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Dynamics of Ionized Media*
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The behavior of an ionized plasma is discussed in an approximation in which an individual particle is
assumed to obey a Fokker-Planck equation, and where its interaction with the environment is incorporated in
the coeKcients of the partial diGerential equation. It is found that if the interaction of the test particle with
the medium is divided into a "nearest neighbor" interaction (which manifests itself in "large-angle colli-
sions") and an interaction with the rest of the medium, then the latter can be adequately treated by a
perturbation method. If the nearest neighbor interaction is neglected, the coefBcients of successive deriva-
tives form a rapidly decreasing sequence, provided the average kinetic energy greatly exceeds the mean
potential energy (which is usually the case). Within the framework of this approximation the coeKcients of
damping (dynamical friction) and diffusion in velocity space are calculated and the higher (small) coetiicients
are estimated.

I. INTRODUCTION

HE state of a gas, or any group of particles re-
garded as a complete dynamical system, is

governed by the I iouville equation, which expresses the
conservation of extension in phase, as the system
proceeds in time according to the equations of motion
for the individual particles. As the classical mechanics
involved is deterministic, the only stochastic element
embodied in the solution of the equation is an un-
certainty about the initial conditions. In principle, the
distribution function for a single particle is derivable
from this equation, together with some assumption
concerning the probability distribution for various initial
configurations. In the study of actual problems as-
sociated with gases, one generally assumes that this
exceedingly complicated equation may be replaced by a
simple one in which not only the initial conditions, but
also the dynamical process itself, as viewed by a single
particle, is of a stochastic nature. The Boltzmann
equation represents one method of specifying the latter.
It proceeds on the assumption that the dynamical
history of a molecule may be analyzed in terms of a
series of discrete, relatively rare events (collisions),
involving only one other member of the system, using
the rigorous solution for the motion of two particles
which are only interacting with each other, and not
with the remainder of the system. This picture, corre-
sponding closely to a stochastic process of the Poisson
type, appears to be quite adequate when the gas is of
low density and the range of the forces between mole-
cules is quite short, so that such idealized two-particle
interactions closely represent the physical system.

In an ionized plasma, however, the latter condition
does not obtain and the collision picture is therefore
much less applicable. The ionized particle is never quite
free either before or after the collision, and is moreover
always subject to the long-range force of other ions. It
therefore seems worthwhile to explore in this connection
the opposite limit of a stochastic process pictured in
terms of very frequent (almost continuous) events
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which individually are insignificant compared to a
"collision" but whose cumulative eGect may be quite
large. The very small-angle collisions would presumably
be included here, but the large-angle ones completely
left out. It is realized that ideally the two pictures
should be combined because larger angle collisions are
not always negligible. To avoid complicating the treat-
ment, and to bring out more clearly the features of the
method, however, we have entirely neglected this
"Poisson aspect" of the problem.

The problem of treating particles which undergo
numerous weak interactions has been extensively de-
veloped in connection with the Brownian motion of
macroscopic particles interacting with microscopic ones.
For this treatment the Fokker-Planck (F.P.) equation
was developed, and we feel that this equation gives a
natural starting point for the present investigation. In
choosing the F.P. equation to describe an ionized
plasma, the assumption is implicitly made that the time
variation of the one-particle distribution function is
approximately a Markovian process (one in which only
the present and not the past determines the future
distribution). The most general form of the F.P. equa-
tion may be considered as a differential characterization
of such a process, in which there are an infinite number
of coefficients dependent only on the instantaneous
state of the system. These coefficients are in principle
deducible from the solution of the Liouville equation if
the motion of a single particle is indeed Markovian.
However, there is no reason to believe that this is
rigorously true, and in any case it is not possible in
practice to solve the many-body problem. The F.p.
equation must therefore be regarded as a new point of
departure for treating the speci6c problem of an ionized
plasma, and the coeKcients must be arrived at from
physical considerations. This paper is primarily con-
cerned with the determination of the F.P. coefficients,
on the basis of a certain physical picture of the stochastic
elements that enter into the dynamics of an ionized
particle. That the physical picture is adequately ex-
pressed by the approximation scheme will be seen from
the fact that the higher order coefficients calculated
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according to the scheme are relatively small. From this
one must not infer, however, that the method itself,
which is limited to the weak, frequent interactions, is
entirely adequate, and that the eGect of the large-angle
collisions is negligible. It is precisely their exclusion that
produces the extremely rapid convergence.

In spatially uniform systems, with which we shall be
dealing in this paper, the F.P. coefficients take the form
of "averages" of successive powers of the change in
velocity Ae, in an infinitesimal time interval r. In Sec. II
of this paper, the coeKcient of damping, (At))/r(=—n(')),
is calculated. This damping (commonly called "dynami-
cal friction") is considered as coming from two sources.
First, as a result of the interaction between the particle
under observation ("test particle" ), whose distribution
function we wish to calculate, and the rest of the
particles of the system ("field particles" ) the average
velocity of that particle relative to its environment goes
to zero. This is a statistical effect resulting from correla-
tions of the forces on the test particle at different times,
even if the average force is zero. Secondly, because of
the reaction of the test particle on the field, which
modifies the distribution of the field particles so that the
average force is not zero, an additional eGective damping
occurs. This "polarization" eGect is calculated in Sec.
IIA, while the statistical eGect is calculated in Sec. IIB.
In. Sec. III, the diffusion coeKcient ((At))')/r(=—(r&s)), is
calculated, and the higher moments are examined. To
order 7, the polarization of the medium does not aGect
the rate of diGusion or any of the higher terms, so that
all coefficients from the second on are of a purely
statistical origin. Certain formal divergence difficulties
occur in these estimates of the higher coefficients, and in
Sec. IV a method for circumventing these diKculties by
a slight reformulation of the expressions for the higher
moments (based on a closer examination of the physical
effects involved) is suggested. The higher F.P. coefli-
cients are then estimated, and are found to be small
within the framework of the physical assumptions made.

The polarization calculation, which only enters in the
damping coeKcient, differs fundamentally from our
treatment of the statistical eGects in that the former
explicitly takes into account the average eGects of the
many-body forces and thus leads directly to the exist-
ence of a long-range cutoG in the two-body force. On the
other hand, the statistical eGect is treated by a method
of successive approximations about rectilinear motion in
which efFectively only two-body forces contribute.
KGects of many-body forces are included in the sta-
tistical treatment only insofar as they produce a long
range cutoG in the two-body force and provide a natural
mechanism for avoiding the formal divergences in the
higher moments.

II. DYNAMICAL FRICTION

The Fokker-Planck equation describing the one-
particle distribution function o)(x,tI xp, tp) in phase space

ISI

Bo)(x,tIxp, tp) co (—1)" d"
f(r'"'(x, t)o)(x,tIxp, t())], (1)

Bt e~ dx"

where the n(") are quantities of the form ((px)~)/&
[where &x—= (&r,Av) is the "displacement" in time r].
Now the position of a particle can change only through
its velocity, and therefore for times r short enough so
that higher order terms in r may be neglected, the
coe%cients of the derivatives with respect to position
are trivially zero (except for rt=1 where the usual
streaming term obtains), so that we may restrict our-
selves to the velocity coefficients. In this case, ~(') is
generally known as the coefficient of dynamical friction,
and n&') as the coeKcient of diGusion. Since the dynami-
cal friction is thus defined to be the average change in
velocity, over a short time, of a particle resulting from
its interaction with the field particles, it may be ex-
pressed by the relation

(«)I = ' ~ V(*(03«)—=((VL*(03)),

where F[z(t)] is the force on the test particle as a
functional of its orbit, ( ) denotes the ensemble average
over the initial conditions, and (( )) represents both
time and ensemble average. It is to be noted that the
ensemble average must be carried out over the initial
conditions since when the test particle is singled out by
having its velocity specified, the remaining system is no
longer in equilibrium. The time interval must be chosen
short enough so that the motion of the particle is
eGectively unchanged, yet long enough to allow the
particle to undergo many interactions, so that Quctua-
tions about the average damping force are eGectively
eliminated. Now

pt ~t~

Ffz(t)]=F zp+vpt+ ' dt' dt"Ffz(t")],

and since we are interested in times for which the change
in velocity is small, we may expand about the free-
particle motion, so that'

((FI z(t)]))—=((F[zp+v t]))
t pt'

+( ) dt dl."F(E,+v,F'j
0 0

VF(ao+vgtj)) (2)

I For a discussion of the assumptions involved in using this
equation, see Appendix A.' J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).' After the expansion of FLz(t) j, the dependence on the initial
values appears explicitly, and one is then able to interchange the
time averaging with the ensemble average (integration over the
distribution of initial values).
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We shall first calculate the term ((FLzp+vptj)). This
force is not zero because the distribution of the field
particles is modified by the test particle.

dr'dv'V', U(r, r') 7'vfs(r, v; r', v'), (3)

where fr is the single-particle distribution function for a
member of the fmld, fs is the two-particle distribution
function, and U is the interparticle potential. F' here is
the Coulomb force due to the test particle. Although we
deal with a medium of one type of particle only, the
tacit assumption is made that a uniform static charge
density of opposite sign is present. It is of a magnitude
such as to neutralize the whole medium on the average.
Results taking both types of particle explicitly into
account can be obtained by a simple extension of this
work, and are stated later.

To proceed, we now make the approximation of
neglecting the correlations between pairs of particles, so
that

fp(r, v; r', v') fi(r, v)fi—(r', v'), (4)

and further, that fi(r, v) departs only slightly from the
equilibrium distribution due to the presence of I"', so
that we write

f (r») =f "'(v)+f "'(r»)

where fr&P&(v) corresPonds to the Maxwellian distribu-
tion at temperature T. In addition, instead of "testing"
the field by means of a particle with a fixed velocity v,
we Gnd it more convenient to allow the field particles to
stream by the stationary test particle (located at the
origin), with average velocity —v. Substituting Eqs. (4)
and (5) into Eq. (3), we get, to first order,

(~fr&"/~i)+v ~ f "'+(I/~)(F' —&& ) ~ fr'"=0 (6)

where v (r) is the potential energy at the point r due to

' For repulsive potentials, the force from particles in front,
which now tends to decelerate the test particle, is larger than the
accelerating force due to the particles which have been dispersed
behind it.

A. Po1arization Effect

As a particle moves through the distribution of
particles, the latter becomes polarized because the test
particle attracts the field particles, so that they tend to
concentrate behind it, and thus the force from particles
behind is larger than the force due to those in front,
with the result that the test particle is slowed down. 4

Since we are here concerned with the eBect of the test
particle on the field particles, we need an equation for
the distribution of the latter. For this purpose, we use
the integrated Liouville equation,

1
+v. V',fr+ F'V—fr

m

the 6eld particles. Thus, '

pp(r) = U(r, r') fr&'& (r', v')dr'dv'

Since U(r, r') = e / (
r—r' [, we have

7'p&(r) = —4pre' ~fr&'&(r, v)dv.

(s+ik v)g(k, v,s) = —(1/ms) F'V'„fr&"e '"'dr

and
+(i/m)(Vvfr"& k)C (k,s),

where

k'C (k,s) =4pre' g(k, v, s)dv, (10)

g(k, v,s) = dre *"' dte "fi&'&(r,v)

and C (k,s) is the Pourier-Laplace transform of &p(r, i). In
Eq. (9), the contribution of the initial value of g(k) has
been omitted. The justification for this is that the Gnal
("polarized" ) equilibrium distribution is reached in a
time very short compared to a Debye period. ~ The
resulting algebraic equation for g(k) may be solved, and
the result substituted into Eq. (10). One then obtains

1 (4a.e') ' 4pre'
C (h,s) =

i i I(k,v) 1— I(lr,v), (11)
ms & k' ) pr&k'

where

�

it' Vvpfr& & (Vp —V)I(k,v)
—=I(p,v) =i dvp, (12)

S+ik Vp

where p is the cosine of the angle between k and v, and
use has been made of the fact that the Fourier transform
of F' is just —4aie'k/k'. To obtain the steady-state
solution, we compute the residue of C(lr, s) at s=0,

'In this equation only the quantity f&&'& appears under the
integral, since f1(') does not contribute in a medium of total charge
zero.' L. D. Landau, J. Phys. (U.S.S.R.) 10 25 (1946).

r See reference 6. Although the small ir waves are not rapidly
damped, they contribute but little to the force.

We are interested in the steady-state solution of Kq.
(6), which would suggest setting Oft&i&/Bt=0 there.
However, as has been pointed out by Landau, ' it is
more convenient to perform a Laplace transformation
with respect to the time coordinate, which helps to
define unambiguously certain contours arising in inte-
grations appearing later on. The velocity v appears only
as a parameter in fi"&, and it is therefore sufhcient to
perform a Fourier transform with respect to the coordi-
nate r only. After transformation, Eqs. (6) and (8)
become
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making sure, however, that s approaches zero from the
positive direction.

Using this steady-state solution, we are able to com-
pute the force on the test particle due to the polarized
field. This force is

(—Vq), p ——i(2v)—' kC (k)dk.

can write
p1

F = (2e'/m)~ dp pJ(p, v) loggk~, x'/(47re'~R~/m)g.

Since J(p,v) provides a sharp cutoff for large pv, we can
use the small pv limit of R in the logarithm. Defining

Clearly, the only nonvanishing component of this force
lies in the direction of v, and its value is

F v 2ie' 4v.e'
dp pI(p, v) dk k k' — I(p,v) .(14)

SZ 0 m

The integration over k is divergent for large k, which
corresponds to small distances. This divergence reflects
our inadequate treatment of dynamical correlations
between two particles when they get close together. To
secure convergence, we will cut oG the integral at
k,„1/d, where d is the interparticle distance. This
cut-o8 procedure essentially excludes from consideration
the region about the test particle containing one nearest
neighbor. In this excluded region, the test particle
eGective1y feels only the force due to its nearest neigh-
bor, and here a two-body collision treatment is indicated.
Carrying out the k integration, we get

k . '—(4ve'/m)I(p, v)
.(15)—(47re /m)I(p, v)

Here the p, integration has to be carried out numerically.
It is possible, however, to make an approximate evalua-
tion of this term. It is easily seen that the force is a real
quantity here, and it is therefore sufhcient to take only
the imaginary part of the integrand into account.
Writing I(ii,v) =R(p,v)+i J(p,v), we have approximately
(since k, '»4ve'Pn&4ve'~I ~/m for cases of interest)

2e'
T'v— dp p'( I(pp)

m ~

X +R tan 'J/R
(4v-e'/m) (R'+I')1

Now, from Eq. (12), we find that

R(p, v) = Pmn 1 —vp(m/2vaT)'—

exp) —Pmu'/2 j
)(P dl

Q+ vp
and

J(p,v) =pmn7r(m/2vxT) ivy exp/ Pmv'p'/2 —j,
where P= (~T) ". For large pv, we see that R~(vp) ',
and so for large vp, J&&R. This also turns out to be true
for small vp[vp«(Pm)-&—=vs 1, so that we assume that
we can always neglect J in comparison with R. Then we

2e ~1
F = log—(k,„9.iP)

SS —I

4v.e' t' t"
~~2 (g

fi'P'(u)du
~ log(k, „hi)). (16)

This friction coefficient must be added to a similar
coeKcient coming from the statistical effect, which is
calculated in the following section. Before going on to
this calculation, however, we would like to point out an
additional consequence of the polarization, namely the
well-known Debye screening of the Coulomb force be-
tween two charged particles in the medium.

If for simplicity we consider only the v=0 limit, then
I(p,0) = Pmn, w—hich gives (Eq. (11)j:

1 t'4v.e'~ ' Pmn
C (k,s) = ——

i

ms E k' ) 1+(4v.e'Pn/k')

This is the Fourier transform of the potential due to the
polarization (charge separation) of the plasma, as is
clear from Eq. (8). To obtain the total potential due to
a charged particle in such a plasma, we must add the
unmodified Coulomb potential due to a point charge.
Thus

4xe' 1
C'~'(k, s) = (18)

s k'+47re'Pn s k'+Xi) '

i.e., the potential in this limit has the Yukawa shape
e "~"&/r. If the velocity v does not go to zero, the
screening wi1.1 be modified by velocity-dependent terms.

B. Statistical Effect

In the preceding section, we calculated the average
force on a test particle due to the modifications it makes
in the motion and, thus, in the distribution of field
particles. In the present section, the modification which
the random Quctuations in the distribution of field
particles makes in the motion of the test particle is in-
vestigated. That a damping may arise as a result of the
interaction of the test particle with the Quctuations is
clear when one notes that the test particle starts out
with a definite velocity and as a result of random
interactions its direction will be changed so that its
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pt
dl

&0 ~0 "0

v os[zo+vaI]). (19]

To perform the ensemble average, we need a probability
distribution function for the forces due to a system of

particles distributed in space with a constant average
density p0, and having a given distribution in velocity
space. Such a distribution has been obtained by
Holtsmark' on the assumption of equal a priori proba-
bility for finding a 6eld particle anywhere in the total
volume Q. However, since the effect of the nearest-
neighbor interactions is to be treated by collision

methods (which are outside the considerations of this

paper), we wish to disregard these interactions and thus

we need a modified probability-distribution function
that excludes nearest neighbor effects. If this separation
is not carried out, diQiculties appear because the
Holtsmark distribution has divergent second and higher

moments, reflecting singularities at short distances.
We outline here a simple derivation of this modified

Holtsmark distribution for the case of one nearest
neighbor. " Since the argument is independent of the
velocity distribution, we ignore that aspect of the
problem. In terms of the probability distribution for a
set of particles W(x&,xs,xs, x]v), the probability dis-

tribution for the forces is

W[F(0)=F]= "dxr .dxs W[x~. . xy]

yb(F —P' F;(x~) ), (20)

As can be verified using the results of Sec. IIA, the density
change is of the order of p0pe'km, x, which means that in most
plasma problems, ep/pp« t.' See, e.g., S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

' A general discussion of the modified Holtsmark distribution
excluding n nearest neighbors appears in Appendix B.

average velocity with respect to the medium decreases
with time. Although the modi6cation in the distribution
function as calculated in Sec. IIA acts to produce a
potential, as far as the average density is concerned, it is
negligible. ' We can therefore conk.ne our discussion to
the case of a uniform average density p0,

' deviations of
the density from p0 have as their sole consequence the
polarization force calculated in the last section. As just
indicated, there exists a damping force even in the case
of uniform average density. This force arises as a result
of correlations between the motion of the test particle
and fluctuations in density about the mean [e.g. , as
taken into account by the second term in Eq. (2)], so
that an additional change in velocity is obtained. The
leading term of this damping force is just

(
t tI

dt ~ dt"F[E,+v,&"] 'V*,FLEg+v,t]))J0

where the prime denotes the exclusion of the particle
nearest the origin. We assume that

W[xg xg]=g (o(x;),

where cp(x,) is the probability of finding a particular
particle at x;. In the light of the work of the preceding
section, this assumption is equivalent to the statement
that except for providing the screening of the Coulomb
force between particles, the interparticle correlations are
negligible. Since the integrand is symmetric in all its
variables, we may arbitrarily label the particles in order
of their distance from the origin, so that the nearest
neighbor is the one at x~. The characteristic function,
defined by

q (k) = ' dF exp( —ik F)WfF(0) =F], (21)

therefore is

N—1

1V ' dxgo(x&)
~

dx'pp(x') exp[ —ik F(x')]
~

~o

where the factor S comes from the number of ways in
which the nearest neighbor can be chosen from the E
particles, and the lower limit on the integrals for the
"external" particles insures that particle No. 1 is nearest
to the origin. Now

( p~ )N 1

dx'(u(x') exp[ —ik.F(x')]
~

~ (X1)

~(x')dx+ dx ~(x)
~o

&& (exp[—ik F(x')]—1)

since Jp" dx'&u(x') = 1. Writing ar (x') =ps/E, where po is
the particle density (which for the purpose of this
derivation need not be taken as constant), we can let
E~po, and using lim]v „(1+a/N) N= e we obtain

~00 p I xl

p(k) = ppdx exp ppdx'
J0 0

ppdx'{exp[ —ik F(x')]—1) . (22)

Actually for the calculation of the average in Eq. (19) we
need the joint probability W[F (xr) = Fr, F(xs) = Fs] for
the force to be F~ at xr and Fs at xs, the force at xs being
due to the "external" particles, and that at x~ being due
to all particles. By including the nearest neighbors in

Fr, we take approximate account of the fact that in

Eq. (19) the term F[zp+vpt"] represents the accelera-
tion of the test particle that is due to the action of all the
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particles. This generalized distribution function has as which upon interchanging of order of integration gives
its characteristic function

y(p, q)=
J

podxexpf —ip F(x—xi)$

Xexpl — po(y —»)dy
1

&si

Xexpl dypo(y —x2) fexp( —iy F(y—xl)

—iq F(y—»)) —11
I

(23))

P;xy F; x2

1=po dx exp f—poV(x) j —po dx'F;(x' —r)
~ lxl

X F;(x')—ppF;(x —r)
Bx'

8
dx' F, (x')

t9X s

~00 F00
—p(P dx'F;(x —r) dx" F,(x"), (24)

+ lxl ~ Ixl ~&i

where r=xi —x~, V(x)=4nx'/3 and a constant po is
being used. We notice that in the last two terms
Jj~~" dx'(8/Bx, ')F, (x') occurs. The angular integration
yields zero unless i= j, in which case the integral be-
comes i3J~'„~"V'. F'dx'. When F is replaced by —Vp,
where y is the screened potential (taken in the static
limit for simplicity) V F becomes —V'p= —Xz ~p, the
contact term not contributing because of the 6nite
lower limit on the integral. These terms are eventually
to be integrated over time. On interchanging the final
J'dx and fdt, one finds that only the force in the
direction perpendicular to the relative velocity does not
disappear on integrating over time. The final J'dx,
however, then gives zero on grounds of symmetry. Thus
we need only calculate

where S» and So are the regions interior and exterior,
respectively, to a sphere of radius x about the point x2.
Since this function is the Fourier transform of Wf F(xi)
= Fi, F(x2) = F2j, the averages are directly obtainable
in terms of the derivatives of the characteristic function
with respect to p and q evaluated at y=q=0. For
example,

(F'(»)F (») )= —f(~/~P') (~/~V ) v Q,q) 3.=~=o.

The quantity in Eq. (19) to be calculated is

I(xi—x2) = —
ppJ dx{1—expf —poV($)]}

8
XF;(x—xi+ x2) F;(x). (25)

~&i

The exclusion of the nearest neighbor results in the
appearance of the cutoff function f1—exp( —poV(x)) j.
To avoid complicated numerical integrations, we shall
approximate its eGect by using a more tractable func-
tion, which also has the feature of approaching unity for
x))po & and vanishing for x&(po &. Finally, the total
expression to be evaluated is

pt t'

g= dt' dt"Ifu(t" —t))
t

t dt" (t t")If —(t" t)), —

where u is clearly the velocity of the test particle relative
to the field particle under consideration. To evaluate
this integral, we Fourier-transform with respect to x to
obtain

p
~max

(t—t")dt" dkk'k;(k'+ti') —'

Xexpf —ik u(t"—t)),

where p, =X~ ', and where the eBect of the nearest
neighbor exclusion is taken to introduce a cutoff in the
k-integration at k,„po".Performing the time integra-
tion, we get

2 ( ™x k'k d 1
dk —vr8 (P)+iP,— (26)

~ "0 (k'+ti')'dl~ l~ ),=i.u

where P stands for principal value. " The angular
integration shows that a nonzero contribution appears
only in the case for which k; is parallel to u, and only the
8 function has a nonzero integral. Thus one gets, for the
component of th|: force parallel to u,

8= —(2~/I') f2 log(zok, .)
(kmax&D) /(1+k 8x &o )] (2&)

In most cases of interest, the second term may be
neglected.

Finally, we recall that the velocity distribution of the
field particles was ignored, since all eftects leading to the
expression for g were independent of it. However, to
obtain the complete statistical eGect, the ensemble
average must be extended to include this distribution,

—po dx expf —poV(x) j dx'F, (x'—r) F;(x'),
Bx

"In performing the time integration we have taken the limit
of t—+~. This corresponds to taking ~ large enough so as to
average over the fiuctuations (see Appendix A).
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so that we want

2Ãpoe
((F))= — log(lip)k .„)'

f(V)
X dV, (28)

V— V—

where v is the velocity of the test particle, V is the
absolute velocity of the field particle, and (v —V)/

~
v —V

~
appears because the forces due to the various

members of the distribution in velocity add vectorially.
If f(V) is spherically symmetric, the angular integra-
tions can be carried out. In this case only the component
of F parallel to v remains, and yields

force is given by the sum of two terms, in each of which
mt and f(V) correspond to the different field particles.
It is to be noted that in this case lan = (4v e'Pe') &, where
m'= electron density+ j ionic charge density~ .

III. HIGHER MOMENTS

To proceed with the calculation, we must now calcu-
late ((hv)') and examine the higher F.P. coeKcients to
see whether the sequence of o.&") converges rapidly
enough so that the general F.P. equation may be ap-
proximated by a diffusion equation. The diffusion coeS.-
cient is given by

n;,'"= r—
'(trav, trav, )= (1/m' r)

((F-))=—
f(V)dV

4m.e4p0

log (Xok,.)
SNAB

f(V)dV

T r

dt' dt"(F,Lz(t') jF,Lz(t")]), (31)
0 0

(29) where, as before, the limit of r—&~ is to be taken. Using
the Holtsmark distribution and the rectilinear motion
approximation, we can write n;;&2) as"

In the limit of ~v~&&(V')& the integrals in Eq. (29)
cancel, and we are left with the result

47re4pp

me'

r'
a;,&'&= (po/m2r) ' dt'

~
dt"

J,

X
~

dxoF;(xo zo —ut')—F,(x,—z,—ut"), (31')

2e'po 1
dt' dt"

BP7l 7 p
4e'po e

3&T sy

independent of the form of the distribution. Assuming a where + is the velocity of the test particle relative to the

Maxwellian distribution, we can also calculate the low- field particle. Taking the Fourier transform, we find that

velocity limit v(&vT .

Combining the results of Eq. (29) with those obtained
in Sec. IIA LEq. (16)j, we get the total dynamical
friction:

4v.v'po t' 1 1 l
((F-))=——,-I —+

v' (m, m~)

)t f(V)dV
0

Xlog(XDk .)

)~ f(V)dV

(30)

We have distinguished by labels t and f the masses of
the test and 6eld particles, the former appearing in the
contribution from the statistical effect, and the latter in

the polarization damping.
Before closing this section, we might remark that,

strictly speaking, this result is limited to a case in which

there is only one type of particle present, so that
m~ =—m~. However, if two kinds of particles are in the
6eld, the preceding analysis goes through for both the
polarization and the statistical effects, so that the total

2e pp
uo=- dkk, k;(k'+p') 'b(k u).

m'x ~
(33)

Clearly only the components of k perpendicular to I
contribute, If we choose I in the s direction, only e~~")
and o.22&') do not vanish:

4xe4pp
Rli =@22 = flog(Xok~~)

m'I
—

2 (Xi)k .)'/(1+XD2k .„')j. (34)

(Again we shall neglect the second germ. )
"As previously, the eGect of nearest-neighbor exclusion is

expressed as a short-range cutoG, and again we do not take the
velocity distribution of the 6eld particles into account until the end
of the calculation.

X dk exp$ik u(t" —t') j. (32)
J (k2+, p2)2

Introducing the relative time s=t"—t', we notice that
Jo'dt" becomes J', ' ' ds, which, as r~~, and for
v» t'»0, can be replaced by J'„"ds. The remaining t'

integration cancels the r in the denominator, so that we

get
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(f(v)/V)dv i, 2=1, 2

t'1 r'
=lb;, I—

(vp g
f(V) Vpdv

(f(v)/V)dv I, 2=3 (35')
)

To perform the velocity distribution average, we must
transform the tensor n;;&" to the coordinate system of
the test particle. We find that the coefficient obtained
above, 8;,(1—8;2), becomes 8;;—N,2t;/tt . Taking v, the
absolute velocity of the test particle, to be in the z
direction, we 6nd that if the velocity distribution f(V)
is spherically symmetric, the azimuthal integration
removes all off-diagonal terms, and leaves

n;;~2'(v) = (42re'pp/2222)4;, (v) log(XDk .„), (35)

where

1 r~ '
f(v)~v— f(v) vpdv"g„J, 3p8 4

the remaining time integrations, we get

4poe6
n;;2"&= dk1dkpdk28(k1+k2+kp)8(k1 u)8(k2 u)

k1'k2'k82(k12+t12) —1(k22+p2) —1(k22+t12)—1 (3Q)

Since k1, k2, kp are constrained to lie in a plane perpen-
dicular to u, if we choose u as z axis, a,;~@=0unless
i, j, k/3. Also, since k1, k2, and kp form a triangle, only
two azimuthal angular integrations are involved. If
these are carried out, one readily sees that n;;1,~3&=0 in
all cases. When corrections to the rectilinear motion
approximation analogous to those in Eq. (2) are made,
o.;,~&@ no longer vanishes, but involves the correlation
between forces at four different times, and thus is of the
same order as ((gv)'). 12 Thus, instead of calculating the
modified o.;;~&@, we shall examine the next coefficient.
This can be set up as before, and if the same manipula-
tions are carried out, we find that for a particular rela-
tive velocity I,

4poes
n, ;21&'~ = dk1 dk4h(k1+ +k4)

~'u'm4 ~

and Jp™f(v)dv= l. For large v, this reduces to

4xe4pp
n;, ~2&= 8g(8;1+8,2) log(l1nk .),

SS 8
(35a)

)(,5 (co s82) 5 (co sO 2)b (coS04)

Xk1j' ' ' k41(k1 +t1') ' (k42+t12) ' (37)

while for a Maxwellian distribution we can also compute
the low-velocity limit

16(2r) *'e'p p

n;;"' = 5,;,Dog(hnk, )j.3''v T'

(35b)

As in the treatment of the dynamical friction, these
relations are strictly valid only for one type of field
particle. However, it is clear from the derivation that if
several types of field particle are present we simply add
their effects.

The next coeflicient in the F.P. equation, a;;1,&3), is of
the form r '(hv, d v;Eve). In the exact expression,
analogous to Eq. (31), we again make the rectilinear
motion approximation to obtain

n;, I,.
"& = (pp/m'7) dt1 dt2 dxpF, (xp —zp —ut1)

0 ~O 4

)(Fq(xp —zp —ut2)P p(xp —zp —utp)

~(pp/222') I dt ' dt' dxpP;(xp')
J

)&F;(xp' —ut) F„(xp'—ut'),

where we have used relative times as before, and one of
the time integrations has been cancelled against r '.
Taking the Fourier transform as before, and performing

The integral is just a function of p=XD ' and k,„,and
therefore n;;»&4', when averaged over the velocity dis-
tribution of the field particles, diverges logarithmically
for small relative velocities. Physically, the reason for
this divergence is that, in a rectilinear-motion approxi-
mation, partic1es of small relative velocity interact
with each other over long periods of time, thus producing
a ve~ large effect. In the complete system, however,
two such particles do not stay together indefinitely but
rather diffuse away from each other, as a result of
interactions with other members of the system. To
obtain a more realistic result this effect has to be taken
into account. This is done in the following section, in
which it is shown that the effect of the spatial diffusion
is to introduce an effective cutoff at low relative veloci-
ties. Using this result, one can make an estimate of the
higher coeKcients, and one finds that, apart from
numerical and logarithmic factors (which cannot amount
to more than one order of magnitude), the coeKcients
decrease in the ratio (e'pp&/xT)2, i.e., mean potential
energy/mean kinetic energy 2 which for most physically
interesting conditions leads to extremely rapid con-
vergence.

IV. HIGHER APPROXIMATIOHS

Generally speaking, the determination of the F.P.
coefficients hinges on the determination of the values of

"This is equivalent to the result that the statistical part of the
dynamical friction is of the same order as the diffusion coeKcient.
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expressions of the type ((Fl Kl(tl)]. .FLK„(t„)])).The
work of the last section indicates that the rectilinear
motion approximation fails for I)2 (and even for 22= 2
in the case of a gravitational potential, for which there
is no Debye shielding). It is thus necessary to depart
from the rectilinear motion approximation in the direc-
tion of taking into consideration the correlations of the
test particle with more than one Geld particle. Clearly,
as long as one considers correlations with only one field
particle, the motion is determined completely by the
initial conditions, whose indefiniteness introduces the
stochastic element into the theory. This determinacy is
present whether the motion is expanded about some
unperturbed path, or whether an exact solution of the
two-body problem is obtained. However, as soon as one
considers these two particles (both of which are now
considered to be "test particles" ) to be in the fluctuating
force-Geld due to the remainder of the Geld particles,
their motions no longer are determined, and the "path"
of a test particle is now to be considered as a stochastic
variable. Since the forces in ((Fl zl(/1)] FLK„(t„)]))
are obtained additively from forces between pairs of
particles, the distribution required to calculate such
averages is the joint probabihty distribution for the
paths of a pair of interacting particles. This distribution
is assumed to be governed by a generalized F.P. equa-
tion, in which the coefficients serve to eliminate the
interaction with the remaining field particles. Since
these coefIjcients are calculated from expressions of the
type ((FLzl(tl)] FLK„(t„)])),ideally this presents a
complicated set of equations for the coeKcients, which
must be solved in a self-consistent manner. Such a
generalized two-body F.P. equation represents a rather
complicated picture of the diRusion of two particles
interacting with each other in a common random field.
If, as is the case in most problems of interest, the
"mean" kinetic energy greatly exceeds the "mean"
potential energy, one expects that the mutual interac-
tions will play a small role in the diffusion (the particles
behave essentially as if they were free), and under these
circumstances it will be a good approximation to
decouple the "paths" of the two test particles by
neglecting the eRect of their mutual interaction on their
motion. Thus, the probability distribution for the
"path" of each particle is given by the solution of the
one-body F.P. equation. In this case, the eth F.P.
coeKcient obeys an equation of the form

~(~) —E (0,(&). . .~(&). . .l

As can readily be seen by cutting oR the divergent
integrals in the previous section, n(") decreases rapidly
with increasing e, so that such an equation can be
solved by successive approximations.

Since o.;;(2) as calculated in Sec. III is small, and
suffers from no divergence difhculties, higher corrections
to it are small. On the other hand, all higher coefficients
are divergent if o.(') is set equal to zero, and to prevent

such difIiculties it is necessary to include e(') /0, which
(as will be indicated) removes the divergences. Replace-
ment of the rectilinear motion by the diffusing"
motion, calculated in Appendix C, in the expression for
n;;I, ~(" results in a very untransparent expression. Since,
however, the same convergence-producing modifications
arise in a second-order calculation of n;, (2), for the sake
of clarity we shall illustrate these features by a calcula-
tion of the latter.

If the motions of the particles are now to be governed
by a probability distribution, Zq. (31 ) is generalized to

(~*I z(~ )]~ Lz(~ )])

~dXpdXldX2dzldz2

XF;(zl—xl) j";(z2—x,)

XPLXQ)xl)X2l Kp)zl~zpl 31)$2]) (38)

where Pl xp,xl,x2' Zp Zl K2' $l $2) is the joint probability
that the Geld particle (which is also a "test" particle
from this point of view) initially is at xp, and at xl and x2
at times t& and t2 respectively, and similarly for the test
particle. Decoupling the "paths" corresponds to writing

+Exp~ ' ' '
) zpi ' ' '

l $1~32]

—PLxl l xp, 31]PLx2 l xl ', $2 $1]—
X&LK1

l
Kp j ~1]Pl K2 l

zl i 4—tl]&LXQ]) (39)

for t2&t~, and a similar expression if t2&t~." Here
8(xl l xp, tl) is the conditional probability that a particle
arrives at x~ after a time t~, given that it started at xo.
Strictly speaking, all these probabilities should involve
the velocities, but since the dynamical friction and the
diRusion in velocity space cause extremely small changes
in the velocity over the time intervals of interest for
diffusion in coordinate space, we can neglect such
changes, except insofar as they cause spatial diffusion.
As before, one time integration in the expression for
n;;(2) can be removed, and if relative coordinates are
introduced, two spatial integrations can be carried out
immediately to yield

o. "&2&= dt i dz dxldx2PLzl0, t]

XPLx2 xl
l
0 j &]P;L—xa]+1'Lz—x2].

Taking the Fourier transform, and introducing the
solution of the diffusion equation (Appendix C) we get,
after carrying out the x integrations,

4e4pp

m2x' "a
Xexp{ik (v V)t 22~PPj, — —

'4If no diffusion is taken into account, the probabilities are
replaced by delta functions; in particular, for the rectilinear
motion approximation,

&[xi[xo, t&)=a(xs-xo —ug).
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where a is taken to be the low-velocity limit of the
differential coe%cient in Eq. (35b). Performing the
angular integration, we find

4Pp8 f' t' ™»
op&@= bg dt

m' "&,
dkk'(k'+tt') '

p1

d(cos8) exP[iktl v —Vl cos8—-sank't ]
-1

sin'8 i =1, 2

2 cos'0 i =3
(4O)

8pss4 t
~

p
smsx

m'lv —Vl "s "s

k' sing
dk

(k'+t ')'

CXP

&&exp —-', . (4I)
klv —Vl'

An examination of the integral over y shows that for
n))k v —V ' the integral goes to zero, whereas for
n«k v—V ' it approaches s/2. "This provides a cutoff
in the k-integration, i.e. k &~n

l
v —Vl ', in order that the

integrand in the k-integration not vanish. To estimate
this integral, we replace the p integral by a step func-
tion, and obtain approximately

kmax +tt4XPpe4
log for nlv —Vl-'&k . ,

m'lv —Vl n'Iv —Vl s+p,'

0 for nlv —Vl-')k . . (42)

Thus, the spatial diffusion provides a natural cutoG in
the velocity integrals. This feature persists for higher
order F.P. coeKcients. It is to be noted that in the above
expression, p, the large-distance (Debye) cutoff, may
actually be set equal to zero without destroying con-
vergence. This is of interest in astronomical problems,
where all forces are attractive and no natural "screen-
ing" distance exists. In such a case, one would assume
the existence of an unknown diffusion coefficient o., and
solve the implicit equations obtained above for this
unknown n.

V. CONCLUSION

In this investigation a form of perturbation theory
(p.t.) was used in a treatment of the dynamics of an

"The y integral can actually be done exactly in terms of Bessel
functions of order $ and related functions.

If cx were zero, the integral with cos'0 would vanish, and
for small n it will be small. Therefore, for the purpose of
discussing the integral, we replace sin'8 by 1—cos'0 and
neglect the integral of the second term. The angular
integration then yields

Spse4
I

"
y ™* k' sinktl v —Vl

dt dk exp (—-,'nk't')
m' 4 ~ s (k'+p, ')' ktl v —Vl

ionized medium. Although for the purpose of calculating
higher order F.P. coeKcients a departure from the
original p.t. was necessary to avoid formal divergences,
this departure merely indicated a natural minimum
relative velocity cutoff, which could then be used to
make the p.t. convergent. That the p.t. is well suited to
the examination of effects on a particle due to the
medium, excluding the nearest neighbor, is evident
from (i) the smallness of the corrections to a particular
F.P. coefficient, and (ii) the rapid convergence of the
sequence of successive F.P. coeKcients which for practi-
cal purposes reduces the general F.P. equation to an
ordinary diffusion equation. Of course, to obtain the
correct expressions for the F.P. coefFicients, the effect of
the nearest neighbors must also be considered by a
collision treatment, which contains the exact dynamical
path of the two (nearest) particles in interaction. One
can however extrapolate the p.t. so as to include the
nearest neighbors, which corresponds to working with
the unmodi6ed Holtsmark distribution (cutoff at the
distance of "nearest approach" ). It turns out that this
extrapolation corresponds to replacing k,„pp& by

sT/e', the minimum impact parameter. When this is
done, the results can be compared with the calculation
of these coefficients using the exact solutions of the two-
body equations in a Boltzmann type treatment which
was carried out by Judd, MacDonald, and Rosenbluth. "
The "extrapolated" p.t. coefficients agree with the
results of this calculation, from which one can conclude
that the perturbation approach is valid over wide ranges
of relevant parameters, and its ease of handling may
make it particularly useful in more complicated prob-
lems, such as that of an ionized medium in a strong
magnetic field, where the smallness of the Larmor
radius relative to the other "lengths" would make a
collision treatment very difficult or even meaningless.
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APPENDIX A

To clarify some aspects of the use of the Fokker-
Planck equation in this paper, we now give a formal
derivation of that equation. Let W[x,tlx"', tsj be the
conditional probability that the system be in a state
x{q~, ,q~, p~, ,p~) at time t, if it is known to have
been in the state x() at time tp. Since Hamiltonian dy-
namics represents a Markovian process, W[g, tlgt'&, tsj
satisfies the Chapman-KolmogoroG equation,

W[x, t+ r
l
xt'&, t,g

= I W [x, t+ l
x', t]dh'W [x',t

l
~t'~, t,] (A-l).

"Judd, MacDonald, and Rosenbluth (to be published). See also
S. Chandrasekhar, Astrophys. J. 97, 255 (1943).
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If we write

W[x, ~+r ~x', t]=b(x—x')+E, (x,x', ~), (A-2)

where by de6nition

t X,(x,x'; «)dx=O, (A-3)

It is convenient to separate I&', (x,x'; 3) into a diagonal
and a nondiagonal part,

E,(x,x', t) = b(x x—') &&,&"—(x',t)+ T.(x,Y', t),

where, from (A-3),

this becomes

A,W[x, t[ x&»,t ]=—W[x, t-&&- & x'», to] W[x—,1[x&», to]

~K, (x,x'; 1)W[x', i
~

x&",to)dx' (A. -4)

to the laws of Hamiltonian dynamics, v, ("& 7.", so that
only the first term in the summation remains and we
obtain the well-known Liouville equation. To obtain a
corresponding equation for M(x&,t t

x&&»,to), the con-
ditional probability for one particle to be found at
x~{q~,p~} at time t, given that it was to be found at
x&&»{q&&»,p&& &} at time to, we integrate the whole equa-
tion over d$d$&» (—=dx2 dx»&dx2&" dx~&») af ter mul-
tiplying both sides by W[g&»~x&&»; to], the conditional
probability distribution for the configuration /&0&, given
a certain value xl(') at time to. Then

(—1)" &f"

A,M(x t~x &»,to) = P ~dgd(&»&&, & "&(x,,P,t)
~l &nJ

XW[x„g,i)x&», g&», &,]W[g&» (x,&» I,,]

T, (x,x', t)dx=v, &" (x',t). (A-3') XW[x,g, t
i
x &»,(o,tp].

If v, &»(x', t) =0, then

f
T,(x,x'; t)dx=0, (A-3")

that satisfy the requirement (A-3"), and which together
with the set

and we can proceed by expanding T, (x,x'; t) in terms of
the elements of the set of improper functions

For small r, m, &n& (x&,$; t) depends very strongly on $, and
will exhibit large Quctuations. It is expected, however,
that as r is increased (but still kept small enough so
that no large changes occur in the system in that time
interval), a secular component in &&,

&"& tends to become
dominant compared with the fluctuations, and over that
range (the "plateau region'") &&„&"&(x&,$,t)~en&"'(x, t)
+smaller terms of O(r') depending on g for the physi-
cally interesting distributions in $. Equation (A-9) then
becomes

( 1)n dn
r—'h, a)(xg, t) xg&», to) = P

ef dxl"

P„(x)=x", (n=i, 2 . )

form a biorthonormal base,

P.(x)P (x)dx=b„„.

Thus, writing

where by (A-/)

v,&"'(x',i) = I dx(x x') "T,(x,x', t), —

( 1)n dn
A,W[x,1~x&»,to]= P e! dx"

(A-6)

(A-7)

X [«& "& (xg, t)~(x&,t
~
x&&»,to)]. (A-10)

Since we have specified v small enough so as to preclude
signihcant changes in the distribution, the left-hand side
can be replaced by the time derivative. It is this equa-
tion that forms the starting point for the approach to the
problem of ionized media used in this paper.

Note that if in Eq. (A-3'), &&, &» (x', t) does not vanish,
condition (A-3") is no longer satisfied, and (A-5)
no longer forms an appropriate base for expanding
T, (x,x'; t) Adifferential . representation of form (A-9)
is then no longer possible. Since &&,

&» (at least as v~0)
may be interpreted as the rate of depletion of the initial
state, a nonvanishing v, (') suggests 6nite discontinuous
changes in the system, which may better be described
by a collision treatment. Thus, if one writes

&(—1)n—
E,(x,x'; t) = —b(x—x')&,&»(x', &,)y P

n=l e t.

X&& "'(x—x')v, & "&(x'; 3)+E (x,x', t),
X [&&,& "&(x; t)W[x,t

~

x&»,to]). (A-9)

We may remark that if =—4 the difference equation
becomes a differential equation, and furthermore, as
long as we are dealing with the complete system subject

the first and last terms of this expansion correspond to
direct and inverse collisions, respectively.
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APPENDIX 8
We shall now derive the probability distribution

function for the force F on a particle located at the
origin of the coordinate system whose action is due to its
distant neighbors. The v particles located closest to the
origin are regarded as close neighbors. The positional
probability of all particles (both close and distant
neighbors) is governed by a Poisson distribution func-
tion. This choice of a function is intended to reflect the
fact that

(1) the gas is rare. As the volume element dV(r)
shrinks to zero the number of particles dN(r) contained
in it also approaches zero.

(2) the total number of particles contained in d V(r~)
is statistically independent of that in d V(r;) (iW j).

The distribution function for the force W(F, v) is
readily expressed in terms of the joint distribution
function

(dN(rll) nil ' ' 'dN(rl ) ni

dN(r. l) =n. l, dN(r-) =n-),
for the position of the distant neighbors by means of the
equality

W[F,v)= P 8(F—e'P n;.r;./r;. 3)
( nia) ia

XW [nil ' ' ',ni„, 'n21 ' ' j (8 1)

The index i in this expression is intended to designate
the radial distance of various volume elements from the
origin; n denotes the angular parameters of the volume
element in some chosen coordinate system. The letter
n; is a possible value of the stochastic variable
dN(r; ) restricted to positive integers or zero. To
simplify the notation, we employ the value of the
stochastic variable n; to designate the distribution. We
also define:

n, =Q n, , dN(r, ) =Q dN(r, .),
a

where the bar in the last expression designates the mean
of the variable dN(r). For an isotropic distribution—
which will here be assumed —we also have

dN(r; ) = (42r) 'dQ dN(r;). —

It follows from this assumption together with the fact
that the underlying distribution is of a Poisson type that
the conditional probability W[(n; }l (n;}j, defined by

W [(n'-}1=W[{n'-}l(n'}3W [(n'}3, (8-2)

may be expressed as

W[nll, ,nl„, n21, ,n2„., l nl, n2j

(dg ) 4a

(dN(r'-)) "'
II (8-3)

n;. ! ' [dN(r;))"'

The statistical dependence arising from the neglect of
close neighbors is then reflected in the structure of
W„(nln2 ) alone.

Combining (8-2) with (8-1) and employing a Fourier
representation for the delta function, we readily obtain

w[F,vj= (22r)-3 ~dk exp( —ik F)3 (k), (8-4)

where
I

32(k) = Q e(nl)e(n2) W" (nl, n2, ) (8-5)
(ns)

and

e(n~) =
P dN(r, ) exp(ik; ) "'

dN(r;)
(8-6)

The unfamiliar symbol in (8-6) is defined by

g2

(8-7)

We now decompose the sum in (8-5) into summands:

tv(&) =Z e',

where

51= P
n1)0

e(nl)e(n2) Wl„(nl, n2, ),
n2)0 n3)G

ng)0 n3)0 n4)0
'''8 'S2 8 Q3

(8-8)

XW2„(O,n2, n3, .),

S3= g Q Q . e(n, )e(n4) W3„(0,0,n3, ).
n3)0 n4)0 ng)0

Because of the restriction on the summations of the
right member of (8-8), the quantities W;„(0,0, O, n„.

n~l, . ) may be factored as

Wly Wi (ni)+'+2 (dN (r2) )~'+3 (dN (r3) )

W2y W2(0 n2)&n3 (dN(r3) )Pn4 (dN(r4) )
(8-9)

Equations (8-9) are expressions of the obvious fact that
once a distant neighbor has made its appearance, in
d V(r~), the distributions of distant neighbors in

dV(r~l~e) are statistically independent of the particles
in the remaining elements of volume. In accord with our
assumptions,

[dN (r;)$"'
P~, (dN(r, ))= exp[ —dN(r, )J, (8-10)
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we obtain

Wr(lr) =P.+at (dg(rr) ),

Wz(O, zzo) = P P (dg(rr) )Pe+no s(dÃ—(ro) )&
s=1

we obtain

clg(k, l) —k V,g(k, l)+Pl V,g(k, l)y Pg(k, i)=0.

This equation is easily solved by the method of charac-
(B-11) teristics'r for which

W, (0,0,zz,)= P P, (dg(r r) +dg(r o) )
s=0

XP.+no —s(dg(ro) ), etc.

The elementary but somewhat tedious summations may
now be carried out, yielding the result

[g(r)]
q (k) =, dg(r) exp[ —g(r)]

(v —1)!

r"
dg(r')Xexp,

L~„

(ie'
X expl k'r'/I "I '

I
1 (B-12)

&4 )
APPENDIX C

In this Appendix, we outline a method of solving the
constant-coefficient diffusion equation which is used in
Sec. IV. The present method yields the solutions in a
form more amenable to further integrations than those
obtained by Chandrasekhar. The equation to be solved
18

dt/dS= 1, dl/dS = i11—k, dg/dS = nPg—.

On integration, these give

ln(g/go) = —n{(lo—kP-')'(e's' —1)/2Py2(lo —kP )
.k(aP-r —I)/P+tzzP —ot}

and
lo =kti-'+ (I—kP

—')e—~'.

Since we require

f(x,v,O) =6(x—xo)b(v —vo),

go= (2zr) o exp( —ik. xo—il vo).

From these equations, a complete solution is obtained.
If tP(&1, i.e., little damping has taken place,

g= (2sr) o exp[ —zk (xo+vot) —zl vo)

Xexp[ —n(Pt+tkt'+-'k't') $.
In this case,

p(x, t) = dv f(x,v, t)

= (2sr)' t g(k,0,t)e'" *d'k

has the Fourier transform

%riting

itf—+v V',f PV' (vf) n—V' 'f=O.—
8$

f= "g(k,l) exp(zk. r+il v)dkdl,

(C-1) (2zr) ' exp[ —ik (xo+vot)] exp[—-,'nk't'),

which is the expression used in Sec. IV.
"See, for instance, R. Courant and D. Hilbert, 3IIefhods of

Mathesttaticat Physics (Interocience Publishers, Inc. , New York,
1953), Vol. II.


