actual magnitude is not markedly affected by the form of the dispersion relation and is roughly that of the observed anisotropy.

¹C. Kittel and E. Abrahams, Revs. Modern Phys. 25, 233

¹ C. Kitter and L. Accession, (1953).
² F. Keffer, Phys. Rev. 88, 686 (1952); N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954).
³ T. Kasuya, Progr. Theoret. Phys. (Japan) 12, 802 (1954).
⁴ C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
⁵ P. W. Anderson and H. Suhl, Phys. Rev. 100, 1789 (1955).

Relativistic and Screening Effects in **Radiative Electron Capture**

R. J. GLAUBER AND P. C. MARTIN, Harvard University, Cambridge, Massachusetts,

T. LINDQVIST, University of Uppsala, Uppsala, Sweden, AND

C. S. WU, Columbia University, New York, New York

(Received October 26, 1955)

HE continuous gamma-ray spectrum (inner bremsstrahlung) accompanying orbital electron capture was recently investigated theoretically.¹ This theory takes the *p*-electron capture as well as the s-electron capture and the Coulomb effects into consideration and gives a better agreement with experiments in the low-energy region than earlier theories.^{2,3} A check of the theory was subsequently made⁴ by investigating the inner bremsstrahlung from A³⁷ by the method of scintillation spectroscopy with particular emphasis on the low-energy region.

A general formulation of the problem of radiative capture from the various electronic states has been made.⁵ According to this theory, the general expression for the radiative events ω_k per 1S-electron capture $(\omega_c)_{1S}$ can be written, in the absence of relativistic and screening effects, as

$$\frac{\omega_k dk}{(\omega_c)_{1S}} = \frac{\alpha}{\pi} \sum_l \left(\frac{Z^2 \alpha^2}{2}\right)^2 \left[1 - \frac{x - (E_l - E_{1S})}{x_{\max}}\right]^2 I_l(x) dx, \quad (1)$$

where x is the photon energy given in units of Z^2 ry $=Z^2 \times 13.5 \text{ ev}$; x_{max} is the upper limit of the photon energy; E_l is the ionization potential for the *l*-electron, and $I_{l}(x)$ is a tabulated function. The summation has been carried out for l=1S, 2S, 2P, and 3P. In Fig. 8 of reference 4 is shown the application of this theory to the inner bremsstrahlung from A³⁷. The agreement down to 100 kev is excellent. As predicted by the theory, the experimental distribution does show a sudden increase at around 30 kev. However, the experimental points below 100 kev lie below the theoretical curve. This discrepancy was found also for the inner bremsstrahlung from Fe⁵⁵ by Madansky and Rasetti (Fig. 9, reference 4).

In order to explain these discrepancies, the calculations have recently been performed⁵ taking account of the relativistic effects for the S-state spectrum, and including correction factors for screening. Both the

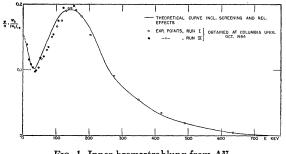


FIG. 1. Inner bremsstrahlung from A³⁷.

relativistic and screening corrections are energy- and charge-dependent, but the variation of the latter with energy is very small. The general expression (1) can therefore be written

$$\frac{\omega_{k}dk}{(\omega_{c})_{1S}} = \frac{\alpha}{\pi} \sum_{l} \frac{S_{l}(Z)}{S_{1S}(Z)} R_{l}(x,Z) \left(\frac{Z^{2}\alpha^{2}}{2}\right)^{2} \times \left[1 - \frac{x - (E_{l} - E_{1S})}{x_{\max}}\right]^{2} I_{l}(x) dx, \quad (2)$$

where $S_l(Z)$ is the screening correction factor for the *l*th electron and $R_l(x,Z)$ is the relativistic correction factor for the energy x and charge Z. The numerical values for these correction factors were determined.

The experimental data⁴ on A³⁷ have been used in a comparison with the theory given by formula (2). The treatment of the data is exactly the same as before,⁴ i.e., the experimental points are corrected only for background and the theoretical curve is corrected for the various effects in the NaI scintillation counter. Figure 1 shows the result. The agreement is now excellent over the whole energy region.

- ¹ R. J. Glauber and P. C. Martin, Phys. Rev. **95**, 572 (1954). ² P. Morrison and L. I. Schiff, Phys. Rev. **58**, 24 (1940).

³ J. M. Jauch, Oak Ridge National Laboratory Report ORNL-1102, 1951 (unpublished).
⁴ T. Lindqvist and C. S. Wu, Phys. Rev. 100, 145 (1955).
⁵ R. J. Glauber and P. C. Martin (to be published).

Decay of Co⁶¹ and Cu⁶¹[†]

R. H. NUSSBAUM,* A. H. WAPSTRA, W. A. BRUIL, M. J. STERK, G. J. NIJGH, AND N. GROBBEN

Instituut voor Kernphysisch Onderzoek, Amsterdam, Holland (Received November 28, 1955)

HE decay of 1.66-hr Co⁶¹ and 3.33-hr Cu⁶¹ was investigated in this institute with β - and γ -scintillation spectrometers in various coincidence setups, with