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Optical Model Potential for Pion-Nucleus Scattering
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The assumption that two-body forces are not appreciably modified within nuclei offers the possibility
of calculating the optical-model potential from two-body scattering phenomena. For instance, the dispersion
relations recently proposed by Goldberger permit one to make a calculation of the pion-nucleus well depth
directly from observed pion-nucleon scattering cross sections. The results predict a rather striking variation
with energy for this potential and appear to be in fair agreement with the available experimental data.
The physical basis for the potential is investigated. Numerical calculations using meson theory (in the
form proposed by Chew) are in disagreement with the results from the dispersion relations (as well as
the experimental values). This involves solving an equation closely related to that used by Brueckner et al.
in their study of nuclear saturation. The relations of the potential to various nuclear properties are dis-
cussed —for instance, it is shown in detail that the resolution of the nuclear radius is limited to the range
of the two-body interaction.

I. INTRODUCTION

S TUDIES of the elastic scattering of fast particles
by atomic nuclei have frequently been made within

the framework of the "optical model. " According to
this model one replaces the interaction between particle
and nucleus by a complex potential well having the
form

where p(x) is the nuclear density at point x normalized
to

t p(x)d'x= Vg,

term is correctly included in Eq. (6)7:

1 3 pc' & Wr(c.m.) p
Vp ((ap) = ———(pc') — fp(u p),

—(2)
X' 2 E Mc'

where fp(&op) is the forward scattering amplitude in the
center-of-mass coordinate system (to be abbreviated
c.m.) for pion-nucleon scattering averaged over the
neutrons and protons of the nucleus. ' p is the pion
rest mass, M the nucleon rest mass. E is the kinetic
plus rest energy of the pion in the laboratory frame of
reference. Wr(c.m.) is the kinetic plus rest energy of
the system in the c.m. system. Finally X is determined
from the nuclear radius R[vz = (4n./3)Rs7 by

the nuclear volume. The complex quantity Vp(ppp) is
called the "well-depth" and is a function of coo, the
energy of the incident particle. '

The applications of the optical model to nuclear
scattering have been twofold. The most frequent
application has involved obtaining the well-depth
Vp(cop) [for some p(x)7 which best 6ts the scattering
data at energy coo.' ' The second application supple-
ments this by attempting to deducethe values of Vp(ppp)

from the interaction between a pair of elementary
particles. ~'

It is this latter aspect of the optical model to which
this paper is devoted. Ke shall be speci6cally concerned
with m-meson-nucleus scattering. According to the
most elementary theory, Vp(ppp) should have the form
[excluding the term involving meson absorption —thi

* On leave of absence from the University of Wisconsin&
Madison, Wisconsin.

We shall, for simplicity, treat the nucleus as being suKciently
heavy that its recoil at the time of collision can be neglected.' Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).' T. Taylor, thesis, 1954, Cornell University (unpublished).' By6eld, Kessler, and Lederman, Phys. Rev. 86, 17 (1952).

~ J. O. Kessler and L. M. Lederman, Phys. Rev. 94, 689
(1954).

s R. Jastrow, Phys. Rev. 82, 261 (1951).' K. Watson, Phys. Rev. 89, 575 (1953).' N. Francis and K Watson, Phys. Rev. 92, 291 (1953).
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(pC)
(3)

The expression (2) is readily obtained from the form
for Vp(cpp) given in Sec. II, Eq. (32), on observing that
fp(cop) is related to the forward scattering amplitude in
the laboratory system, fp ],b by

fp i.b/p= fp(~p)/&, (4)

where k and p are respectively the momenta in the
center-of-mass and laboratory systems for pion-nucleon
scattering.

It is convenient to treat separately the real and
imaginary parts of V;

Vp(~p) = Vrr(~p)+&Vr(~p). (3)
~e briefly review the expected" form for Vr(ep)

which arises as a result of inelastic scattering within
' We shall consider only positive or negative pion scattering.

For 2t-+-mesons for instance,

fo=*a ~+4 ft+s 1—f»,

where ft and fl are forward scattering amplitudes for isotopic
spin 2 and p, respectively Iand Z and A are the respective atomic
number and mass number of the nucleus. We shall assume that
Z—A /2 in this paper, so sr+- and s=mesons will have identical
fp's. )For s.=mesons, we replace Z by (A —Z) in the above
expression. j
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values for X& are given in Fig. 1. For quantitative
reference these are also tabulated in Table I.

We shall be primarily concerned with Vg(o&s), the
real part of Vo(a&o). This depends upon the real part of
fs, which is (by reference 9)

Re(fs) = (1/3)L2 Re(ff)+Re(fi) j, '

= (1/3k) [Ji+-,'Jij.

I I I I I I I I

0 20 60 I 00 l40 l80 220 260 300 340
(E - I4c~) MEV

FIG. 1. The mean free path in units of (A/pc) for a pion in
nuclear matter, as calculated from Eqs. (6), (7), and (9), is given
as a function of the pion energy within the nucleus in the labora-
tory frame of reference.

the nuclear medium. %e have

vl,
Vr(~o) =&, = +

2Xg ) g

Here el, is the pion velocity in the laboratory frame of
reference, X~ is the mean free path for either an inelastic
scattering or absorption of the pion by the nucleus,
and X, is the mean free path for an inelastic scattering.
The latter is given by

Jf= sin2o. a+sin2ast+2 sin2n»,

Ji= sin2o. &+sin2n&t+ 2 sin2nis,

TABLE I. Values of P&(pc/it) $ and Vr (in Mev), as calculated
from Eqs. (6)—(9) are given as a function of the pion kinetic
energy in the laboratory frame of reference.

(&~—ltt42)

(Mev)
VI

(Mev) &1t.iMcjA j

where the 0,'s are the pion-nucleon phase shifts in the
notation of Anderson, Fermi, Martin, and Nagle. "The
indices ~ and —,'refer to the isotopic spin of the pion-
nucleon system.

Given the phase shifts, it is now possible to calculate
Eqs. (11) and (12) and thus the real part of the po-
tential depth Vz(o&o). A considerably more elegant
method has recently become available with the publi-
cation by Goldberger" and by Goldberger, Mijazawa,

1 3 I'tuc ) ' tuc

0
kh)

(7)

where 0 is the average of the m+-proton and x -neutron
total scattering cross sections (see reference 9). It is

o = -,'y$o (s+, prot. )+o (s.+, neut. )j.

14
31
54
82

112
185
270
315

1.50
2.39
3.44
5.90

12.81
26.30
74.50
59.30
44.60

11.2
13.5
12.2
8.00
4.20
2.22
0.85
1.11
1.49

where

p,C—= —po. 1o7) -(o.14+q),
x.

(9)

(10)

is the pion momentum in units of p,c.

' M. L. Goldberger, Phys. Rev. 74, 1269 I(1948). A formal
derivation was given in reference 8.

» M. H. Johnson, Phys. Rev. 83, 510 (1951).
'~ Brueckner, Serber, and Watson, Phys. Rev. 84, 258 {1951).
"We take os=(4.45/s)L0. 14+v'g, ' from the semiempirical

formulas of M. Gell-Mann and K. Watson, Ann. Rev. Nuc. Sci.,
1954. The proportionality constant F is taken to be F=4 (see
reference 12).

'4The model is summarized and some numerical values are
given in N. Francis and K. Watson, Am. J. Phys. 21, 659 (1953).

y represents a correction to the free-nucleon cross
sections due to nuclear binding. It has been calculated
from the model of Goldberger. ""

For X, we use the modelr' which considers 1/X, to be
proportional to the capture cross-section a.& of pions by
deuterons. "'4 Vile write

and Oehme'7 of dispersion relations obtained from the
"principle of causality, " by which it is possible to
calculate J~ and J~ directly from observed total cross
sections. Indeed, Jg and J~ have been so determined

by Anderson, Davidon, and Kruse. "In our work we
shall take the numerical values of J~ and Jg as given

by these authors.
We can thus calculate the well-depth Ve(~s) entirely

from observed pion-nucleon cross sections and compare
the result with experiments concerning pioN Nuckeus-
scattering. The results should have an important
bearing on models of nuclear structure, as has been
frequently discussed. " In Fig. 2, we give Uz(coo) as

"Anderson, Fermi, Martin, and Nagle, , Phys. Rev. 91, 155
(1953).

'6 M. L. Goldberger, Phys. Rev. 99, 970 (1955)."Goldberger, Mijazawa, and Oehme, Phys. Rev. 99, 986
(1955).

'8 Anderson, Davidon, and Kruse, Phys. Rev. 100, 358 (1955).
'1) See for instance, G. Takeda and K. Watson, Phys. Rev. 97,

1336 (1955).
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calculated from

(13)

M =M s Vs (Q)),

where +0 is the actual energy of the meson.

(14)

TABLE II. The value of the real part, Vz, of the optical model
potential as calculated from Eq. (13) and the dispersion relations
of Goldberger and Anderson et cl. (E„—Ijc2) is the kinetic energy
of the pion "inside the nucleus. "X = 1.0.

(&n. —P~~)
Mev

58
78

101
124
148
173
198
223
249
276
302

Vg
Mev

—23—30—41—46—39—13
+25
+38
+41
+47
+49

using J; and A as given in reference 18. Vir(res) is
also tabulated in Table II.

As has already been mentioned, Eqs. (1) and (2)
[and thus Eq. (13)) are not exact, according to the
general theory of the optical model. Instead, these
equations are approximations which are expected to be
valid under certain conditions. These conditions will
be discussed in the remainder of this paper, the major
points being:

(1) The validity of the form (1), which will be
investigated in the next section.

(2) The value of the energy, co at which Vs(co&) is to
be evaluated. This is determined from the equation

tainty in the pion energy, hE, between scatterings is
given by d E =A/LU, where ht= X&/t &. From this
b,E /E can be calculated and is shown in Fig. 3. The
condition b,E /E «1 seems to be reasonably well
satisfied except near E —p,c'= 200 Mev.

II. GENERAL FORM OF V.

The potential V„in the approximation that detailed
structure of the nucleus is neglected, "is

where t is the two-body scattering operator for scat-
tering the meson by the nth nucleon in the nucleus.
The symbol (. .) means the average of t over the
ground state of the nucleus. If we make the impulse
approximation s' t is given as the solution to (rf is the
usual infinitesimal positive parameter)

(16)

where 8 is the energy of the meson in the laboratory
system (to be abbreviated as "lab") and E is sum of
the kinetic energies of the pion and nucleon. U is the
interaction energy of the pion with the nucleon. If the
V, is neglected in Eq. (16), t becomes just the usual
two-body scattering operator.

Equations (15) and (16) represent a pair of equations
to determine V,. In the next section this determination
will be discussed in detail. In the present section we
shall assume that t is known and discuss only Eq. (15).

40

(3) That it is not the scattering amplitude fs for
mesons scattered by free nucleons, but the fs for pion-
nucleon scattering in the presence of the potential
V, (x), which is to be put into Eq. (2). This correction
will be considered in Secs. III and IV.

(4) Nuclear binding corrections. These will be dis-
cussed in Secs. II and V.

(5) General conditions of validity. r " The most
important of these is the assumption that two-body
forces within the nucleus are very nearly the same as
between free particles and that many-body forces are
negligible. This is presumably to be tested by compari-
son with experiment of the results given in Fig. 2 and
Table II.

Another likely condition on the simple theory given
in this section is that the mean free path ) ~ be long
enough for the energy of the meson to be fairly well
defined between scatterings. This permits the use of
the amplitude fs only on the energy shell. The uncer-

~ G. F. Chew and M. L. Goldberger, Phys. Rev. S7, 778 (1952).
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FIG. 2. The real part of the optical model potential is shown
as a function of the energy of the pion in the nucleus. This is
obtained from the dispersion relations of Goldberger (reference
16) and the evaluation of these by Anderson et al. (reference 18).
The "experimental points" shown are those of I.ederman et al.
(references 4 and 5).
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I..O factor in Eq. (17) to be approximately constant and
write

0.6-

4J I

4 w 0.4

0
I

50
I

IOO

I I

I50 200
tK~-pc*) MKV

I

250
I

300

FxG. 3. The relative uncertainty in the pion energy
between successive scattering.

( o)2WN'(c. m. )
t =(k'ltlk)l I, (»)

KEaOEaf WNO(lab)WN f (lab) ~

where (o and WN(c. m. ) are the c.m. pion and nucleon
energies and E and WN(lab) are the corresponding
lab values. The subscripts 0 and f refer to values before
and after the scattering, respectively. Each of these
energies is the sum of kinetic and rest-energies. k and
k' represent the initial and final pion momenta in the
c.m.

We shall be primarily concerned with pion energies
not much in excess of 200 Mev, so we may treat the
nucleon nonrelativistically. This means that the 8'~
terms may be dropped in Eq. (17). (The approximations
of this section actually become better at higher energies,
except for the minor modification of treating nucleon
energies more carefully. )

In the laboratory system the initial and 6nal pion
momenta will be designated as p and p', respectively.
Those for the nucleon are written as P and P'. (P&0
since the nucleon has kinetic energy in the nucleus. )
We may approximate the Lorentz transformation
equations to give

Mc'p —P~ Mc'p' —arP'
k= k'=

Mc'+&o Mc'+(o

For a discussion of the eGect of the spread in P due
to nuclear binding, we may consider the square-root

"C.M&ller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
$3, 1 (1945).

We shall also assume that t is at least very similar to
the actual free pion-nucleon scattering operator.

Since the nucleons are equivalent (in the isotopic
spin formalism) we can drop the index n in Eq. (15)
and write

V,=A(t).

We desire to evaluate V, in the laboratory frame of
reference. In this coordinate system we write explicitly
tJ. for the t-operator, using the symbol t for this quantity
in the center-of-mass coordinate system.

The relation between these is"

t,=
I I

y'cvc' —P'(o]
I tf, I

EMC +(O |
Lp~c' —p~] IMc'+(o

using Eqs. (17) and (18).
To evaluate V„according to Eq. (15'), we must

average tr„asgiven by Eq. (19) over the ground-state
nuclear wave function gN(Pi, ~ P&). we may suppose
spin and isotopic spin terms to nearly average to zero, "
so tf. in Eq. (19) need not be considered as a function
of these operators. Then

(p'I V.
I y) =A

J t.(p, p'; P,P')gN*(P')gN(P)

Xd'P'd'P8(p+P —p' —P')~,' d'P;], (20)

if we omit writing explicitly the momentum variables
of nucleons other than that one whose momentum
variable appears in tr, . The last factor in Eq. (20)
represents the volume element associated with these
other momenta. Henceforth we shall not write this
factor, its presence being understood.

Substituting

gN(P)=(2') t I d's exp( —iP z)gN(s),J

etc. , into Eq. (20), we have also

f'
(p'I V,

l p) =LA/(2s-)']J' d'Pd's'd's expL i(p' —
p) z'—]

X«pL —~P (z' —z)]t (p, p', P)gN*(s')gN(s). (21)

In a qualitative way, we see that Eq. (19) depends
only weakly on P when Mc'/(o))1, so the integral over
P in Eq. (21) can be approximated by a t) function of
(z' —z). The integral over z then shows that

I
p' —pl

A/Rg, where R~ is the nuclear radius. This is much
smaller than p p' for energies of interest to us, which
suggests that we can set p'= p in tl, and take it out of
the integral in Eq. (21). This forms the basis of Eqs.
(1) and (2).

To do this a little more carefully, we rewrite Eq. (20)
as

(y'I V.
I y) =A~ d'Pt(y, p', P)gN(y —y'+P)gN(P)

AJ d'Ptc(p y p)lgN(P)I' (22)

The last step follows from setting p= p' in g~*, which
is a reasonable approximation in view of the arguments
of the previous paragraph. Equation (22) tells us that



PION —NUCLEUS SCATTERING 895

tl, should be averaged over the momentum spectrum of
the nucleons in the nucleus. This procedure is, of
course, more or less self-evident intuitively.

We shall suppose that this has been done and insert
the averaged tr, into Eq. (21). The new tr. is now no
longer a function of P so it can be taken out of the
integral. Equation (21) may then be integrated over P
and x' to give

(y'I v. lp) =A(p'It~I p)

.6
I I I I I

l,4-

l,2

0.8—

f
&&

' d'«xp[ —i(y' —p) z]lg~(s) I' (23)

Here (p'Itr. Ip) is understood to have been averaged
over the I' values in the nucleus. This represents the
first-order correction for nuclear motion. Numerical
values will be given later. We now write

Ig~(s) I
= (1/v, )p(s), (24)

where p(e) is the nuclear density normalized according
to Eq. (1).

Equation (23) is now transformed to coordinate,
space:

(x'I v, Ix)

= (2~) s] d'p'd'p exp(iy' x') (p'I V,
I y) exp( —ip x)

= (A/V&)[1/(Zs-)'] d'p'd'p(p'I tI, I p) exp(iy' x')

Xexp( —ip x)~ d's exp[—i(p' —p) z]p(s). (25)

n= p' —p, &= l(y'+y),

so tz, is a function of
I
l

I
only. This definition gives

(26)

(x'
I V,

I x) = (A/Vg)~d'ttr, (t),
(K +Xi

Xexp[—I (»' —x)]pI I. (27)

I.et us next consider V, operating on a wave function
describing the scattering of a meson by the nucleus:

4(*)= d'p' (po,p') p('p' ). (28)

Since we are supposing nuclear dimensions to be large
compared to the wavelength of the meson, we may
suppose a to be sharply peaked about p'= po, where pp

may be considered to be the momentum of the meson

In accordance with our previous arguments, we shall
set p'= p in tL, above. Now define

Under this condition, we find

t

(x'I V,
I
x)P(x)d'x (Zvr)'(A/Vz)tl. (ps)p(x')@(x'). (29)

Thus, we may finally set

(x'I V, Ix) =b(x' —x) V, (x),
where

(30)

V.(~)=(2~)s(A/V )(pit Iy)p(~) (31)

p is the momentum of the meson inside the nucleus.
This has the form of Eq. (1), with

Vo(~s) = (2~)s(A/V~)(pit~I p), (32)

which leads immediately to Eq. (2) on expressing tl. in
terms of fp(ops). The requisite formulas for expressing
tr, in terms of fe(oip) will be reviewed in the next section.

Let us close this section by recalling the approxi-
mations made:

(1) We must first consider the tl, in Eq. (23) to have
been averaged over the nuclear momentum distribution.
This means averaging the V of Eq. (32) in this manner.
In Fig, 4, we see how this modifies the V of Fig. 2.

(2) Equation (23) could be used as it stands as the
optical model potential. It is more complex than Kq.
(1) and involves more than just the forward scattering
amplitudes, so it is evidently desirable to use Eq. (1)
when possible. We see that

I
p' —y I 0/Eg,

so setting p = p in tJ„canbe justi6ed when this quantity
is negligible. The next approximation (30) is evidently
justified under similar conditions. It would appear that
Eqs. (31) and (32) are adequate, although perhaps
marginal, for scattering well into the forward hemi-
sphere for elements as light as carbon with pions of
(ue —3IIc'))50 Mev. Explicit calculations by Kis-
slinger" using V, in the form (23) seem to be in agree-

~ L. Kisslinger, Phys. Rev. 98, 764 (1955).

I I I I I I I I'
O aO . 6O IOO I4O IeO aaO asO

(E~-p.c~) MEV

Fio. 4. The modification of Vg due to nucleon motion. The
Vz of Eq. (2) should be multiplied by the factor N LEq. (22)7
to correct for the nucleon velocities, assuming a Fermi momentum
distribution. (The curve is indeterminate near Vg=0.)
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ment with this conclusion. An explicit calculation to
check these arguments is made in Sec. IV.

In connection with Eq. (31) we remarked that p is
the momentum inside t'he nucleus. This follows, since
in Eq. (28) it is the value of the wave function inside
the nucleus which is important. Indeed the Schrodinger
equation for elastic scattering is

L&.(p)+ V.3~=&-.~ (33)

In the nuclear interior we can approximately rewrite
Eq. (23) as

(p'I V.
I p) = (2~)s(~/V~) (I I

&
I p)&(u' —1), (34)

so Eq. (33) becomes an algebraic equation:

study of the formidable Eq. (16) some simplification
seems in order. ) Finally, to solve Eq. (16), we shall
work in the c.m. system for the pion-nucleon pair and
so re-express Eq. (34) in terms of 3 in the c.m. system:

Vit(k) = (2s)s(A/V~) ReL(kl il k)$. (36)

It is convenient now to e8ect decomposition into
eigenstates of the isotopic spin I. If t' and t' are the
i-matrices for I=-,' and —,', respectively, Eq. (36) may
be written as

Vis((os, k) = (2~)s(1/2) (A/Vg) Re(2(kl tl
I k)

(37)

&-(p)+ Vs(p) =&.s (35)
Equation (16) becomes for each isotopic spin state

(explicitly in the c.m. system)
Solving this equation for p, we find the value of p at

which V, is to be evaluated. This means that in I ig. 2
we must add ordinate and abscissa to find the energy
of the meson when it is outside the nucleus. We also
note that, in Eq. (16) defining t, it is again the combi-
nation E„o—V, which occurs. Thus it is the two-body
scattering in the dispersive medium which is important.
In the next section we investigate this point in more
detail.

Finally, we note that in Eq. (27) the nuclear density
is a function of st(x'+x) rather than of x' only, as
implied by the approximate Eq. (29). Physically, this
means that the nuclear boundary is de6ned only to
within the range of the two-body interaction by elastic
scattering experiments Lwhen interpreted according to
Eq (1))

III. SELF-CONSISTENT EVALUATION OF t

We now consider Eq. (16) for the evaluation of 3 .
A derivation of this integral equation was given in
reference 7 (Appendix A). In the course of the derivation
terms of relative order (1/A) were discarded. "

For the discussion of Eq. (16) we shall use the
expression (34) for V, ; that is, we shall use V, in
momentum space and in this representation consider
it to be a diagonal operator and thus just a complex
number. We shall furthermore Lfor the evaluation of
Eq. (16)) neglect the imaginary part Vr of V„writing
Vo ——t/ g. Comparison of I'ig. 2 with Table I indicates
that this is a reasonable approximation over the energy
range for which our theory is expected to be applicable.
[In the Appendix the effect of including Vr in Eq. (16)
is considered. No essential complication appears to be
added to the integral equations; however, for a first

"In the meantime an improved derivation using
1t„=U~+ V~— I,

E~o+g —I —V,

in the notation of reference 7, has been found by one of us (K.N.),
which indicates more clearly the nature of the approximation.
(@his will be published separately. } In a related context, K. A.
Brueckner /Phys. Rev. 96, 508 (1954)g has made a detailed
examination of the 1/A terms.

where

t= V+V
ops+ zrj k—

k(k) =o~(k)+ Vir(res, k).

(38)

(39)

(I'l Vlk) =g P(k'l V, , , lk) V, , , (0',y') V, , ,~*(0,M),

where

Vi, P(&,@)= Q (-'„t;i, M—vl j, M)Vt~ "(e,y)&" (41).

Here $" is the nucleon spin wave function. The angles
(tt, p) represent the direction of k, etc. Substituting
Eqs. (40) into (38) we obtain a set of equations for t; ~..

(k'l t;, ilk) = (k'l V;, ilk)

t (k'l v, , lk")(k" lt;, lk)+ (k")'dk". (42)
res+its k(k")—

The forward scattering amplitude is most easily
evaluated from Eq. (40) by choosing the axis of
quantization as the polar axis, so that 8'=0=0. Re-
calling that Fi~ "(0,&)=Bs'r„L(21+1)/4s,j'*, we obtain

(k
l

3
l k) =

l 1/(4s') jp i( (t+ 1)F =i+„+lf =~;, i}g', (43).
where ~ is the unit matrix in spin space. )We have
continued to omit the isotopic spin index from Kq.
(43) 3

Equation (42) is most easily evaluated in terms of

(We shall frequently omit writing the isotopic spin
index. ) Here ops is the c.m. energy of the meson (outside
the nuclear medium) and cs(k) =g(ks+ii'os)&

Equation (38) is next decomposed into equations for
angular and orbital angular momentum labeled by
(j,l). We write (for either isotopic spin state)

(k'l&lk)=P P(k'l&, lk)V ~~(e'y')Y ~*(eM)
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the E-matrix, which satis6es

(ktt I &t, t
I
k~) = (ktt I Vt, t I k~)

g(k, l v;, , lk")(k" Ilt. ;, tlk, )k'"dk" (44)
top —k(k")

expressions:

(kp I
1 ' t I kp) = —(1/b) exP[ib (j,l)j sin8 (j,l),

Re[(kpl1; t I kp)) = —(1/b)P, sin2tt(j, l)j. (52)

Using the usual notation" for the phase shifts tt(j,l),
we evaluate Eq. (43) for the I=-,' state:

(45)t; t =Et, t t7rE—;, tb(etp k)t—;t. , 1 r to(kp) dVtt(kp)
1+

(2~)s~(ko)ko- kp &koThat the (k'(t;, t I k) given by Eq. (45) satishes Eq. (42)
is easily shown. As a matter of fact, the only new
aspect of our Eqs. (42), (44), and (45) is that there is

no restriction to the energy sheH implied for k, k'.
We define kp as the root of

X—', f sin2np+sin2npt+2 sin2n»). (53)

ptp —k(kp) =0.

Then, doing the integral over the 8 function in Eq.
(45), we are led to
(k'I&;tlk)= (k'I&;tik) &b(k'I&i. tiko)(kol&;tlk), (47)
where

(2s ) Wtv(c. m.) 1
VR(~o,ko) t.b= —

I
—I(~/V~)E3) Ii. Mc' kp

The quantity in ( ~ ) is recognized as being Jy of Kq.
(12). Re[1&) is the same, but with J,* replaced by J1.

(46) Then Eq. (37) gives [if we set k=kp and replace t by
tt,b according to Eq. (17)j

b(kp) =
tgh(k)/dk t:=t p

(48) tp(kp) d Vtt(ko)
X 1+ [~:+oJtl (54)

kp dkp

Fquation (47) can be solved for (k I t;, t I k) to give

(kiz, , , ik,)(k, iZ, , , ik)
(kis, tik) =(klz;, tlk) —iV . (49)

1+ib(kpl &t, tlko)

[It is to be remembered that kp is de6ned by Eq. (46).]
The real part of Kq. (49) is (E; t is real and sym-

metric)

Re[(kit;, tlk)1= (kIE;, tlk)

b'(koi &;, tlko)[(koi&;, tlk)]'
(50)

1+b'[(kplEt. tike)ls

To actually calculate Vtt(ptp, k) from the E;, t we

evaluate the t;, t from Eq. (50), and in terms of these

(kltlk) for each isotopic spin state is obtained using
Eq. (43). Next Eq. (37) is used to give Vtt(top, k). This
value of Vtt(top, k) must then be inserted into Eq. (44)
to find the E;, ~. This is evidently a complex mathe-
matical problem. In the next section two speci6c
examples of this problem will be solved in detail. The
6rst is a simple one which can be treated analytically.
The second involves choosing an interaction V as
obtained by the Tamm-DancoQ' method in meson field

theory. In this case the problem was solved using a
high speed digital computer (an IBM-701).

In the approximation of Sec. II, it is only Vtt(top, kp),
or the potential on the energy shell, which we desire
when we are finished. [The oG-the-energy-shell values
are needed, of course, to solve Eq. (44).) Setting

(kp let; tlko) = —(1/b) tanb(j, l), (51)

where b(j,l) is the scattering phase shift in the (j,l)
state, we solve Eqs. (49) and (50) to give the usual

If we neglect dVtt(kp)/dkp this reduces exactly to Eq.
(13)." $E is the lab energy which corresponds to the
c.m. energy cp(kp). j

IV. SPECIFIC SELF-CONSISTENT CALCULATIONS
OF Vg

In the last section, we discussed the manner in which
the "two-body scattering amplitude" fp of Eq. (2) is
to be modi6ed by solving the two-body problem "in
the dispersive medium. " Following the notation used
by Brueckner' and his collaborators, we shall refer to
the latter as the "self-consistent" V~. The value of V~
obtained from Eq. (2) we shall call the "free particle"
V&. It is evidently desirable, where possible, to use the
approximate "free particle" V~, since this is much easier
to obtain than is the "self-consistent" V~. In the present
section, we cmpare the values of V obtained by these
two methods.

7Ve might remark in this connection that Brueckner
et a/." found it necessary to do the "self-consistent"
calculation in their work ori nuclear saturation.

A. Simple Model

We suppose the two-body interaction V to have the
form

where G is a constant and the functional form of @ will
be specified later. The V;, t of Eq. (55) is supposed to

~ Pote added irl, proof. —It should be noted that cop occurs in
Eqs. (2) and (13) and not co+. In the no-recoil approximation,
uy=ro~. We wish to thank Dr. W. Riesenfeld for calling our
attention to the fact that we inadvertently used eu& in place of u~
in preparing I'ig. 2. Table II is correct, however.

ts K. A. Brueekner, Phys. Rev. 96, 508 i1954l; Brneckner,
Levinson, and M~&moud, Phys. Rev. 95, 217 (1954).
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Fro. 5. The free-particle values of Ve(coo, k) in the center-of-
mass system calculated from the "principle of causality" (1) and
from the T= j, j=g, I=i phase shifts calculated by Chew (2).
The difference between the two curves is Vo(coo), Eq (61).

r y'(k')

(ue —h(k')
(57)

Again, the E;, t of Eq (56) i.s the submatrix for the
(I=-,', j=-,', f= 1) state.

Using Eqs. (48) and (49) to relate E to I and Eq.
(36) to relate I to Vtr, we obtain )assuming for sim-

plicity that V acts only in the (I= ss, j=—ss, f= 1) state]

G 2m

Vz = —4'(k)
1yGI1+h P(k, )Z;, ,)k,)j'

This is the "self-consistent" Vg. The "free-particle" Vg
is obtained by replacing h(k') in Eq. (57) by cu(k')

I see Eq. (39)J.
For numerical evaluation two models were chosen:

t»(k) = fl,c'+ (k'/2p), G =0.08028 (59)

be the submatrix V;, t (I=-,', j=-,', l=1) of Eq. (40).
Then Eq. (44) for the E'-matrix has the exact solution
(as may be verified by substitution)

(k'I«. Ik) = —Ge(k')e(k)/(1+(:I), (56)
where

On evaluating I, Eq. (58) may be solved algebraically
for Vg. The results are shown in Table II, where
V~(ces, ke) is given as a function of ks $cee —h(ke)=0
determines ks, we recall) for both the "free-particle"
and "self-consistent" problems.

From Table II we observe that in Case I the "free
particle" V~ is about ten times larger than the "self-
consistent" V~ when (E pc') i—s much less than 200
Mev. At higher energies the two values are nearly
equal. Far Case II; on the other hand, the two values
are about equal at all energies.

The similarity of "free-particle" and "self-consistent"
Vg's at high energies is quite understandable. Reference
to Eqs. (38) and (39) suggests that for ~e))i Uzi, the
latter is negligible, so Eq. (38) reduces to a free-particle
scattering equation.

At low energies the difference between the two V~'s
for Case I is due to the considerable strength of the
potential V at high momenta'. In Case II, the V is less
strong at high k and the "self-consistent" corrections
are less important. Similar conclusions are drawn in
Part 3, where a much more complex problem is con-
sidered.

A pseudoscalar symmetric theory of the pion nucleon
interaction which neglects nucleon recoil (that is, the
cutoff theory proposed by Chew) predicts that there is
no interaction except in those states for which the
orbital angular momentum / is equal to j.. It predicts
that the phase shifts even for these states are small
unless in addition the isotopic spin T is ~ and the total
angular momentum j is 23,. Thus it predicts that the
main contribution to V~(cue, k) in Eq. (37) results from
the term with (kiI'*ik), and the main contribution to
this in Eq. (43) results from the term with i= 1, j=-,'.

In this section we apply the cut-oG theory for the
T'= ~, l=1, j= ~ state, and treat the other states only
in the following rough approximation. We replace Eq,
(37) by

V, (~„k)=(2w/Zs)(kif(r=-ss, j=-,', i=1) ik)
+U.( o), (61)

where Ve(a&s) represents the contribution of the other
states. VVe have taken it to be independent of k as it
would be (roughly) if 5 states made the main contri-
bution to it.

The magnitude of U(cue) was estimated in the follow-
ing way. We may also write

(in both models), and
Case I

p(k) =k/(p'c'+ k') & for k &6.65fjc
=0 for k& 6.65p,c.

Case II
p(k) =k/(fI, c'+2k )& for k &6.65pc

=0 for k& 6.65pc. (60)

Uz(~s, ke) = (-,'J;+-.'&;),
~3o~o

where JI and JI are defined in Eq. (12). This is, of
course, the free-particle Uz(a&s, kp) and not the self-
consistent one. This expression can be evaluated from
the "principle of causality", '~ "and the result is shown
in Fig 5. The first te.rm on the right of Eq. (61) can be
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evaluated in the free-particle approximation from
calculations of the phase shift in the T=» l=1, j=-',
state in pion-nucleon scattering. Such calculations have
been made by Chew" and they 6t the results of phase
arialyses quite well. The result of such a calculation is
also shown in Fig. 5. Ve(oie) is taken to be the difference
between these two curves.

It is possible to estimate Vs(~os) from the results of
phase-shift analyses of pion-nucleon scattering data.
These give the phase shifts which are needed to evaluate
the free particle Vz(ois, k&) from Eqs. (37) and (43).
The result of such a calculation is not even smooth,
as shown in Fig. 5. Thus it is not possible to judge
whether or not the assumption that the main contri-
butions to Vo(ohio) are made by 8-states is valid in this
way. However, we felt there was no better way of
doing the calculation than to use Eq. (61) and estimate
Vs(ois) in the manner described.

We may summarize our assumptions as follows:
(1) The cut-off theory is used in calculating the self-

consistent value of the first term in Eq. (61).
(2) The contributions to V~(ois, k) from states other

than T=2, j=2, l=1 are not subject to "self-con-
sistent" corrections discussed in this section, are inde-
pendent of k, and have the values Ve(ois) shown in
Fig. 5.

The two-body interaction in the T=~, j=~, l=1
state which results from a pseudoscalar symmetric
theory of the pion-nucleon interaction is

4f' k'k
(k'~ V)k) =

3~ t ~(k')~(k))-: k(k')+ k(k) —~,
'

where nucleon recoil is neglected. It is necessary to cut
this interaction oG in order to get a convergent theory
of the pion-nucleon interaction. Following Chew, we
use a cutoG equal to the nucleon rest mass. We use a
value of f' which makes the T= —,', j=—'„1=1phase
shift in pion-nucleon scattering 90' at 196-Mev pion
energy in the laboratory system (f'=0.1).

With Eq. (62) for (k'~ V~k) we must find a self-
consistent solution of Eqs. (44), (50), and (61), with
Eqs. (39) and (49) defining certain quantities appearing
in these. To do this we use a straightforward iteration
scheme. We first guess some Vg(oie, k) as a function of k.
Equation (46) is not used to compute ks, which is held
fixed throughout a calculation; rather, it is used to
compute ois. To get our next guess, we need (k~ /~ k) in
Eq. (61) as a function of k, and this must be calculated
from Eq. (50). From Eq. (50) we see that we need b,
(kol&lko), (k[&[ko)=(kol&lk), and (k[&Ik) We g«
the value of b by evaluating the derivative of h at
k= ks numerically. If we solve Eq. (44) with the value
of oie found from Eq. (46) and with kz=ks, we get
(kii~Z~ke) as a function of ks, from which we can get
(ko(E( ko) and (k(E) ke). Finally, if we solve Eq. (44)

"Geoffrey F. Chew, Phys. Rev. 95, 285 (1954).

with kg= k, we get (ks E k) as a function of ks, from
which we can get (k E k). Thus we have all the
quantities required to evaluate Eqs. (50) and (61),
which gives us a new guess for Va(oie, k).

A first guess of Vg(oio, k) =0 leads to a solution in 10
or 20 iterations except in di%cult cases to be mentioned
shortly.

A few remarks on hner details are in order now. We
load a table of the guessed Uii(&up, k) into the computer
memory at intervals k=0(0.4)6.4. (Our unit is p,c/A,
so that the cutoff is k=6 557). The method described
in detail by GammeP' was used to solve Eq. (44) for E.
This replaces the integral Eq. (44) by a system of
simultaneous linear equations. The integration over k"
is broken into two regions; the 6rst extends from 0 to
2kp and the second from 2kp to 6.557. Eight mesh points
are used in the first region; 20 in the second. A redefi-
nition of variables described by Gammel was made in
the first region to avoid the singularity in the integrand
in Eq. (44) at k"=k&. We get k by differentiating
Vz(ohio, k) with respect to k at k=ks. Of course, it is
easy to do this numerically with a table of Vii(oip, k) in
the machine. For a given k&, the values of (kB

~
E~ kg)

were found for k& equal to one of these mesh points.
To evaluate E for other values of b, a 5-point interpo-
lation method was used. This interpolating is necessary
in computing Eq. (50). BrieQy put, the iteration
procedure consisted of computing a new V table from
an old V table.

In those cases where no difhculty was encountered
starting from Vg(ore, k) =0 as the first guess, the new
and old V tables agreed to 1 part in 104 after 10 to 20
iterations.

The amount of machine time required for this is not
large; perhaps two hours suKces for all 10 to 20 itera-
tions on an IBM 701.

Of course, difhculties were encountered in some cases.
Equation (50) is nearly the same as

—', sin2x= tanx —tan'x/(1+ tan'x),

which is awkward in the vicinity of x=s./2. We ran
into this diKculty for kp=1.6. The lowest energy we
tried (ks=0.4) also gave trouble because 1 was very
sensitive to V; that is, the output was very sensitive
to the input. This energy has a very low value (~10
Mev in the lab system) so we did not try to overcome
the difhculty. These same difFiculties show up in the
hand calculations described in Sec. IV A.

One would like to have existence and uniqueness
theorems for such problems. While we realize that such
things do not constitute a proof, we did succeed in
6nding a solution for each kp, and failed in eRorts to
find more than one.

Graphs of the final Vg(ois, k) are shown in Fig. 5 for
several cop as functions of k.

The result of this calculation is that the 6nal

s' J. L. Gammel, Phys. Rev. 95, 209 (1954).
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nents are very large. This was veri6ed in the hand
calculations of Sec. IV. A and in the present calculation
by requiring that Va(too, k) be equal to Vz(coo, ko) for
k) ko and be equal to its value from Eq. (61) for k(ko.
In this case the self-censistent V~(too, k) results on the
erst iteration and Vz(coo, ko) is given by Fig. 2.

We view this result as evidence against the interaction
Eq. (62) since the "principle of causality" Vz(coo, ko)
agrees with the experiments, which suggests that the
corrections discussed in this section shouM be small.
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Fro. 6. Contour graph of (kgl t~ks), from which the potential
is to be computed according to Eq. (23). Center-of-mass values
are plotted. These should be converted to lab values according
to Eqs. (17) and (lg).
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Fro. 7. The "self-consistent" potential (kg( V)kz)
for ko=0.8 and 1.2.

Vg(coo ko) is not at all the same as that given in Fig. 2

(it is much weaker and much too weak to agree with
experiment). This means that in this respect approxi-
mation 3 has failed.

The source of this failure is the singular nature of
the potential Eq. (62); that is, its off-diagonal compo-

IV. C

There is still a possibility that the large oG'-diagonal
elements will still make the theory agree with experi-
ment if one solves the Schrodinger equation cerrectly
with the potential given by Eq. (23). A more general
version of Eq. (50) is

Re(kslflk~) = (k~l&lk~)

b (ko I
E

I ko) (kg I
E

I ko) (ko I
E

I kg)
, (63)

1+& (k, lZlk, )

from which we may calculate the complete potential
matrix given by Eq. (23). For p(s) in Eq. (24) we have
used a rectangular distribution whose radius is given
by Eq. (3). A contour plot of (k~ltlk~), from which
the potential is to be computed according to Eq. (23),
is shown in Fig. 6.

We inadvertently did not use tz, (lab system) in

Eq. (23), but used the center-of-mass f. The transfor-
mation should have been made using Eqs. (17) and
(18). This error is not serious for an estimate of the
eGect of off-diagonal elements of the potential, and it
was not thought worthwhile to correct the calculation.

We have solved the Schrodinger equation

(P'I&l po)=(p'I V IPo)

„(P'IV. I
P")(P" I & I Po)

dp" . (64)
po' —p'"

The solution-must be compared to a solution of Kq.
(64) with (p'IV, lp") given by Eq. (23) except that
(yo I tr, l po) replaces (p'I t&l p"); that is, we must compare
it to a solution of Schrodinger's equation for a potential
whose range is given by Eq. (3) and whose depth is
given by Eq. (2). [It ought to be stated that the neglect
of the c.m. to lab transformation was made consistently,
that is, it was also neglected in calculating (po I

fz, I po) j
The calculation was done for carbon and for k0=0.8.

The results are contained in Table III. They are that
the oG-diagonal elements do roughly double the depth
of.the equivalent rectangular potential; they are not
sufBciently large to achieve agreement with experiment.
It is interesting that the eGects of the oG-the-energy-
shell corrections are not more important in this case
for which tl, is more than ten times larger o8 the energy
shell as on it. (See Fig. 'l.)
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TABLE III. The values of tanb/~cootlo calculated for carbon
and k0=0.8 by solving the Schrodinger equation {64)with two po-
tentials. The 6rst potential is that calculated from Eq. (23)
without approximation, and the second is that calculated from
Eq. (23) with the approximation which lead eventually to Eqs.
(32} and (2).

Potential I

0.100

Potential II

0.0539

"VB" VB. Except for (E —trc')~200 Mev, this does
not seem to be a very signiicant e6ect.

VI. CONCLUSIONS

Except for the self-consistent evaluation using meson
theory, the calculation of the'well depth from the
dispersion relations of Goldberger seems justifiable and
in agreement with presently available experimental
values. Further experimental study should provide
considerable evidence for, or against, the basic assump-
tion of two-body forces within nuclei.

The calculation using meson theory was in order-of-
magnitude disagreement with the value of Vg as
obtained from the dispersion relations. The source of
the disagreement was traced to the very strong inter-
actions at high momenta in meson theory.

It would appear that the experimental measurement
of the well depth for both light and heavy nuclei would
be of considerable interest, since the model which we
have used implies that the well depth is independent
of the nuclear size. If the model did not give a reasonable
approximation to the actual well depth, we could not
expect this treatment to be valid.

V. OTHER NUCLEAR BINDING EFFECTS

In Sec. II we discussed corrections due to the nucleon
velocity in the nucleus. There are still other corrections
for nuclear binding, such as the error due to the impulse
approximation. (This has been considered by many
authors, "and will not be discussed by us. )

There are also corrections to Eq. (2) due to correla-
tions in nucleon positions within the nucleus. (This effect
is well known in optics —as for instance in the study of
x-ray scattering by liquids and in critical opalescence. )
The formal development of the optical model to
include such sects was given 'by Francis and Watson. '
A rough evaluation by them LEq. (81) of reference 8j
led to a correction, which is approximately

"Vrr"——VB[1+-,'(A/trc) (1/X,)],
with X, given by Eq. (7). Here "VB"is the value of VB
corrected for the nucleon correlation eGect on the basis
of a model for which the only correlations are due the
Pauli principle. This formula is valid only when

APPENDIX. GENERAL RELATION BETWEEN
THE t- AND X-MATRICES

In Sec. III, we set Vo= V~, dropping the imaginary
part. We now consider the modification of our equations
which results when Vr is kept. The equation for t is now
Lsee Eq. (38)j

t= V+V t,
ooo h+i V—r

(A-1)

the ig term being superQuous. This may be rewritten as

((oo—h)
t=V+V

(~o h-)'+ —Vr'

Vr

TABLE IV. The potential Vz on the energy shell for the simple
model of Sec. (IV—A). Va is given in units of po'. The calculation
of 'hVB/Va is discussed in the Appendix.

Case I
LEq. (60)j

Case II
LEq. (61))

Case II
BVz/Vg

ko

0.4
0.8
1.2
1.6
2.0

Free
particle

ve
—0.437—0.746—0.319—0.013—0.043

Self
consistent

vz
—0.066—0.079—0.088—0.013
+0.043

Free
particle

va
—0.114—0.189—0.370—0.449

Self
consistent

vz
—0.144—0.214—0.366—0.380

0.002
0.007
0.150

This equation is, however, equivalent to the set of
equations

((uo —h)E= V+V K,
(~o Ir)'-+ V—r'

Vr
t=K—iE

(ooo—tt)'+ Vrs

(A-3)

(A-4)

On going to the limit Vr=0, we obtain just Eqs. (44)
and (45).

It is important to know the error introduced into
Eqs. (A-3) and (A-4) by letting Vr—+0, since this
procedure formed the basis of the calculations made in
Sec. IV. For the model of Sec. IV—A, Case II, calcu-
lations were made of the VB given by Eqs. (A-3) and
(A-4), and the Vrr given by Eqs. (44) and (45). The
results are presented in the last column of Table IV in
terms of the ratio 8VB/VB, where 8VB is the difference
between the two V~'s. The correction does not seem
to be very important, except near the peak in the
pion-nucleon scattering cross section.
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