the generalization of
Eq. (75) of reference 4.

When r„and r~ are each proportional to Ae &, as for
the ideal case of acoustic lattice scattering, the complete
high-field magnetoresistance can of course be taken
from the work of Abeles and Meiboom' or that of
Shibuya, s with the replacement of m„*/m4,* by
~ll r mg rll

The limiting Hall constant as H—+~ turns out to be
simply 1/Sscc, just as in the simpler theory. ' ' The lack

High-Field Magnetoresistance

For large magnetic fields it is, as we have remarked,
simplest to solve the Boltzmann equation (13) or (14)
by determinants. The conductivity tensor which relates
the sum of all the current contributions dj&" to the
electric 6eld comes out in the form of a Maxwellian
average of a quotient with a numerator of the third
degree and a denominator of the second degree in the
components of m~'~. As H—+~, the limiting value
of the resistivity transverse to the magnetic field turns
out to involve terms of order 1, 1/H, and 1/H in the
conductivity tensor, and for the most general depend-
ence of rll and r~ on energy this limiting form is too
complicated to be worth writing down. We shall
therefore be content to give, for general forms of
r«(ho), r~(64), Only the limiting fOrm Of the COn-

ductivity tensor as H—+; this sufFices to determine the
limiting longitudinal magnetoresistance, though not the
transverse. A simple calculation gives for the contri-
bution of the ith valley to this limiting conductivity
tensor

H Hp
o..p&'&(H~~) =e224&'&

(~)
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of dependence on v-«and r~ is of course to be expected
in view of the lack of dependence on m„*and m~*.

Pie2:ore sistance

It was pointed out in reference 4 that for a many-
valley semiconductor two eRects predominate over all
others in producing a change of resistance with strain
of the sort observed by Smith" for silicon and ger-
manium. The erst of these is the change in the popu-
lations of diferent valleys due to the different shifts
in the energies of band edge points differently situated
with respect to an anisotropic strain. This "electron
transfer eRect" gives a contribution to the piezore-
sistance which is proportional to the anisotropy of the
conductivity tensor for a single valley and inversely
proportional to the absolute temperature. The second
eRect, which is important only when intervalley scat-
tering is appreciable, is the eGect of strain on the
relaxation times, due to increase or decrease in the
energies of the valleys containing possible final states
for intervalley scattering. These two eRects, and other
eRects of much smaller magnitude, give additive con-
tributions to the electroresistance tensor. The latter is
defined for a cubic crystal as

m p, s
= . o —'B—o.p-/Be. ,s) (24)

a~.,&') a.(~&

m~pyg-
cr '. ~ Be&&) Bu g

(25)

where e(&' is the energy of the jth band-edge point. The
quantities Be('&/Be» will be referred to as "deformation
potential constants, " as they play the central role in
the generalization of the Bardeen-Shockley deformation-
potential theory of mobility, which we shall discuss in
the next section. When the valleys lie on symmetry

TABLE II. Symmetry restrictions on the deformation potentials for
some simple types of valleys in a cubic semiconductor.

Type of valley
(direction of K&&&) -+

El=BE ~/BN2;e
~~2 —g ~(s) /gg,
Hs= B6( ~/BE4g'
Z4 =BE( ~/Bsyg
"5= Bc('~/Buzz
=g——Be('&/Bu,

„

100

~d+ 3~@
~d~ 3~+
~d+ 3~~

3wg
3~~
'34/ ss

110

Md&~g Q~p
1~~wd~w g QMp

0
0

Q4tP

where N~q is the strain tensor and 0.
p is the conduc-

tivity tensor, which in the absence of strain has the
form of a.b p.

Let us choose a coordinate system, e.g., the crystal
axes, which is the same for all the valleys, and let
o p&" =e")ep p&" be the conductivity tensor of the ith
valley relative to these axes. Then, if we neglect all
contributions to the elastoresistance other than the two
just mentioned, we can write

axes in the Brillouin zone, their symmetry makes it
possible to describe all the deformation-potential con-
stants in terms of two or three independent ones.
Table II shows one way of doing this. The independent
constants d, for valleys on (100) or (111)axes have
been chosen so that ™~represents the shift due to a
dilatation in the two directions normal to the axis, while

„represents that due to a uniaxial shear compounded
out of a stretch along the axis and a contraction in the
two normal directions; the notation agrees with that of
reference 4. The meaning of p and "„for (110) valleys
is similar, but now a third constant „must be intro-
duced, describing the shift due to a shear in the (001)
plane containing the valley axis.

Now consider the ftrst factor on the right of (25).
Since e(o is proportional to exp( —

~

e('& e~~/kT—) and
since in the extrinsic range the variation of the Fermi
level ep with strain is the average of that of all the e&",

we have in the present approximation

1 Bo p('& 1 B(N('&p p('&)

cr Be(&) ep Bc~&)

1 p p('& (B'i 1

kT p

e (m(o —' B~ ('&

(26)
1V+4 (Ae) Be & ) p

where Z. is the number of valleys and where & is +
for e type, —for p type, if the e(" are understood to be
electron energies in all cases. The erst term on the
right of (26) represents the electron transfer effect, the
second the eRect of strain on intervalley scattering.
It is a simple matter of algebra to combine (25), (26),
and Table II and obtain explicit formulas for the elasto-
resistance constants. The results for the electron transfer
contribution, which predominates at low temperatures,
are given in Eqs. (27) to (34) below, for the case of a
cubic semiconductor. They are expressed in terms of the
principal mobilities (16) of a valley and the over-all
mobility (17); for the (110) valleys the subscript p is
used for the direction normal to the valley axis and in
the same (001) type plane as the latter, and the sub-

script e for the direction normal to this plane. The upper
sign is again for electrons, the lower for holes. Valleys
centered on (100) axes:

(p (o —p (&) )
Contrib. to mtt—=mtttt=& —

~ ~, (27)
9kT( p

(p&&( ) p&(&)
y

Contrib. to mts—=m»ss= ~— (28)
9kT( p

's C. S. Smith, Phys Rev. 94, 42 (1.954). Contrib. to m44=—m1212 (29)
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Valleys centered on (111)axes:

Contrib. to m~~= that to m~~ =0, (30)

(2 Zu 1 Zy) (p3a ' I33p
' )—

(9 kT 6kT) ( p j
()(4 „

( ')
p ( ') )

+Contrib. to m44
12kT( p ) (33)

The corresponding explicit expressions for the con-
tribution of the intervalley scattering effect cannot be
put in such a simple form, and will not be given here.

The contributions to the elastoresistance from the
various minor effects enumerated in reference 4 all can
be shown to be nearly independent of temperature over
any range where the relaxation times r (he) have the
form f (he)g(T), e.g., over the range in which acoustic
lattice scattering predominates. Over such a range a
plot of any component of elastoresistance against 1/T
should give a straight Iine with an intercept measuring
the influence of these minor effects and a slope measur-

ing the product of a by the anisotropy of p &".

Whereas in the theory of reference 4 this anisotropy
was that of the reciprocal effective mass tensor m4c

in the present theory it is that of m~' ~. However if
m* is very anisotropic, the sensitivity to the anisotropy
of ~ is slight. We shall use these results in Sec. 6 below
when we attempt to calculate the mobilities of electrons
in silicon and germanium.

High-Frequency Dielectric Constant

When an alternating electric Geld is applied to an
assembly of carriers the response becomes limited, at
high frequency, by the inertia of the carriers. " The
solution of the transport equation proceeds exactly as
the solution of the static-6eld problems above except
that now the left side of (13) has the form so)dj, &')

1' T. S. Benedict and W. Shockley, Phys. Rev. 89, 1&$2 (1953).

(P))(4) P3 (4) )
Contrib. to m44= &— (31)

9kT&, p, )

Valleys centered on (110) axes:

~Contrib. to m~~

(2 M 1 H ) fp), (~) p3 (~))

),9kT 6 kTJ ( p )
4 $„1g„)(p3„(~) p3„(~))+ I

— +-
I I

—
I (32)

9kT 3kT) ), p )
&Contrib. to mg2

( 1 1 ) (p() p (~))

9kT 12kT) E p )

This causes the transport equation to contain, besides
terms in m4c—' ~, a term in ~ alone. We 6nd, for the
frequency-dependent complex conductivity of a cubic
crystal,

rie' 1 ( 2 er
~(~) =

3(he) m * (1+i(ur, )
(35)

where the summation is over the three principal direc-
tions of a valley. The departure of the dielectric constant
from the dielectric constant of the crystal without its
free carriers is given by

)(3—)((o))= —(42r/o)) Im o (o)), (36)

where Im o (o)) is the imaginary part of (35). By ex-

panding the denominators in (35)—a nonconvergent
procedure which is nevertheless justified as far as the
first two terms —we can express (36) in terms of the
carrier density e and Maxwellian averages of powers of
the relaxation times:

(~-.2) (a-.4)

as —~(cu)=—ne2 P —a&2 P +- m.*(~.) - m.*(~.)
(37)

In the simpler type of theory with isotropic relaxation
time4 it was possible to eliminate v. from the leading
terms of this by using the analog of (19) for the Hall
mobility p&. The leading term of (37) then took the
form 4rrippiim& '/B, where (m& )) '= —' P m ~' and
8 was a function of the mass ratios, usually only a little
less than unity. The leading term in the present version
of (37) can be put in the same form if m&')/B is replaced
b

(Der ) (Aerlr2) (Der2r3) (Aersrl)
m&"'= P + +

m * my*m2* my*ms* ma*my*
(38)

While a rather large anisotropy of c is required to make
this differ radically from its value m&I)/B for isotropic
r, it is noteworthy that (38) can in principle become
larger than the largest of the m

Note that the expression (37), unlike the expressions
in earlier parts of this section, does not have each of
the reciprocal masses weighted by the corresponding
component of the relaxation-time tensor.

Effect of Fermi Degeneracy

It was pointed out in the preceding two sections that
under certain conditions the methods developed in
those sections and used here could also be applied to
cases involving Fermi statistics. Except for the piezo-
resistance equations, all of the foregoing formulas can
be generalized to Fermi statistics, when these conditions
are fulfilled, by replacing d &')/2k3T in (13) and subse-
quent equations with the sum over a shell of 8f&')/(lAe-
and by performing the averages over shells (angular
brackets) with the weighting factor &)f&s)/&e instead of
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the Maxwellian factor. In the piezoresistance equations
(26)—(34) the only change needed is to replace 1/kT by
+ci inn"&/ries. This has the effect of making the
piezoresistance considerably smaller for degenerate
than for nondegenerate material.

4. DEFORMATION-POTENTIAL THEORY

Having thus formulated the theory of transport in
terms of a set of principal relaxation times, we turn now
to the task of evaluating these relaxation times ex-
plicitly for the case of scattering by lattice vibrations
of the acoustic range. To do this we shall apply the
deformation potential method' to calculate the scat-
tering probability A(rp~ts') between two elements of a
constant-energy surface, and hence to evaluate (11).
The fundamental idea of the deformation potential
approach is that the matrix element K~K&q for
absorption or emission of an acoustic phonon of wave
vector q is practically equal to the qth Fourier coef-
6cient of the function Be&'(r), defined as the shift of
the band edge energy e&" which would be produced by
a homogeneous strain of magnitude equal to the local
strain at point r due to the mode q. The justification
given by Bardeen and Shockley' for this assumption
can be generalized to include scattering by transverse
as well as longitudinal acoustic modes; one can also
show that the validity of the method is not impaired by
polarization of the filled-band electrons by the presence
of the free carrier. Moreover, it is easily shown that
electrostatic fields on the scale of the wavelength of the
lattice mode usually have a negligible eBect, even for a
polar semiconductor, unless the crystal is piezoelectric.
We shall not undertake to discuss these points here,

however, but shall merely take the deformation poten-
tial method for granted.

We shall assume, as we must if we are to use (11),
that the energy of the phonon which a charge carrier
absorbs or emits is negligible compared with the energy
of the carrier; this is valid for nearly all carriers at any
but the very lowest temperatures. With this assumption
we can lump absorption and emission together; let

~

M [' be the sum of the squared matrix element over
absorption and emission. Let q be the projected wave
vector defined by (4), related by (5) to the energy he
relative to the band edge, and let X~ be the number of
quantum states of a given spin per unit volume of
q-space. Then we have for acoustic scattering

TABLE IV. Contributions of the longitudinal and transverse
branches to the squared matrix element for scattering, for sym-
metry directions of the phonon @rave vector g in a cubic crystal.
The values of

~ M(q, n) ~' are obtained from the table entries by
multiplication with kT/V The .number of equivalent directions
of each type is indicated in parentheses. The quantity c =c»
—c»—2C44 measures the elastic anisotropy of the crystal.

Type of valley
(direction Direction
of I«)) of q Longitudinal

Trans-
verse 1

Trans-
verse 2

100 100(2)

110(8)

111(8)

(="~+=. )'

C12+2C44+C*

(md+ 2m')

C&2+2C44+ 2C

( 8+3 "a)

C1o+2C44+ 3C*

$w
6wtC

C44+ 3C

]w 24w tc

C44+ gC

(1/18)

C44+ 3C

A(q ..ts')=(2tr/A)+~M~ q'(dq/d )N,
=CP(~[ ~e:, (39)

say, where the summation is over the three acoustic
branches. Combining (39) with (4) and (5) we get for

TABLE III. Polarization factors, defined by (42), for normal
modes in symmetry directions of a cubic crystal. Values for the
symmetry directions not listed are obtainable by permuting the
indices of q and the f's.

011(4)
C12+2C44+ gC

Direction
of q Branch

100 long.
trans. 1
trans. 2

111 long.
trans. 1
trans. 2

111 long.
trans. 1
trans. 2

fl =fsa fm =fey

1 1 2—1 0 —1
1 —2 —1

2
1—1

1 —2 2 —2
0 1 1 0—2 1 —1 —2

f6 —fzz f4=fyz f6=fax f6=fry

0 0
0 0
0

111(2)

110(6)

C1g+2C44+C*

(="s+=".)'

C12+2C44+ 3C

(~s+3 +) .

C12+2C44+ ~C*

("&+3™)
C12+2C44+C

(2/9)='

C44

Iw
9wtC

C44

9wtC

C44

110 long.
trans. 1
trans. 2

110 long.
trans. 1
trans. 2

0—1

0—1
0

0 —2
1 0
0 0

1T1(6)

110(6)

(="s+9=".)* (2/2&)"-"' (2/81)="'

C1~+2C44+-', C* C44+-', C C44+ 3C

w
w

CI~+2C44+~C*
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TABLE V. Approximate dependence of the azimuthal average of the squared matrix element for scattering on the angle 8 between q
and K&'), the symmetry axis of the valley. The quantity c =c»—c»—2C44 measures the elastic anisotropy.

Type of valley
(direction of K(s)) Squared matrix element

(Ikl(q, t) I'&

(lkt(q, ti) I'+ l~(q, 4) I'&

(I~(q, t) I'&

(lkI(q t~) I'+ I'M (q, t2) I'&

Value

(.~+cos'8" ~)' c*(0.15—1.50 cos'8+1.75 cos'8) kT

CI2+2C44+ 5C* CI2+2C44+ SC V

3 2 1 1 i kT
'c"os'8(1 co—s'8) — +6 cos'8

I

c4g+sc c44+2c (c44+sc c44+ac ) V

("s+cos'8 )' ,'c*(—015 . 1.—50 cos'8+1.75 cos48) kT
1+

CIg+2C44+ 5C* C12+2C44+ SC* V

0.375 0.625 9 ( 1 1 ) kT' cos'8(1 —cos'8) + +—cos'8
I

———
c44 c44+ sc 8 Jc44 c44+ 8c J V

6

5s(ti =+ g (t)tt
s=1

(41)

where be&'~ is the shift of the energy at the band edge
point 'K&'& due to a strain with components tt, indexed
in the usual manner and referred to the crystallographic
axes. Since the constants going with one valley i of a
many-valley semiconductor are derivable by a sym-
metry transformation from those going with any other
valley j, we shall henceforth assume that we are working
with a particular valley i, and omit the suKx i from
,"i. The coefficient of N„(q,n)tt, (q&o) in IMI' is thus
, , To evaluate the thermal average (u„(q,n)N, (q,n)),

let us suppose that

N. (q,~) "f (q,~),

with a factor of proportionality independent of r. The
f, are thus simply unnormalized factors describing the
state of polarization of the mode q, n, factors which can
be determined from the theory of elastic waves, or, if
q is in a symmetry direction, from symmetry alone.
Since the q's of interest to us are in the equipartition
range, the mean elastic potential energy of the mode
q)Q ls

is V Q c„,(N„(q,ct)u, (q,n))=-', kT, (43)

the coefficient C, for a crystal of volume V,

C= (mi*tn sos*)1V/2&vr'5'. (40)

When the energy shifts be"' at the band-edge points are
expressed as linear combinations of the strains I„the
IMI' for each branch u of the vibrational spectrum
becomes a linear combination of products tt, (q,n) tt, (q,o)
of Fourier coefFicients of the strains. Our task in this
section will be to evaluate the thermal averages- of these
quadratic expressions, in terms of elastic constants and
temperatures.

In the preceding section (Table II), we have already
made use of the deformation-potential constants ™,
(s=1 to 6), defined by

where the c„,are the elastic constants and V as before
is the volume of the crystal. This equation can be used
to determine the proportionality factor in (43). Thus,
Gnally,

I M(q, ~) I'= (f 2'/V)Z =.=" f.f./2 c-f.f' (44)

We shall be concerned in the following with valleys
on (100) or (111) axes in the Brillouin zone of a cubic
crystal. For these cases symmetry allows all the ™„ to
be expressed in terms of two constants ™~,™,as shown
in Table II and discussed in the preceding section.
Note that the band edge shift E1 per unit change of
volume, introduced by Bardeen and Shockley, ' is
given by

%==a+ s=". (45)

Table III gives values of the polarization factors f,( nq),

for wave vectors q in symmetry directions. From these
two tables, and (44), we can construct the IM(q, n) I'
for any q in a symmetry direction. This matrix element
of course has the symmetry of the valley in its de-
pendence on the direction of q, and it is independent of
the magnitude of q for any given direction. Table IV
gives the results.

To evaluate the relaxation-time integrals (11) we
of course need to know +, I M

I' for all directions of q.
Moreover, it is useful to keep separate the contributions
IM(q, /) I' of the longitudinal modes and IM(q, ti) I'
+ I M(q, ts) I' of the transverse modes, since in one field
of application, the phonon contribution to the thermo-
electric power, " scattering by longitudinal modes has
much more eGect than an equal amount of scattering
by transverse modes. Methods of interpolating these
contributions for directions not along symmetry axes
are described in Appendix 8, and the results are given
in Table V. The quantity tabulated is the azimuthal
average of the contribution to the squared matrix
element, i.e., the average over all directions of q ob-
tainable by rotating a given q about the symmetry

"C.Herring, Phys. Rev. 96, 1163 (1954).



C. HERRING AND E. VOGT

'TAnr. E VI. Coefficients in the expressions (49), (50) for the principal relaxation times, for a cubic semiconductor, in terms of the integralsI„,J„,defined in the text. The abbreviations c~=c1~—c~2—2c44 and c~=c12+2c44+gc* have been used.

Type of va11ey
(direction of K&s&}~ )00

Io+ (c*/ci) (—0.15Io+1.5Ii —1.75Is)

2Ii+ (c%i) (—0.3Ii+3Is—3.5Is)

Ci(C44+ sC )
Is+ (Ii—Is)+ (c*/ci) (—0.15ls+1.5I,

(c«+-'c*)(c«+-'c*)

c c3—1.75I4) — (Ii—Is)
(c44+-,'c*)(c44+ sco}

Io+ (c*/ci) (0.10Io—Ii+1.17Is)

2Ii+ (c*/ci) (0.2Ii —2Is+2.33Is)

Ci(C44+xc )
Is+ (Ii Ii)+—(c%i) (0.10Is—Is+1.17I4)

Css(css+ sC )

3

ccrc

+- (Is—Is)
8 c44(c44+-', c*)

4) l~) L~ same as for parallel cases above but with ~2J replacing each I„.

axis of the valley; according to (12) only this average
is needed for the evaluation of (11).

Several features of the table entries are worth noting.
All the entries are polynomials in cos'tY, where 8 is the
angle between q and the symmetry axis of the valley.
For vanishing elastic anisotropy c*, these become
quadratic forms in cos'0; the last term in the square
brackets of each of the four rows of the table represents
a small anisotropy correction and contributes terms
cubic or quartic in cos'0. The physical origin of the
eGect of elastic anisotropy is, of course, the eGect of this
anisotropy in making the rms strain amplitude of modes
of a given branch dependent on the direction of q
relative to the crystal axes. Another feature to be noted
is that the contributions of the transverse modes involve
only the shearing deformation potential ™„,and are
independent of "q (or Ei). This is to be expected, since
in the approximation we have used in Appendix 8 the
transverse modes involve only shearing deformations.
For a similar reason, the contribution of the transverse
modes vanishes when q is along the symmetry axis or
normal to it: for these directions of q the shear in a
transverse mode (assumed to be exactly transverse)

always has an orientation which is forbidden by sym-
metry to produce a first-order shift in the energy of the
center of the valley. Thus the maximum contribution
of the transverse modes to the scattering comes from
values of 8 near 45 and 135 .

The contributions of the longitudinal and transverse
modes to the azimuthal average (A), which we need to
use in (11), can now be obtained by inserting the cor-
responding entries of Table V in place of p ~M ~s in

(39), and using (40).

5. EVALUATION OF THE RELAXATION TIMES
FOR ACOUSTIC SCATTERING

In this section, we shall outline the tedious but
straightforward evaluation of the relaxation time
integrals (11) from (39), (40), and Table V.

The integration in the numerator of (11) is over solid
angles dQ' and dQ, or equivalently over polar angles P',
P and azimuthal angles n', n, defined relative to the
symmetry axis of the valley. We have seen that the
scattering probability h. on a constant-energy surface
can be replaced by its azimuthal average (A), so that
the integrand for 1/r„depends only on (n' —n), while

TAELE VII. Values of the integrals I, J'„defined in the text, as functions of the ratio r = rise*/rrsii*.

r) 5/2

4/3
4(1—4r)

arcsin (1—r) &+
3 (1—r)'

4/3 4/3
4r~ 4(i —4r)—arcsinh (r—1)&+

(r 1)5/2 3(r—1)'

l2

Jp

10r& 2(2 —14r—Br')
arcsin (1—r) &+

r) 7/2 3 (1—r)'

8/3

(8+4r)
arcsin (1—r) &+

(1 r) 5/2' 3(i—r)'

2r&(3+2r) (8+22r)
— arcsin(1 —r) &+

(1—r) ~ 3(1—r)'

4/7

8/15

(r 1)7/2 3(r —1)3

8/3

4rk (8+4r}
— arcsinh (r —1)&+

(r 1)fs/2 3(r—1)

2r&(3+2r) (8+22r)
arcsinh (r—1)& ———

(r—1)& 3 (r —1)'

10r& 2 (2—14r—3r')
- arcsinh(r —1)&—
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that for 1/7~ can be averaged for a' for fixed (a' —a).
Thus we can reduce the two integrals to

1 1 1—=34rj ~ cosP(cosP —cosP')((A))d(cosP')d(cosP)
—1 -1

and

f,4

1.0

0.8
&n

0.6

3x
(sin'P((A)) —sinP' sinP(cos(a' —a)(&)))

-1 —1
)(d(cosP')d(cosP), (47)

0.4

0.2

0 ——

0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0
respectively, where the outermost angular bracket
means an average over (a' a),—the inner one being, as
before, an average on a' for fixed (a' a)—

According to (39) and Table V, (A) is a polynomial
in cos'8, where 8, the polar angle of the wave vector
q =& (K'—K), is a function of p, p', and (a' —a). Using
the transformation (4) from K-space to rp space, we
find explicitly:

cos'8=
(cosp' —cosp)'

(cosp' —cosp)~+ (an~*/n4&~*) )sin'p'+sin'p
—2 sinP' sinP cos(a' —a)j

(48)

"%e are greatly indebted to Dr. M. C. Gray for pointing out
that this can be done, and for the explicit evaluations.

Let us denote by I„the value of the double integral in

(46) when the nth power of (48), cos'"8, is inserted in
place of (A). Similarly, let J„bethe value of the double
integral in (47) for the same substitution. Then from
(46), (47), (39), and Table V we obtain

1/~, i= (3~&&T~"/Vci) L68~+~ii-""~-+fbi=-'j (49)

1/r4= (3nckT64&/vci)$$ Zg'+g ZgZ +t' Z~'j (50)

where
ci c12+2c44+4c

is the average elastic constant for longitudinal waves,
already encountered in Table V, where the quantity C
is given by (40), and where the dimensionless coeflicients

$„,q», etc., are as given in Table VI. The expressions
f'or these coeKcients consist of two groups of terms, a
major group involving only the I„,J„for n=O, I, 2,
and a group containing the elastic anisotropy c* in the
numerator and involving integrals for n=3 or 4. The
latter group arises from the last terms in the square
brackets of Table V. As we shall see, these terms are
fairly small compared with those of the first group.

The integrals I„,J, though very complicated, can
be evaluated analytically. "Table VII gives the results
for n=0, 1, 2, in terms of the mass ratio r=n4~*/n4»~.
Figures 2 and 3 show both these exactly calculated
integrals and some estimates, believed to be fairly
accurate, of the integrals for n=3 and 4. The latter
were obtained from exact values at r=0, 1, and and
the trends of the exact integrals for the lower values of

n. Since the integrals for m=3 and 4 occur only in the
small terms of Table VI proportional to the elastic
anisotropy, it is not necessary to know them as accu-
rately as those for n =0, T, 2.

The tables and 6gures just referred to contain all the
information necessary for the calculation of the mo-
bility and other transport properties for the case of
pure acoustic scattering. Since the formul. as contain
quite a number of parameters (masses, elastic constants,
deformation potentials), no concise chart can be con-
structed which will cover the results for all possible
cases. However, one can get a fair idea of what to
expect in any actual case from sample calculations
made for a typical set of ratios of the elastic constants.
Such sample calculations of the mobility are given in
Fig. 4. The ordinate measures the acoustic mobility p&,
i.e., the mobility which would be observed in a crystal
free of impurities and imperfections, at temperatures
low enough for intervalley and optical mode scattering
to be negligible. The abscissa is the ratio of the two
deformation potential constants de6ned in Table II;
of these two, „canbe determined with fair accuracy
from piezoresistance measurements, as the combination
of Eqs. (27) to (31) with (16) and (17) shows.

2,8

Jp

0.8

0.4—

0
0 02 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0

g,ym„« m, Pm

Fxo. 3. Values of the integrals J as functions of the square
root of the mass ratio. Note the change of abscissa at mass ratio
unity.

)mg/m((+ = [ = )m4p/&q"

Fzo. 2. Values of the integrals I„asfunctions of the square root
of the mass ratio. Note the change of abscissa at mass ratio unity.
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FIG. 4. Dependence of the low-temperature lattice (acoustic)
mobility»a on the mass ratio and the ratio "s/"„ofthe two
deformation-potential constants, as calculated from the expressions
of Tables VI and VII with c*=p, c&/c44=3. The curves apply
equally well to valleys centered on (100) or (111)axes.

All the curves of course go down as ~
—' for large

q~; more interesting are the peaks in the range
—1 & ~/ (0.For mass ratio zero the peak is infinite,
arising from the fact that for ~= —

„
the matrix

element for scattering in a direction parallel to the
valley axis vanishes (see the first and sixth rows of
Table IV). Similarly, an infinite peak again occurs, at

d ——0, for mass ratio infinity, since for this value the
matrix element vanishes for scattering in a direction
perpendicular to the valley axis. For intermediate
values of the mass ratio, p, cannot become infinite, since
it involves averages over all directions of scattering, and
the matrix elements for diferent directions will not
vanish simultaneously; only a 6nite peak remains. Note
that the curves for mass ratios 4' and 4 lie much closer
to that for mass ratio 1 than to those for 0 or ~.

'4 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
"M. E. Fine, J. Appl. Phys. 24, 338 (1953). Our calculations

were completed before we noticed that there is a small but per-
ceptible difference between these values and the presumably
more accurate ones of reference 16. Use of the latter would
increase the pz's of Fig. 5 by a few percent.

's H. J. McSirimin, J. Appl. Phys. 24, 988 (1953).

6. APPLICATION TO n-TYPE GERMANIUM
AND SILICON

As we have just noted, calculation of r„,r~, p&, etc. ,
requires as inputs the effective masses, elastic constants,
and deformation potentials. For germanium and silicon
the masses are fairly accurately known from cyclotron
resonance experiments; in this section, we shall adopt
the values given by Dresselhaus, Kip, and Kittel. '
The elastic constants were taken as the liquid air values
of Fine's (Ge) and McSkimin's (Si). The deformation
constant corresponding to uniaxial shear is, as we have

TABLE VIII. Data used in calculating Figs. 5 and 6. Sources are
as described in text.

m '/m
(re~~/~en*) &

C12

c44

cg

m]1
5144

Ge

1.58
0.082
0.228

0.53' 10»
dynes/cm'

0.680' 101~
—0.534)(10'~

1.573' 10"
~ ~ ~

—(29 600/T)+const.

Si

0.97
0.19
0.442

0.801X10»
dyne s/cm'

0 650' 101~
—0 42Q&10"

1.845' 10"—(19000/T)+const.

'7 Morin, Geballe, and Herring (to be published).'s T. H. Geballe and G. W. Hull, Phys. Rev. 94, 1134 (1954).

remarked, almost speci6ed if the largest of the piezo-
resistance constants is known. Recent piezoresistance
measurements, '" made on n type germanium and silicon
over a wide range of temperature, show a term in 1/T
to be dominant as long as only lattice scattering is
important; from these data and Eqs. (27), (28), and
(31) we shall adopt values, given in the following, for
„(li„&'&—li~&'&)/fi. However, the other deformation

potential constant ~, or equivalently the Ej given by
(45), can at present only be determined indirectly.
Sources of information for this second constant include
magnetoresistance data, which under ideal conditions
yield the ratio r»m~*/r~m»*, and data on the phonon
contribution to the thermoelectric power at tempera-
tures in the boundary scattering range, ' which tell
something about the relative amounts of scattering by
longitudinal and transverse modes. "Another eventual
source of information will materialize when the theory
of mobility is worked out for holes in germanium and
silicon, since the E~ values for electrons and holes must
combine to give the observed change of energy gap
with volume. However, as we shall see, none of these
sources currently provides a very good value of & or E&,
so we shall present the results of our calculations in
the form of curves showing the dependence on ~ of p~,
r»/r~, and the ratio of scattering by longitudinal modes
to total acoustic scattering. These curves will show to
what accuracy the presently available data on the
various phenomena can be 6tted by a single choice of
our one remaining adjustable constant ~, or equiva-
lently, how well one can predict the mobility from any
given present or future data on the other eGects.

The calculated mobilities p~ due to acoustic scattering
alone can be compared directly with observed mobilities
p only if there exists a temperature which is high enough
for impurity scattering to be unimportant, yet low
enough for intervalley and optical mode scattering to
be negligible, and not so high as to make it risky to
assume applicability of the cyclotron masses. The tem-
perature j.oo'K, which seems to satisfy these criteria
for the best e germanium samples, was chosen for the
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These were found to be, respectively,
V
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Oo+0
%NO 20

Vg
IO~
0

I ~ 2

I.O

08~
f~&A

0.6

0.4

0.2
I

0

NEUTRAL
IMPURITY SCATTERING

DOMINANT
r

I ~ PUREI & ACOUSTIC
/ J SCATTERING

1- -(~~m.*™*)—1-
m44

3 kT (rnid~*/r„m~*)+2
(54)

For any assumed z/ „,the 1'n/Tg just computed were
used in this to compute „andhence to evaluate (52)
and (53), and from these the r's and p'. The value of

corresponding to r«/r. =1 (close to the "observed"
value) was found to be +16.7 ev; the extremes of
variation of for different values of q/ „"werefrom
1.02 to 0.7 times this.

[II)= '[1 24( a/"u)'+2 32( «/ )+1.22$, (52)

[J]= '[1.31( / )'+1.61( / )+1.01]. (53)

The ratio of these is the r„/r~plotted in Fig. 5. To get
from the observed piezoresistance constant m44, (16)

and (17) were used to write (31) in the form

0-2.0 -f 6 -I.2 -0.8 -0.4 0 0,4 0.8 I.2 I.6 2.0
Rd

n-Type Silicon

By the same method, the bracketed quantities in (49)
and (50) were found for this case to be

CII)==.-'C1 39(='/="-)'+2 34(="./=-)+166, (55)

[Li=.„'[1.33(.g/ .)'+1.15(-g/- )+1.18). (56)

x IO~

FIG. 5. Some experimentally important quantities for n ger-
manium, plotted against the ratio "d/ „ofthe two deformation
potential constants. Top curve: mobility pg at 100'K due to
scattering by acoustic modes only. The arrows show the abscissae
corresponding to the observed mobility in very pure materials.
Middle curves: ratio of the rate of loss of crystal momentum to
longitudinal acoustic modes, in an actual crystal, to the rate of
loss to all acoustic modes in a perfect crystal. The horizontal line
shows roughly the range of abscissae compatible with Geballe's
thermoelectric measurements. Bottom curve: ratio of the two
relaxation times. The arrows show values obtained from pre-
liminary magnetoresistance measurements by Morin on two very
pure specimens.

plots; however, there do not yet seem to be any data
on e silicon which satisfy the two scattering criteria.

Table VIII gives the data upon which the calculations
were based, arid Figs. 5 and 6 give the results for e
germanium and n silicon respectively. The way in which
the calculations were made is illustrated by the dis-
cussions for germanium and silicon which follow. The
limitations of the present method, as discussed in Sec. 2
and Appendix A, are such that the calculated p,~ should
always be too small. However, the error should be slight
if r„/r~ is near unity, and should be serious, if at all,
only for rather large values of r„/r~, say )2.

I ~ 2

I.O

0.8

pe 0.6P

0.4

0,2

2.0

NEUTRAL r
IMPURITY SCATTF RING

DOMINANT

PURE
ACOUSTIC

SCATTERING

n-Type Germanium

The I„andJ„corresponding to the proper mass ratio
were read off the curves of Figs. 2 and 3, and used with
Table VI to evaluate the bracketed quantities in the
expressions (49) and (50) for the two relaxation times.

0,4

0
2.0 -I.6 -I.2 -0.8 —,0.4 0 0.4 0.8 3,2 I.6 2.0

gll

FIG. 6. Same as Fig. 5, but for n, silicon.
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Longitudinal versus Total Scattering

The phonon contribution to the thermoelectric
power" of an extrinsic semiconductor of low carrier
concentration has the general form

Q„=Wcfr/IiT, (58)

where f is a suitably averaged relaxation time for the
participating phonons, c an average sound velocity, p,

is the mobility of the current carriers, and f is the
fraction of their crystal momentum which in a con-
duction process is delivered to phonons, as opposed to
impurities, etc. The upper sign is for n type, the lower
for p. A more refined formula is obtained by summing
expressions of the form (58) for different groups of
phonons, each group having its own c, r, and f. Now
it can be shown" that, at the long wavelengths which
are of interest here, phonons of the longitudinal branch
suffer much less scattering by other phonons than those
of the transverse branches. If this difference were suf-

ficiently extreme, there would be a range of temperature
in which the f of longitudinal phonons would be deter-
mined by boundary scattering and the 7 of the trans-
verse phonons would be much smaller and determined

by phonon-phonon scattering. In this range Q~ would

be determined by p, the dimensions of the specimen, and
the fraction fi of the carriers' crystal momentum which
is delivered to longitudinal phonons. While this idealized
state of aGairs may not be fully realized, it probably
comes close enough to make possible the extraction from
thermoelectric data of at least a rough value of fi/Ii, or
more conveniently, of the dimensionless quantity
fiIi~/P

For the case of pure lattice scattering, p, =p,~ at
the low temperature where Q~ is boundary-limited, and
the calculation of fi can be made easily by breaking up
the entries of Table VI into longitudinal and transverse
contributions corresponding to the entries of Table V.
When impurity scattering is dominant both f& and p will

be reduced, and their ratio will be different, since the
carriers will be diGerently distributed in wave number
space. However, for any assumed scattering law it is a
straightforward matter to compute the steady-state dis-
tribution in an electric field, and using the transition
probabilities (39) to calculate the rate of loss of crystal

~ C. Herring, Phys. Rev. 95, 954 (1954).

In place of (54) we used, from (27),

2 =-. (~-»m~*/xiii»*) 1—
tS]$—

3 kT (r»nsi. */rim»*)+2

This gave = —7.0 ev for r„/v~=1; the extremes for
different d/ „werefrom 1.12 to 0.68 times this. The
resulting pg and r»/ri are shown in Fig. 6.

We shall now discuss some of the ways of getting
information on the proper value of q/ „

to use in

Figs. 5 and 6.

momentum to longitudinal phonons. This calculation
was carried out for the case r1I Tg constant, corre-
sponding to neutral impurity scattering. The middle
sections of Figs. 5 and 6 show the results along with those
for pure lattice scattering. No curves are given for the
important case of scattering dominated by ionized im-

purities, however, because it is not yet known what
anisotropy should be assumed for ionized impurity
scattering.

Experimental data with which to compare these
curves are not yet very adequate. H the reciprocal re-
laxation time of transverse phonons is assumed neg-
ligible at"20' K for the n germanium specimen E of the
Geballe-Hull paper, ' and if the longitudinal phonons are
assumed diffusely scattered at the boundaries of the
specimen and there only, fez/p comes out to be 0.76.
Relaxation of the former assumption would lower this
value, as would any departure from diffuse reQection.
Thus to the accuracy of the data we can say that
fbi~/p(0. 76 unless there was appreciable scattering of
phonons by interior imperfections, an occurrence which
seems unlikely in the light of the sensitivity of this and
similar specimens to changes in size at higher tempera-
tures.

Comparable data on n silicon are not available, as
the data of Geballe and HulP' for this material do not
extend to low enough temperatures to be dominated by
boundary scattering.

pp (~p/p&')»o"'+ (fiick/~)' 1+(5/2)ii'+~'

&aaaa (Dp/pH') iopMO (i»—1)'
(59)

Alternatively, one could obtain m from the high-field
magnetoresistance;, for e germanium, for example, we
find from (23) or from references 2 and 3

H—+m
~) (100), p„/po~(2+m) (1+2w)/%e. (60)

Unfortunately, measured magnetoresistance values
seem often to be appreciably perturbed by distortions
of current geometry near the ends of the specimens, and
at low 6elds the magnetoresistance is rather sensitive
to small amounts of impurity scattering. For these
reasons, we do not believe that one can trust to better
than &25% or so the values of r„/r~ deducible from
measurements such as those of Pearson and Suhl. 9

Morin has commenced some experiments designed to
obtain magnetoresistance constants more characteristic

~ T. H. Geballe and G. W. Hall, Phys. Rev. 98, 940 (1955).

Magnetoresistance

If magnetoresistance and Hall effect could be
measured under conditions of pure acoustic scattering,
r»/rT could easily be determined from the values of
the Low-field ratios o. p„i/oopii', using (21), (17), and
(19) or the equivalent equations of the single-r theory' '
with m~ /m&,

* replaced by Yii=r»m~*/7~m»*. For n

germanium, for example, we would have
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of ideal conditions, and has supplied us with some pre-
liminary results. 2' These show fair agreement with the
77' high-field magnetoresistance results of reference 9,
which give' m=0.05. At low fields, Morin finds a
dependence of the left of (59) on impurity content
which is of the expected order of magnitude; if his best
specimens can be assumed nearly unaGected by im-
purity scattering at 78'K, they too give @=0.05, or
~„/~,=10.

For silicon, the available information is less complete.
The low-6eld magnetoresistance data of Pearson and
Herring" give m=1/4. 6, or r„/7~=1.1, at liquid air
temperature. However, this value may be appreciably
in error, as the specimens used must have had appre-
ciable impurity scattering.

Intervalley Scattering in n Germanium

Although our main concern in this paper is with
acoustic scattering, it is worth while to add a comment
on the apparent smallness of intervalley scattering in m

germanium, as indicated by the fact that the exponerrt

P in p ~ 1 " exceeds 23by only 10/o or so."Since there
are two atoms per unit cell, there are six branches to
the vibrational spectrum of the lattice, and it is at erst
sight surprising that all of these branches should give
small contributions to intervalley scattering. However,
a consideration of the symmetry restrictions imposed
by the space group of the crystal shows that while
part of the smallness is fortuitous, part is not. If, as
seems likely theoretically, the band-edge points K&"

occur at the centers of the hexagonal faces of the
Brillouin zone (points L in the notation of Bouckaert,
Smoluchowski, and Wigner'4), the intervalley phonons
must have wave vectors K&» —K"& which end at the
centers of the square faces (points X). If Dx&» is the
representation of the full space group to which the
phonon belongs, and D~&'~ that to which the electronic
band-edge state belongs, the intervalley matrix element
connecting two band-edge states can diGer from zero
only if Dz(&'&DJ.&' contains D&&'. If this matrix
element vanishes, then phonons of the branch in ques-
tion can take K&"+2 K&'& to K&~'&+6K&&'& only with a
matrix element which is of order BED."& or AE&~&, hence
very small. Calculation shows that when DI.&'& arises
from the representation I.j of the group of the wave
vector, (in the notation of Bouckaert et a/. '4) and Dx&'&

arises from X3 (in the notation of Herring" ), then the
matrix element in question vanishes. Since L~ is believed
to be the symmetry type of the electronic band edge
state, and X3 is that of the two lowest branches of the
frequency spectrum, this eliminates intervalley scat-

~' F. J. Morin (unpublished)."G. L. Pearson and C. Herring, Physica 20, 175 (1954).
3 F. J. Morin, Phys. Rev. 93, 62 (1954).

'43ouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).

'5 C. Herring, J. Franklin Inst. 233, 525 (1942).

tering by the two branches which might normally be
expected to make the biggest contribution.

We may note finally that if the electronic band edge
point were in the interior of the Brillouin zone, instead
of on its boundary, no such selection rule would obtain.

CONCLUSIONS

We have seen that for sz germanium the deformation-
potential constant Z„hasa value of the order of 17 ev.
If ™zwere, say, of equal magnitude, the volume defor-
mation-potential constant E& would, by (45), be about
23 ev. Such a value is unlikely, since the shift E&g of
the energy gap with dilatation is only about 5 ev. ' To
reconcile such 6gures one would have to assume a high
E& for the va1ence band, and this would probably im-

ply a rather lower hole mobility than is observed. This
sort of argument greatly limits the possible choices of ab-
scissa in Fig. 5; for example, if we wish ~E~~ to be &10
ev, we must take "d/ „between about+0. 3 and —0.9.
Happily, it turns out that the value —0.14 indicated by
the observed mobility" lies within this range, is close to
the value —0.23 corresponding to the magnetoresistance
estimate T„/Tg 1, and lies in the range indicated as com-
patible with thermoelectric evidence on f&I4g/14. Thus, we
have been reasonably successful in finding a value of our
single adjustable constant which will fit all the diGerent
types of observations. If this calculation is regarded
as an attempt to predict the mobility from other
data, Fig. 5 indicates that this could have been done
with fair conMence to within &50/e, better magneto-
resistance data may soon narrow these limits. It is a
fortunate accident that for e germanium the use of an
isotropic relaxation time, as in references 2 to 4, seems
to be very nearly justified; things might easily have
turned out very diGerently. This fact implies that the
underestimation of the mobility, characteristic of our
method, is slight for this case.

For silicon not only are there less data to Gx z/Z,
but even the experimental value of p, ~ seems quite
uncertain. A lower limit of pz(100') is provided by the
p, (100') of specimen 130 measured by Morin and
Maita, "which was 9000 cm'/volt sec. However, this
was undoubtedly aGected by impurity scattering, and
a considerably larger p,& is not excluded. Figure 6
suggests either that p& is in fact considerably larger, or
else that magnetoresistance measurements with more
perfect specimens than those of reference 22 would
show an anisotropy considerably different from that
reported there.
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(~f/~1) s.id. =(f—f"'3/r(P)

For such cases, (11) reduces to

1/r» = 3(cos'P/r (P) )8,

1/.=l& '~/ (~)).,

(A1)

(A2)

(A3)

where the average with a subscript S is over the
surface of a sphere in q space. The ratio of approximate
to exact currents for fields in the parallel direction is
thus

dj „*/dj«= sr„/(r(P) cos'P)8, (A4)

~.*«~.=l ~l( ~W ' '»'
Table IX gives values of (A4) and (A5) calculated

for a few relaxation times of the form

1/r(P) = (1+2 cos'P+8 cos'P)/rs. (A6)

It will be seen that the approximate values are very
good when the maximum and minimum values of r(P)
are within a factor two or three of each other, but that
they get worse as the anisotropy increases. The last two

TABLE IX. Comparison of approximate current dj* with exact
current dj for some cases describable by a simple relaxation time

(p).

APPENDIX A. TESTS OF THE ACCURACY OF THE
APPROXIMATION BASED ON THE RELAXATION-

TIME TENSOR

Let there be given some scattering functions S„and
S,=A(p, p')8(p' —p)/p' on a constant-energy surface.
Let d j be the contribution to the current from a thin
energy shell around this surface, in the presence of an
electric field E. We shall compare dj, for a number of
calculable cases, with the approximate current dj*
calculable from the approximation described in Sec. 2,
i.e., from (15) and (11). We shall consider only scat-
tering with axial symmetry.

The most obvious class of cases for which the
transport equation (1) is soluble is of course the class
for which a velocity-dependent scalar relaxation time r
exists. With axial symmetry r can depend only on P,
the angle between cp and the sym.retry axis, and the
transport equation reduces to

lines of the table represent singular cases for which the
true current is infinite for one of the directions of E;
as this infinity is not reproduced in the approximate
calculation, the ratio of approximate to true values is
zero.

Since equivalence to a relaxation time is a rather spe-
cial property for a scattering function, it is of interest to
compare dj and dj* for scattering functions not pos-
sessing this property. To do this, we need to construct
such more general functions which will still permit easy
solution of the transport equation. One way of doing
this is suggested by the fact that the transport equation
can be transformed into an integral equation of the
Fredholm type, "and the fact that the solution of such
an equation can be reduced to the solution of linear
simultaneous equations if the kernel is expressible as a
finite sum of terms of the form fi(p) fs(rp'). It turns
out that for the Fredholm kernel to be of this form it is
necessary and suflicient that A(q, rp') be of this form.
Since in our problem A is symmetrical, we shall inves-
tigate a few cases for which

A(e, ~t
') =AoL1+~il i(P)Li(P')+lisLs(P)l s(P')3 (A~)

If we wish A. not to be describable by a relaxation time,
the functions I.i, I.s must not both be even in P+~7r —P.

The cases of this form for which we have made cal-
culations are summarized in Table X; the results seem
at least as encouraging as those of Table IX. For the
scattering function given in the erst line the approxi-
mation is exact, since this h. takes any first-order har-
monic into a first-order harmonic. It is noteworthy that
for the case A ~ 1+cos(P'—P) our approximation works
very well, better than for the cases of Table IX which
had a comparable r«/r~. This is a A which tends
to limit the scattering to anal states with a polar angle
not far from that of the initial state, wherever the latter
may lie. This is just the type of anisotropy which is
most prominent for semiconductors with prolate energy
surfaces when r«/r~) 1; a similar effect may occur in
impurity scattering also. There is thus a suggestion
that our approximations are not hopelessly poor even
near the maxima of the r«/r~ curves computed in Secs.
5 and 6 (Figs. 5 and 6).

In accordance with the remark already made in
Sec. 2, the last two columns of Tables IX and X are all
&1.The fact that the entries in these two columns are
usually even closer to each other than they are to unity

11cos'p
1+cos4p
1—

~ cos2p

0.50
0.50
2.00

0.75
0.76
1.29

r (0)/r(7r/2) 7„/r~ &Ar*/&Jr)

0.970
0.958
0.92

di~*/&i g

0.974
0.995
0.98

TABLE X. Comparison of approximate current dj* with exact
current dj, for some cases not describable by a simple relaxation
time.

1+2 cos'p

1—cos'p+ ~ cos4p
1+4 cos'p
1+~ cos'p
1—cos'p

0.33

4.00
0.20

0

0.64

1.62
0.53
0.33
2.00

0.93

0.89
0.88
0.56

0

0.93

0.93
0.84

0
0.83

J (eP)/Ao

1+A cosp cosp'
1&cos'p cos'p'
1&cos(p' —p)

1.33 to 0.67
1.14, 0.89
1.53, 0.35

&&ri*/di&)

1.00
0.997, 0.997
0.98, 0.94

sr M. Kohler, Ann. Physik 27, 201 (1936).

&ig*/&i g

1.00
1.00
0.99, 0.91
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implies that properties of a semiconductor which involve
only r»/r~ can probably be calculated even more
reliably using our approximations than can those which
involve absolute values of the v-'s. In fact, if one is not
interested in calculating v's from 6rst principles, as we

did in Secs. 4 to 6, one may be tempted to de6ne T„
and 7~ from the anisotropy of conductivity of a valley,
and then to hope that the g's so defined will give very
good results when applied to magnetoresistance theory,
etc. While this may sometimes be the case, it is easy to
show that for suKciently anisotropic scattering func-
tions there is no limit to the amount by which, for
example, the magnetoresistance can depart from the
value estimated by putting such empirical r s into the
theory of Sec. 3. Thus although we believe the approxi-
mations of Sec. 2 provide a good basis for transport
theory when the anisotropy of the scattering function
is slight to moderate, we doubt that any major improve-
ment in the accuracy of the method can be made by
very simple means.

APPENDIX B. INTERPOLATION FORMULAS FOR THE
MATRIX ELEMENT

~e wish to approximate jM(q, l) j' and IM(q, ti) j'
+ jM(q, t2) j' by combinations of spherical harmonic
functions of the direction of q.

According to Table IV, there are, for either type of
valley, five independent directions of q along symmetry
axes of the crystal. For a (111)valley, the five simplest
even spherical harmonic functions with the symmetry
of the valley are

1, P2(cos8), P4(cos8), P6(cos8), and sin'8 cos8 cos3n, (B1)

where 8 is the angle of il with the (111)direction, and
a the azimuthal angle relative to a (110) plane. The
entries of Table IV for the two transverse modes were
added, and the sums fitted to these five spherical har-
monics. Averaging the resulting expression on a gave
the last line of Table V.

For a (100) valley, the five simplest spherical har-
monics with the proper symmetry are similar to (B1),
but with the last expression replaced by sin48cos40. .
When these are fitted to the transverse contributions
of Table IV the coeKcients of the 6rst and last terms
obviously vanish, since there are two types of symmetry
directions with cos8=0, for which the matrix element
vanishes. The second line of Table V was obtained from
the fit to the remaining three harmonics. An alternative
interpolation using sin'8 cos'8 cosM instead of )the

spherical harmonic sin48 cos4n gave azimuthal averages
which diBered from these by only a negligible amount.

For the longitudinal modes a similar fit can be made;
however, there is an alternative procedure which is
probably more accurate. This is based on the assump-
tion that for arbitrary direction of q the displacements
in the longitudinal mode are exactly longitudinal, so
that f„=q,', f~=2q,q„,etc. This assumption is valid
for symmetry directions of q, and though not exactly
valid for other directions, is probably not far off. If we
adopt it, we find after a little algebra

(Zg+cos 8$~)
(B2)

V ci2+2c44+ (qlx +qiy +qlg )c

kT

where q& is the unit vector in the direction of q, x, y, z
refer to the crystal axes, 8 is the angle of q with the
valley axis K"&, and c*=cii—ci2—2@44. Since the term
in c* in the denominator is fairly small, it suKces to
represent (B2) by the first two terms of its Taylor ex-
pansion in powers of c*. The first and third lines of
Table U were obtained from these by carrying out the
averaging operation over all azimuths of q about the
valley axis.

It is interesting to compare the results of the inter-
polation procedure just described with those obtained
from a spherical harmonic fitting of the jM(q, l) j' in
symmetry directions, as described for the transverse
case above. The two procedures Inust of course agree
exactly as far as the term independent of c* is concerned
and also in the terms first-order in c* which are propor-
tional to ~' and d™„.For the term in „'c*,the spheri-
cal harmonic treatment gives, for a (111) valley, an
expression containing

(—0.186 cos'8+0.023 cos48+0.563 cos'8) (B3)

instead of the

(0.15—1.50 cos'8+ 1.75 cos'8) cos48 (B4)

occurring in the third line of Table U. These agree, as
they must, at cos'0=0 and 1, but diGer somewhat in
between. With the values of I„,J„appropriate to ger-
manium, the contribution of (B3) to 1/r» is about
10% too high compared with that of (B4), while for
1/ri, (B3) is about 50% too high. These figures give
a clue to the size of the error involved in using the
spherical harmonic interpolation for the transverse
modes: the procedure is crude, but is probably in error
by only a fraction of the small anisotropy term in
Table V.


