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The Bethe theory of the energy loss of fast charged particles is extended to treat explicitly the stopping
contribution of L-shell electrons. A summary of the eGect of binding corrections on stopping power is given.

r. IN TRODUcrrom

A CCORDING to Bethe's' ' theory on the energy
loss of charged particles passing through matter,

the energy loss per cm path length is

dE 4me'z'
XB,

dS MLS

with the so-called stopping number, B=Zln(2mvs/I).
For the stopping atoms, 1V is the number per cm',
Z the atomic number, and I the average ionization
potential; for the incident particle, ez is the charge
and e the velocity. m is the electronic mass.

Equation (1) is valid without correction for the
binding effects of the atomic electrons only if the
velocity of the incident particle is much greater than
the "velocity" of the atomic electrons. When this is
not so, the contribution to 8 from these electrons must
be calculated separately, and in a way free from the
approximations which limit (1).Using hydrogenic wave
functions, Bethe' has done this for the contribution
from the E-shell electrons, B~. Revised curves of
8~ ~s g~ for various Z are given in Fig. 1 of a previous
paper (K).' t)x is a convenient variable given as a
quotient of mv'/2 by the "ideal" ionization potential,
Zx eff IfH (Rn is the ionization potential of the hydro-
gen atom). In K, the work of Browne is also extended
and corrected to provide an asymptotic expression for
B~ for large g~ of the form'

using the Bx curves of K, and formula (2) a,bove. ' For
the region of small 1/rtx (six) 10, say), Cx may best
be determined from its expansion in powers of 1/rtx,

Cx(8x,rtx) = Ifx(8x)rtx '+ Irx(8x)gx '+, (3)

where If and V are given in formula (19) of K.
In K, formulas (2) and (3) above are generalized for

any atomic shell i, and the total stopping number 8 is
written

B=Z ln(2mv'/I) —Q, C, (8;,rtt),

with I, the average ionization potential, defined in a
way independent of the velocity of the incident par-
ticle. This formulation demonstrates the usefulness of
C; as opposed to 8;. C; provides the simplest way of
correcting the stopping number B of formula (1) for
the so-called binding sects.

In this paper, we shall extend the theory to include
corrections for L-shell electrons. First we shall calculate
BI, for the L-electrons, giving curves of BL, vs qr. in
Fig. 2. We then calculate 8~ ' and 81. for various Z,
presenting the results in Fig. 1. The constants Sl., T~,
and Ul. are then found so that Cl, is determined for
all ql, . The resulting asymptotic calculation for CI. is
checked for several large values of ql, by comparing
its results with those from an exact calculation. Finally
a summary is given of the total effect of E- and L-shell
binding corrections on stopping power.

IL CALCULATION OF Br, (8c,sf')

Bx(8x,rtx) =Sx(8x) lnrtx+Tx(8x) —Cx(8x, rtx), (2) Using formula (5) of K, we can write an expression
for the stopping number of the L-shell which is not
restrictive on the velocity of the incident particle:where 8x is the observed ionization potential (more

accurately the energy diGerence between ground state
and lowest unoccupied state) in units Zx ff EH. Curves
of Cx vs 1/stx, over the range 0 ~& 1/rtx &~2, for various 8x,
hence Z, are given in Fig. 2 of K. Obviously, given Bz,
S~ and TJ;, C~ is determined for g~ large or small.
Thus Cx may be extended to larger 1/rtx (px&s) by

Br, (8L„rtr,)= WdW
~min =~LI4

2dg
p . (q)ls, (4)

~/(4el. )~ g*Part of this work is included in the author's doctoral thesis at
Cornell University, 1951.

t Member of National Research Council Committee on Penetra- where 5' is the energy transferred to the atomic electron
tion of Charged Particles in Matter. in units ZQ ff RH I7=(change in incident particle's

' H. A. Bethe, Ann. Physik 5, 325 (1930). momentum)/(2mZz, res RH)', and
l Err, r, (q) l

s, the so-

263 (1937).
'M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9, ll d f f h f h fca e orm actor, is t e sum o t e squares o t e
'M. C. Walske, Phys. Rev. 88, 1283 (1952), referred to here-

after as K. e S and T are given in formula (19) of K.' L. M. Brown, Phys. Rev. 79, 297 (1950). ' It would have been better to have included 8~ es 8 in K.' This is an asymptotic expression since Cz approaches zero as ZL, ff may be taken as Z-4.15, following J. C. Slater, Phys.
qz approaches in6nity. Rev. 36, 57 (1930).
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TABLE I. The L-shell excitation function, J(eL„W).

TV ~0.09 0.11 0.1389 0.1875 0.25 0.3611 0.50 0.8125 1.25 2.5 4.25 9.25 16.25

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.25
1.5
1.75
2.0
2.5
3.5

475 282 156
832 498 277

1088 653 359
1306 776 421
1492 877 470
1657 963 512
1799 1038 546
1928 1104 578
2044 1164 606
2149 1218 630
2247 1268 653
2379 1335 684
2572 1432 727
2738 1516 765
2886 1589 797
3133 1714 851
3515 1899 932

69.2 30.8
129.2 63.0
166.7 82.2
193.3 94.6
213.8 104.0
230.4 110.8
244.2 116.7
256.1 121.6
266 4 125.8
275.7 130.2
284.0 133.6
295.0 137.3
310.9 142.9
324.0 147.8
335.3 152.0
354.1 158.9
382 168.8

8.9
24.S
33.6
38.9
42 5
45 1
47.1
48.8
50.1
51.3
52.3
53.6
55.4
56.8
58.0
59.9
62.6

2.28 0.12
10.0 1.68
14.9 3.97
17.84 5.42
19.64 6.25
20.85 6.74
21.74 7.09
22.42 7.33
22.98 7.50
23.44 7.64
23.82 7.76
24.31 7.88
24.95 S.O4
25.44 8.15
25.S4 S.24
26 47 8.37
27.34 S.54

0.004S
0.126
0.70
1.50
2.07
2.42
2.62
2.76
2.8S
2.91
2.96
3.01
3.07
3.11
3.13
3.17
3.21

6.1X10~
2.9X10 4

3.5X10 '
2.0X10~
7 SX10~
0.190
0.330
0.451
0.534
0.588
0.624
0.655
0.682
0,695
0.703
0.711
0.718

2.3X 10-8
1.3X10"
1.4X10 '
9.2X10 5

4.3X10 4

1.6X10 '
4.9X10 '

4X 10
3.2X10~
6.1X10 '
9,7xio-'
o.14s
0.198
0.218
0.227
0.233
0.236

1.9X10
4.0X10~
9.1X10~
2.0xio-~
5.8X10 '
3.2X10 '
1.SX10 '
5.9X10-3
2.9xio-2
4.7Xio

2.3X10~
2.2xio '
1.2X10 '

IPw, r. (q) I'dW=
e
—2m/k

( 2
x 24q2 exp

I

——arctan
E. k

k

q2 —k2+-4' &

L(V+&)'+4 O'L(V —&)'+41'

11 5 l (65 3 1

12 3 ) (48 2 3

matrix elements of e'& between the four nonrelativisti-
cally distinct L-shell states and the states greater in
energy by W. Analogously to tlz and fi&, 41L

——4ns2/

2ZL, ,«'RH, and 81, is the observed energy difference
between an L-electron in the ground state and the
lowest unoccupied state in units Z~, g~~ RH. The integral
over lV means a sum over all unoccupied discrete
states, and an integration over the continuum states.

The evaluation of the form factor, IFrr L(q)l',
follows the analogous work of Wentzel' and Bethe' for
the E-shell. The calculation is done with nonrela-
tivistic hydrogenic wave functions for transitions from
the four distinct L-shell states to states greater in
energy by W.

I FB, L(q) I' arises then from summing
over all eight L-shell electrons and all states greater
by energy O'. Since the calculation is long and tedious,
and since no new principles are involved, we quote only
our results here:

For transitions to the continuum (W= 02+4),

our result is

I
(rn 1)2+qsn2jn —4

I~-, L(V) I'=2'n'V'
I (1n+ 1)2+qsn2 jn+4

11 5i
X q'n'+I ——n'+- lq4n'

12 3]

(65
+

I

—n' —-n'+ —
I
qsn2

3j

(5 23 3 1)
+I ~'—~4+-n2 ——

I
. (6)

(64 48 4 3)

It is easy to show that (6) can be derived from (5) if
one replaces k2 by —1/n', and if one replaces the con-
tinuum normalization factor, L1—exp( —22r/k)7' by
unity. For this reason it is permissible to use formula (5)
in (4) even for values of W less than 4.

We can now evaluate (4) numerically. Again we

only quote results, since the details of the calculation
are quite lengthy. The erst step is the evaluation of

Q9

CQ
c5 0.6

)5 23 3 1
+ I

—+—p2+-p4+-)44
I

. (5)
~64 48 4 3 )

For transitions to discrete states (W= 4
—1/n'), with

the TV subscript of Ii changed to e for identi6cation,

' Gregor Wentsel, Z. Physik 58, 348 (1929).

Q4

Q.3)Q

e, ~
PQ 50 40 50 6Q 7Q BQ 9Q lQQ

2

FIG. 1.8~ and 81, as function& of Z.
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Fxo. 2. Bs(8r„Fir), stopping number contribution of L-electrons.

more refined wave functions, such as Hartree's, for
example, would be much greater, and such a calculation
would have to be repeated for each Z.

As regards the use of our BI, results for different Z,
it should be remarked that one can expect the results
to be most applicable where the hydrogenic wave
functions best resemble the true wave functions of the
atom. This is best satis6ed for the heavier elements.
We shall see later that for Z(30 (8'r. (0.45) the error
associated with the use of hydrogenic wave functions
makes our results unreliable. We shall propose there an
alternate method for low Z (and not very low r)r)

the so-called excitation function,

(7)

III. CALCULATION OF 8~ AND 8I,

Honl" has shown that in a calculation using non-
relativistic wave functions, such as ours, the best value
to take for 0; is given by

TABLE II. Stopping number contribution of
L-electrons, Bs(8s,q r,).

8I, =04658g =0.558I, =0.458L, =0435
84' 1 (IR, r' ID, J)/IXR, JI17.89

18.71
19.87
21.36
22.20
22.90
24.84
27.01

22.48
23.48
24.86
26.68
27.79
28.74
31.09
33.87

26.52
27.70
29.32
31.48
32.89
34.09
36.88
40 34

19.80
20.70
21.95
23.56
24.51
25.31
27.40
29.81

1.0
1.1
1.25
1.5
1.75
2.0
2.5
3.5

where I~, ; is the "ideal" relativistic ionization potential
of an i-shell electron in the absence of "outer screening, "
given to a good approximation for the E-electrons and
for the three relativistically different L-electron states

'J H. Honl, Z. Pbysik 84I 1 (1933).

for the various 8' and ql, . The results are tabulated in
Table I. Then carrying out the integration over 8' we
obtain BI,(8r„r)1) with the results plotted in Fig. 2 for
0~&gg~& 2, and tabulated in Table lI for 1.0~&gg~&3.5.
The numerical calculations are accurate to at least one
percent. The theory, itself, due to the use of Coulomb
wave functions, is probably in error by considerably
more. However, the labor involved in calculating with
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by (in Rydbergs)
r

(E) (1=0~ j=is) (Z—03)'~ 1+
(Z—0.3)'

8L gI =1 35 10 2$ 100 1000

Txnzz III. Cz(ez, ez) from exact calculation.

(L) (1=0, j=-', ) (Z—4.15)' ( 5(Z —4.15)'
i

1+
(Lzz) (1=0,j= sr) 4 E 16 )

0.35 1.6934 0.4917 0.1619 0.06235
0.45 2.0298 0.5950 0.1988 0.07719
0.55 2.1358 0.6268 0.2100 0,08171
0.65 2.1519 0.6312 0.2116 0.08232

0.01516 0.001505
0.01888 0.001877
0.02001 0.001991
0.02016 0.002006

(Z —4.15)' t (Z—4.15)'
(Liii) (I=0 j=l) I 1+ )

(zr =1/137).

I~g, , is the corresponding nonrelativistic ionization po-
tential, (Z—0.3)' for the E-electrons, and (Z—4.15)'/4
for the I=electrons. Ia, is the observed (from the x-ray
critical absorption wavelength) energy difference from
the i-shell to the lowest-lying unoccupied state.

For the Z-shell the evaluation of (8) is straight-
forward, and the results are given in Fig. 1, where 8~ is
plotted es Z. In the case of 01,, one gets three values
for each Z, corresponding to the three relativistic
L-electron energy states. The values for the two p-states
are generally less than one percent apart. The value for
the s-state differs from those for the p-states by from
five to ten percent. Therefore, in order to form a single
value to use with Bl., we take an average of these three
values, weighting them according to the L-shell oscil-
lator strengths from Honl. " The resulting curve of
81, ns Z is also given in Fig. 1.

IV. ASYMPTOTIC FORMULA FOR By(8z,sly). .
The derivation of the asymptotic formula for

B&(8z,r)&) proceeds in a way entirely similar to that
used in obtaining formula (2) for Byz(8yz, rjx). This
method, of course, is detailed in K which in com-
bination with Brown's work solves the problem. Here
we only summarize our results for the J-shell.

We first give a preliminary result which is
Bz, (8z,=1, ylz), the stopping number for eight hydro-
gen-like L-electrons in a hypothetical atom with no
transitions to other shells forbidden by the Pauli
principle,

Bz(8z 1, r)z) =8 lny)z+——25.5166—2ylz z

(to order 1/t) z). (10)

Taking into account the transitions that are for-
bidden by the Pauli principle, and modifying (10)
accordingly, we then have our desired result (to order
1/gz) for Bz(8z,gz):

Cz(8z, fez) can be calculated exactly by using for-
mula (8) of K, and performing the necessary numerical
integration. The results are given in Table III. The
last term of (11) gives results which are low by about
9, 5, 3, 0.6, and 0.08 percent at ql.——3.5, 10, 25, 100,
and 1000, respectively, for OI, =0.65. The errors are
similar for other 01.. It is possible to 6t further terms in
pJ.

—' to the exact calculation. The results, numerically
accurate to at least 0.2 percent for the above gl, and
all OL, , are

I

Cz(8z 0 35,r)z——) =.1.503rlz '+1.543r)z '
—4.00rlz '+443ylz, 4,

Cz(8z ——0.45pz) =1 876rlz '.+1 506rlz '.

4 00rlz —'+4. 43rl-z 4, . -
'

(12)
Cz(8z=0.55,rjz) =1.989ylz +1.498ylz

—4.00ylz '+4.43rlz 4,

Cz, (8z,=0.65)r)z) =2.004r)z '+1.500rlz '
—4.00yl z, '+4.43y) z—4.

If (11) is rewritten with the first two terms com-
bined, " then from the basic Bethe theory we should
expect them to have the form 2yyyv'/ (-„'Z z, .yys Rzz) = 16r)z.
If we write the actual logarithm as ln (16y) z/X z), we find
for ) I, the values given in Table IV."It is remarkable
that )tz decreases with increasing 8z (increasing Z).
Over the range 0.45&~0L, &~0.65, however, the variation
is quite slow.

A simple extension of the results of reference 12 to
the L-shell reveals that the coefficients of the logarithm
terms in (11) are equal to 8(1+fz,)/2=4+4fz„where
8fz, is the total oscillator strength of the eight L-elec-
trons for transitions to unoccupied states. The values
of f& obtained from these coeKcients are displayed in
Table IV. We also give the quantity 8z,'f z, whose small
variation shows that for the L-shell (as for the E-shell)

fyis very ne, arly inversely proportional to 8z .

TAsLz IV. Calculated results, for the L-shell using
hydrogenic @rave functions.

Bz(0.35,rlz) = 10.0371 lnrl z+28.1449—1.5032y) z
—',

Bz(0 45,rlz) = 7.9116. lny) z+24.4501—1 8756rlz.
Bz(0 55,rid) = 6.74.51 lnylz+21. 9061—1 9890ylz, '

'
(11)

Bz(0 65,rlz) = 6.0345 .lnr) &+20.0154—2.0040y) &
—'.

0.35
0.45
0.55
0.65

Hydrogen

0.967
0.729
0.622
0.580
0.659

1.51
0.98
0.69
0.51
1

0.185
0.198
0.208
0.215

An asymptotic formula for Cz(8&,tlz) to order r)&-' is
given by the negative of the last term of (11).

"Ie , Sz, (8z) 1n.fe.xpI'z(ez)/Sz(ZZz, )jrlz.
n See Bethe, Brown, and Walske, Phys. Rev. 79, 413 (1950) for

the corresponding E-shell data.
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TAnr. E V. Approximate percentage correction to (I) from
C~ and CL,.

Incident proton
energy (Mev) Z =30 50 70 90

1
5

10
20
50

100
200
500

1000

+4 3a
—3.9'
—3.0—17—0.9

p4—0.2—0.07—0.03

+14a
1 4a

—2.3—2.0
1.2—0.7—04—0.14

—0.06

+21b
+ 14s
—0.7'

1.5'
13—0.8—05—0.2—0.09

+26b
+ 2.8b

+ p4b
09a
1.1'

—0.9—0.5—03—0.13

& For these values Cx is negative (see text).
b For these values Cx and CL, are negative (see text).

"See Table XVI, H. Bethe, Pundbrech der Physeh (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 1, p. 443.

A comparison of our values ot fr, with those obtained
by Honl" shows a close check as indeed it should since
they were both obtained in the same approximation,
i.e., using hydrogen-like wave functions. Like Honl we
observe that for Hl, ——0.35 this approximation gives a
value ot fr, which is much too high. Since the oscillator
strength per electron for hydrogen for a transition
2p—+is is" —0.139, we can set an upper limit for fr, of
about 1+e4(0.139)=1.1. Thus we see that our calcula-
tions of BL, and C~ for 8L, &0.45 are not reliable. Lacking
a more accurate calculation of an asymptotic formula
for this region (Z &30), it is reasonable to proceed as

follows: Calculate fr, using Hartree wave functions for
the desired atom, and then with this fr, and a correspond-
ing Xr, from Table IV, write Br~4(1+fr,) ln(16rlr, /lw, r,).

V. SUMMARY OF EFFECT OF X- AND L-SHELL
BINDING CORRECTIONS

In order to summarize the effect of the E- and
I.-shell binding corrections, in Table V, we give for
various Z and incident proton energies the approximate
percentage correction to the simple formula (I) intro-
duced by Cz and CL,. Since the erst two terms of Bz,
given by (2), may be written Sx(8&) In{rlx exp/Tx(8')/
Sx(8rc))), it is apparent that for rlrc &exp) —TJr(8')/
Sx(81c)j, Cx must assume negative values to prevent
8& from incorrectly becoming negative. A similar
situation holds also for Cl,. Consequently, for low
enough energies the C~ and Cz, corrections become
large and negative.
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Transport and Deforiaation-Potential Theory for Many-Valley Semiconductors
with Anisotropic Scattering

CONYERS HERRING AND ERICH VOGT*

Bell Telephone Laboratories, MNrray Hill, %em Jersey
(Received September 28, 1955)

A transport theory which allows for anisotropy in the scat-
tering processes is developed for semiconductors with multiple
nondegenerate band edge points. It is found that the main effects
of scattering on the distribution function over each ellipsoidal
constant-energy surface can be described by a set of three relaxa-
tion times, one for each principal direction; these are the principal
components of an energy-dependent relaxation-time tensor. This
approximate solution can be used if all scattering processes either
conserve energy or randomize velocities. Expressions for mobility,
Hall effect, low- and high-field magnetoresistance, piezoresistance,
an(I high-frequency dielectric constant are derived in terms of the
relaxation-time tensor. For static-6eld transport properties the
effect of anisotropic scattering is merely to weight each component
of the e6'ective-mass tensor, as it appears in the usual theory, with
the reciprocal of the corresponding component of the relaxation-
time tensor.

1. INTRODtICTION
' 'N the last few years, it has been become clear' that
& - most of the well-studied semiconductors have energy
band structures greatly diferent from the simple model

Now at Birmingham University, Birmingham, England.
'For a brief review of some of the evidence, see C. Kittel,

I hysica 20, 829 (1954).

The deformation-potential methoa of Bardeen and Shockley is
generalized to include scattering by transverse as well as longi-
tudinal acoustic modes. This generalized theory is used to calculate
the acoustic contributions to the components of the relaxation-
time tensor in terms of the effective masses, elastic constants, and
a set of deformation-potential constants. For n silicon and n
germanium, one of the two deformation-potential constants can
be obtained from piezoresistance data. The other one can at
present only be roughly estimated, e.g., from the anisotropy of
magnetoresistance. Insertion of these constants into the theory
yields a value for the acoustic mobility of e germanium which
is in reasonable agreement with observation; a more accurate
check of the theory may be possible when better input data are
available. For n silicon, available data do not sufBce for a check
of the theory.

which had nearly always been assumed in earlier theo-
retical work. Whereas this simple model LFig. 1(a)j
assumed a nondegenerate band-edge state with wave
vector K=O and spherical surfaces of constant energy,
many or most actual band structures seem to be either
of the "many-valley" type t Fig. 1(b)j, with several
nondegenerate band-edge points Kto and ellipsoidal


