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The existing time-dependent formal theory of scattering is valid only for the simplest case. The theory
is extended to the general case of rearrangement collisions including the case where all or some particles
are indistinguishable.

The outstanding feature of the scattering process is the existence of asymptotically constant observables.
The formal expression of this fact is the existence of a set of basis functions ®, such that, if the Schrodinger
state is written as a linear combination f°¢(n,f) exp(—2Ent)®ndn, the coefficients ¢ have time-independent
limits ¢4 () for t= 0, the squares of which are observed probabilities. While in the simplest case the
®,’s are eigenfunctions of the unperturbed Hamiltonian, they form in general a nonorthogonal and linearly
not-independent set which can be explicitly given, but there exists no linear operator of which they are
eigenfunctions. As a consequence, it is impossible to define an interaction representation in which the
states have asymptotic limits, and no linear S-operator exists. An S-mairiz is defined, and it is shown to be
connected with cross sections in the usual manner. An expression for the S-matrix in terms of time-inde-
pendent solutions is given and shown to reduce to the usual one in the simplest case, but not in general.
An integral equation for the scattering amplitude is given which is nonlinear. It has, however, the advantage
of exhibiting directly the contribution of bound states in addition to Born’s approximation. Unitarity and
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reciprocity relations for the general case are derived.

I. INTRODUCTION

HE general case of scattering, where the reaction

products may be different from the colliding
systems, has been extensively studied in the time-
independent formalism.~® Stueckelberg,® Schwinger,®
and Dyson® introduced a representation of the scat-
tering operator as the limit of a time-dependent operator
U. This representation is not only satisfactory from a
fundamental viewpoint, but also practically advan-
tageous. The time-dependent formalism has since re-
ceived much attention™® but it has not been generalized
sufficiently to describe the general case of rearrange-
ment collisions. The definitions of the S-matrix given
by Schwinger and Dyson are not valid for the general
case. This limitation seems to have been recognized
only by Belinfante and Mgller.?

The purpose of the present paper is the definition and
characterization of the S-matrix as a limit of a time-
dependent function for the general case.

Since the time-independent theory cannot only deal
with all scattering problems in configuration space, but
is also able to produce time-dependent solutions by
appropriate linear combinations of steady-state solu-
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tions," the present paper does not fulfill a real need in
this field. The need for a reformulation arises in field
theory, where the use of configuration space is im-
possible or awkward, and it is in view of this application
that the present study was undertaken. In addition,
some aspects of the theory in configuration space are
more easily accessible in a formulation which is time-
dependent at the outset, e.g., the orthogonality of
steady-state solutions which describe different entrance
channels (Sec. IV).

We start with a re-examination of the basic question :
which mathematical expressions represent the observed
quantities?

In scattering experiments, the evolution of the wave
packet in time is masked by the rapid succession of
independent and incoherent scattering events. The
time-dependent theory describes only the single scat-
tering event, and not a steady stream of incident
particles.

For clarity, a telescoping of these two concepts will
be avoided.

The characteristic empirical fact in scattering experi-
ments is that the measured probabilities (differential
cross sections) become, for sufficiently large distances,
independent of the distance between the region of
collision and the location of the measuring device. In
the theory of the single event, this must be interpreted
as the existence of a limit of observables as time
increases. The objects of the theory are these asymptotic
constants.

The “initial” information to which these constants
are correlated comes from monitoring experiments, in
which the incident beam is analyzed after removal of
the target. The probability distribution of constants of

41,. Eisenbud, thesis, Princeton University, 1948 (unpub-
lished).
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the motion (momenta and internal coordinates) of the
free projectile is measured. It is then inferred that in
the actual scattering experiment the incident projectiles
also have this distribution a long time before they
interact with the target, i.e., in the distant past with
respect to the time of collision; and even if the incident
particles have been released from the source only a
short time before their collision, it is useful to think of
the incident particle as having traveled an infinite
distance before collision. It is unrealistic to assume, as
was done in the older literature, that one has in a
scattering experiment any information concerning the
initial state at a finite time (say, £=0). (See Sec. X1I.)

The reformulation of scattering theory (by Schwinger
and Dyson® ) is not primarily a device to introduce
symmetry between past and future, but a step necessary
to establish correspondence between measured and
calculated quantities.

The purpose of scattering theory is, then, to find the
connection between the asymptotic limits of proba-
bilities or probability amplitudes for #—-+ « and — .

In the one-channel case, these amplitudes are the
coefficients of the expansion of the Schrédinger wave
function in terms of eigenfunctions of the kinetic-
energy operator. This is intuitively obvious, and can
be shown to be mathematically correct. For the general
case, the system of basis functions must be chosen with
great care, if the expansion coefficients are to have
limits. If the basis system is chosen arbitrarily, i.e., an
“unperturbed Hamiltonian” H, is arbitrarily separated
from the Hamiltonian H, the expansion coefficients will
not have limits; if one attempts to use a substitute
limit, demonstrably incorrect results are obtained.
(See end of Sec. II.)

In scattering experiments, one tries to define the
momentum of the incident projectiles as sharply as
possible. This has led to the identification of the state
in the distant past (or at /=0) with a plane wave. The
use of a non-normalizable function as a state ¥ (¢) leads
to mathematical complications™® which are unneces-
sary. In the present paper, the entire general theory is
based on finite wave packets of very general nature.
The passage to the limit of sharp initial momentum is
made only where the connection between the S-matrix
and cross sections in the (idealized) experimental
situation is established. (See Sec. XII.)

In Sec. II, the single-channel scattering theory is
recapitulated in a somewhat different manner, in order
to show its inadequacy for the general case. In Sec. III,
a set of basis functions ®, is defined such that the
Schrodinger state ¥ (¢) tends to

v ()— f cy(n) exp(—iEH)®qdn

for =4 . In Sec. IV, the S-matrix is defined, ex-
pressed in terms of eigenfunctions of the Hamiltonian,
and shown to give the usual results in simple cases.

TIME-DEPENDENT SCATTERING

881

In Secs. V and VI, unitarity and reciprocity theorems
are derived. In Sec. VII, it is pointed out that no linear
operators exist which transform either the state in the
distant past into that in the distant future (S-operator)
or the set of basis functions into the orthonormal set of
“scattering” eigenfunctions y,* (Mgller’s wave oper-
ator). Transformation properties of the S-matrix are
discussed in Sec. XIII, and two nonlinear integral
equations of general validity are derived in Sec. IX.
Certain simplifications, which occur when all particles
involved are distinguishable, are discussed in Sec. X,
and the S-matrix is identified with the coefficients of
asymptotic expansion in configuration space in Sec. XI.

The present paper considers only processes which can
be described in configuration space. Application to
field theory will be made in a later paper.

II. INADEQUACY OF THE ONE-CHANNEL THEORY

The definition of the scattering operator .S as the
limit of an operator U is, strictly speaking, only appli-
cable to the case of two colliding particles, or, slightly
more generally, several particles which are infinitely
separated both before and after the collision, as con-
sidered by Belinfante and Mgller.* To show how this
one-channel theory is limited, we summarize it in a
somewhat modified manner. (We set z=1.)

We consider a time-independent Hamiltonian

H=W+7V, (1)

where W is the kinetic energy and V is of limited range.
Its positive-energy eigenfunctions are Yz, s(x):

Hygp, :(x)=FEdg, o, )

where s are parameters of degeneracy which may be
discrete or continuous, but E has a continuous range.
A general state of the system without admixture of
negative-energy eigenstates at the time ¢{=0 may be
represented by the Schrédinger wave function

¥ (0)= f a(B,5) o (2)dEds, 3)

where the integration may also mean summation with
respect to some parameters s, but not with respect to E.
The coefficient a(E,s) is a square-integrable function.
The state at some time ¢ is then given by

¥ ()= f Fta (B 5 5, dEds. @)
I

f W(E W5, o(&)ds

is absolutely integrable for every x (a rather mild
requirement), then, by the general properties of Fourier
integrals,

lim ¥ (5)=0, (4a)
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and since the range where V540 is limited,
‘Lim f V(O VY ()dx?=0. )

In other words, the wave packet ¥ (¢) will ultimately be
outside of the range of V¥, and its further development
is then described by the differential equation

0¥/ 0t=W¥)|t|— «). 6)
Hence,!®
V(e T Dy(x) (loE), (M

where @, is time-independent. If, therefore, the inter-
action representation is defined, at all times, by

() =¢""(8), ®)
we are assured that the limit
B(£o0)=0y 9)

exists and it is at least reasonable to assume that an
operator S defined by

exists, and that it is the limit of an operator U(f,7)

defined by
d@)=U(,7)® (7). (11)

In the general case, however, no single Hermitean
operator V can be split from the Hamiltonian H such
that the essential Eq. (5) holds. For instance, in the
simplest case of exchange scattering, we have a particle
1 incident on a particle 2 bound by a fixed center.
The Hamiltonian is

H=W1+Wot-Vit+ Vot Vi, (12)

where Vi, Vs, and V, are the potentials between the
center and the particles, and between the particles,
respectively. For exchange scattering we have then

lhm (V1+ Vlz)‘I/(t) =0, (13)
but .
m(V2+ Vi2)¥(£)=0, (149)

for that part of ¥ which describes exchange. Therefore,
it is not possible to define an interaction representation
such that Eq. (9) holds. Both the forms

q;l(t)=ei(W1+W2+V2)t\I;(t) (15)
and

B,(F) = et W WtV 0y (f) (16)

will fail to have limits for either /= © or — =, so that
no operator S can be defined in accordance with Eq.
(10).

16 This description is oversimplified for brevity. The point. is
that for large times, the bulk of ¥(¢) is of the form (7). Since we
need only space-integrals in the following, the omission of -V for
|¢|— o Is rigorously correct. A more detailed discussion of the
limiting process is given in the Appendix.
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The distinction between the cases where ®(4 )
exists and where it does not, is not a matter of mathe-
matical subtlety which can be overcome by defining a
substitute limit: it is a real physical distinction which
leads to different results.

As a consequence, the usual time-dependent theory
of the S-matrix fails in the multi-channel case. Consider
again the case of exchange scattering. The usual
formula (e.g., reference 9) for the differential cross
section 4—7 is

ai~| (@5, Vi) | %08, 85,

where ®; is an eigenfunction of the unperturbed, ¥;*
one of the total Hamiltonian. In exchange scattering,
the particle initially bound is found at large distances
from the center of force. This situation must be de-
scribed by a ®; which represents a positive-energy state
of the unperturbed system of energy E,. If the energy
E;is negative, it is clear that no solution of the equation
E;=E; for such states ®; exists. Therefore, the usual
formalism would predict no exchange scattering, if
taken literally.1®

III. THE BASIS FUNCTIONS

We consider a time-independent Hamiltonian H in
the Schrédinger representation with a number of po-
tential terms. All potentials are assumed to be of
limited range. In particular, no Coulomb interaction is
considered at this point: long-range forces may be
considered as a limiting case.

The division of configuration space into external and
internal regions is well known.!"® We assume that in
the external region at least one term of the Hamiltonian
vanishes so that the solution of the time-independent
Schrodinger equation in each part of the external
region is a superposition of basis functions &, which
represent bound fragments not interacting with each
other. The channel « is characterized by the vanishing
of the interaction term V., (and no other term). To
illustrate this definition, which differs slightly from
the usual one, by a simple example, consider a system
consisting of two particles and an external field, vanish-
ing outside a region near the origin. In the 6-dimensional
configuration space, one can distinguish four channels
as follows:

[r:] small, |rs| large; |rz| small, |r;| large;
| t1+12| large, |ri—rz| small;
|rit+1;] and |r1—r,| large.

The definition of channels is only based on geometric
relations, and does not include spins or internal coordi-
nates of fragments.

16 Although this point is rather obvious, it is perhaps not
unnecessary to point out the limitations of the usual formalism,
because it is frequently considered to be generally valid. Gell-
Mann and Goldberger (reference 9) treat several multi-channel
cases time-dependently, starting each time from prime principles
and obtain correct results. Their S-matrix { ormalism, however,
is restricted to single-channel processes.
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- The operator
H—V,=H, an

may be subdivided into the kinetic energy of the
relative motion of the mass centers of fragments, and
the Hamiltonian describing the motion of internal
coordinates of the fragments. The basis functions are
then products of the plane wave functions of the
mass centers and of bound-state eigenfunctions of the
fragments, if all particles are distinct; if some of the
particles are identical, the basis functions are sym-
metrized or antisymmetrized linear combinations. In
the latter case, a basis function &, is finite in all those
channels which are obtained by permutation of identical
particles in one channel «; in the above example, these
are the first and the second channels. The effective
Hamiltonians in this group of channels are obtained
from Eq. (17) by a permutation operation. We will
then say that the basis function &, belongs to a group
of channels a. The basis functions ®, of one group of
channels are not mutually orthogonal, and in either
case they are not orthogonal to those of other channels.
The basis functions of one group of channels form, in
general, an incomplete set, since only bound states of
fragments are contained in it; however, the basis func-
tions of the “free” channel (all individual particles
noninteracting) form always a complete set by them-
selves. Thus, the complete set of basis functions is not
linearly independent and, of course, not orthonormal.
They cannot be considered as eigenfunctions of a
Hermitean operator Ho.

[LWhile the channels are defined outside the internal
region, the basis functions ®, are defined everywhere,
and their overlap is important. We do not use special
solutions for the internal region, as do Wigner and
Eisenbud.!

In the absence of admixture of bound states of the
total system, the arguments of Sec. II show that the
entire wave function ¥(f) will ultimately be in the
external region. While Eq. (6) does not hold, we have
for the part of ¥ which is contained in channel &

i0V/o=H¥ (|f]—w), (18)

and it is clear from the definition of the basis functions
&, that

v (t)— f cy(n)e i Entd,dn  (f— o), (19)

where E, are the eigenvalues of H,, Hg, etc., and the
integration is meant to include summation over all
channels.

While the basis functions are not orthonormal, they
have the property that the normalization integral over
the total configuration space

@n®m) <o (n#m). (20)
We may assume them to be normalized so that
(q>n)¢m) = 5(1’1«“"&) +g(n,m), (21)
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where g(n,m) is square-integrable and bounded. This
leads to the asymptotic orthogonality of the basis func-
tions in the following sense:

tliIdI:I ((I>,., f e EmiP, c, (m)dm)

= e (r)eimnt+ lim f e=iEmtg (). (m)dm

=cy(n)e iEnt, (22)

The last step follows from the general property of

Fourier integrals which has been used already in Sec. II.
As usual, the absolute square of the scalar product

(‘I)nkoo\I' (t))

is the probability of finding fragments in certain bound
states », with their mass centers having relative mo-
menta k,. The asymptotic orthogonality of the ®,’s
guarantees that, in spite of the unusual properties of
the basis functions, the asymptotic probabilities are
just the absolute squares of the coefficients ¢, (%) in
Eq. (19).

IV. S-MATRIX
For t—4= o,
e H Y (0)— f e Ente, (n)Dudn. (23)
Therefore,
\If(0)==tl_i’rinw f et H-En g, (n)D,dn. (24)

To put this equation into a more useful form, we use
the mathematical relation

Foo
Jim 7)== lim e j; exp(Fel) f(D)dt,  (25)

which is correct if the limit of f(¢) exists.!” If we set
() =ei4tg, (26)

where A is a Hermitean operator, and g is time-inde-
pendent, we get

Fz00
lim ei4tg=-L lim ¢ f ei4F otgds
0

t—40

€

= lim g=lim [1— (A=se)"14g. (27)
ot jAFe o0

17 This theorem was first used in connection with scattering by
Gell-Mann and Goldberger.® However, they use the right-hand
side of Eq. (25) to define a substitute limit in a case where the
proper limit does not exist. In the present paper, the limit exists
properly, and Eq. (25) is used merely as a mathematical tool.
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By the use of this transformation, Eq. (24) becomes

¥(0)= lim f c(n)

X[1— (H—E,+ie) {(H—E,)]®.dn. (28)
The functions

YaE= m [1— (H—E.,Fie) " (H—E.)]®. (29)
are solutions of the steady-state Schrédinger equation

describing outgoing and ingoing waves, respectively,
which are asymptotically equal to ®,. Indeed, if we set

Yot =p ¥t (30)
the Schrédinger equation is
(H—Euont=— (H—E.)®s, (31)
and
Yont=— lim (H—EFie)™(H —En)®.,  (32)

and Eq. (29) follows.!

We shall now prove that the solutions ¥+ and ¢~
each form an orthogonal system, even if they belong
to different groups of channels.

By comparing Egs. (24), (28), and (29), we have

lim
t—t00

eI H=En e, (n)D dn= f ce(mYaTdn, (33)

or, symbolically,

lim iH—En P, =y, ¥,

t—>+4o0

(34)

although this equation is meaningful only if multiplied
by a square integrable c¢(#) and integrated, and the
time limit taken subsequently. Hence,

[fetmwmnam
=,l_i,‘i‘w f c(m) (e HE—En P, i H-Em)1D, Ydm
=lim f c(m)e i En—En (D, &, )dm
= tim [ e(m)emiEa e Ca =)+ ) Jm

=c(n)+limfc(m)e“E'"“E")‘g(n,m)dm

=¢(n). (35)

18 Tn the following, the “lim” symbol will frequently be omitted
for brevity.
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The last two steps follow from Eq. (21) and from the
asymptotic vanishing of Fourier transforms of square-
integrable functions.

Equation (35) proves the orthonormality of the
eigenfunctions ¥, * and, separately, of the ¥,

It should be remembered at this point that the
functions ¥..* belonging to a group of channels a do
not form a complete set, since their asymptotic parts
&, include only bound states of the colliding fragments.
Therefore, Eq. (35) is not absurd, as it would be if a
subset of the ¢,* were already complete. Nevertheless,
the result is surprising: there is at least one channel
(the “free” channel) which has already a complete set
of ®,’s. Each of these ®,’s has an associated ¥, which
nevertheless is orthogonal to all ¢,,’s of other channels.

Equations (24) and (33) may be written explicitly

¥(0)= f o (W atdn= f cr(mpadn.  (36)

The S-matrix consists of the elements of the integral
operator which relates the initial packet ¢_(n) to the
final packet ¢y (). It is shown in Sec. XII that the
S-matrix so defined is related to cross sections in the
usual manner.

In virtue of the orthogonality of the ¥,’s, we obtain
from Eq. (36)

o4 ()= f Yt (m)dm. @37)

Hence,

S(nm) = Yn ¥m")- (38)

This result is formally identical with one obtained by
Gell-Mann and Goldberger.® However, because of the
different definition of our ¥,’s, it has different conse-
quences.

The representation of the S-matrix as a double
time limit is obtained from Egs. (34) and (38):

S(n,m)= t EI-I{-I» (eiH-EnD, it H-Em 1, ) (39)

T —

From Eq. (29), we have

Yu =¥+ [ (H_ E,— 7:5)_1

—(H—E,+ie) " J(H—E,)®,. (40)

From Eq. (38),%

19 The operator H is not in general Hermitean with respect to
nonsquared integrable functions. If it were, one could conclude
that ((H—E,)®n, ¥mt)=(®@n, (H—E,y»n")=0 on the energy
shell since ¢¥n* is an eigenfunction of H. However, there is no
reason to doubt that the adjoint of (H—E.—ie)™! is (H—E.,
—ie)7L, as long as e is finite.
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S(nm)= @~ ¥mt) = @at¥mt)+(((H—E,—ie)™
— (H—E,+ie) ) (H— En)®,, ¥mt)
1 1
Eyp— Entie Em— Fn—ie
X ((H—En)®5, ¥n't)
=8(n—m)—2mwid (En— Ey)
X ((H—E)®n, ™).

=a<n——m)+[

(41)

Similarly, by solving Eq. (40) for ¢,* and substituting
into Eq. (38):

S(n,m)=38(n—m)

— 2118 (En— En) W=, (H—E,)®,). (42)
In the usual notation,
Snm= 6nm_ ZTia(En_Em)an, (43)

where R is defined only on the energy shell E,=E,.
Two matrices R,,* can then be defined in general by

an+= ((H—Eﬂ)q)m \0m+),
Roym—= (‘l/n_a (H~Em)cl>m),

which are equal on the energy shell, but not otherwise.

It can be verified that these results are equivalent to
the usual ones if a proper Hermitean scattering potential
V exists so that Eq. (5) holds and

(44)

(H—V—E,)®,=0. (45)
For then, Eq. (44) gives
an+= (V(pﬂill’m+) = (‘I)m V¢m+); (46)

which is the familiar expression.® If the particles are
distinct, and if o is the entrance channel and B8 one
other channel, we have

(H—-E")(I)nﬁz Vﬂq)nﬁ (47)
for a basis function ®,# of channel 3, and
Yote=d,2— (H— E,—i€e) V0,2 (48)

Hence, by Egs. (44) and (17),
an+= (@nﬁ’ Vﬂ¢ﬂ+a)’
which is also in agreement with previous work.?

Next, we consider two identical particles, one inci-
dent, the other initially bound. The Hamiltonian is

H=W+V(1)+V(2)+V(12), (12)

with V(12)=V(21). The basis functions ®,, are linear
combinations of eigenfunctions of the truncated
Hamiltonians

(49)

namely

(50)
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If we set as a first approximation ¥,,*=~®,,, we have

Rumt=3({[V (1)+V (12) Ix~(12)
=[V(2)+V(12) xa(21)}, {xm(12)£=xn(21)})
= (xx(12), [V()+V (12) x=(12))
+(xa(21), [V(2)+V (12) ]xw(12)), (51)

which is identical with Oppenheimer’s approximation.®
It is seen that the formula for R,,* contains both the
“direct” and “exchange” scattering.

V. UNITARITY
The inverse integral operator S~!(n,m) is evidently
defined by solving Eq. (36) for ¢_(n):

cu(n)-*—fS—l(n,m)q(m)d'm. (52)

Again, we can conclude from the orthogonality of the

Ynt

o) = [ rtsues(mpam, (53)
so that
S (n,m)= Wut¥m), (54)
and, by comparison with Eq. (38)
S(nm)=[S"1(mm)T*, (5%)

which proves the unitarity of the S-matrix for the
general case.

VI. RECIPROCITY RELATION

We prove the reciprocity relation only for the simplest
case, where the Hamiltonian is real. In this case, the
bound-state eigenfunctions in¥the ®,’s maygbe con-
sidered as real, and the complex conjugate of ®, merely
has the direction of the momenta reversed. This may
be expressed by writing ®,*=®_,. From Eq. (39), we
have

S(—m, —n)= :ﬁm (e H-Emtp, * pitH—En) 7 *)
—>
T—>— 00
= lim (eH-Enrd * oitH-Emip, *)*

t—oo
T —

= lim (e—i(H—E”) rq)n’e—i(H—Em) lq)m)

t—>w»
T —

= Jlim (e-i(H-E,.) T‘f’n,ei(H—E'") th,m)

t— — o
T— 0

=S (n,m). (56)

VII. NONEXISTENCE OF AN S-OPERATOR

If it were possible to define a linear operator Hy so
that
HO(IDn:Enq)n, (57)

2 N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (The Clarendon Press, Oxford, 1949).
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the asymptotic form of the Schrédinger wave functions
could be written

V(H)— f e iinte, (n)Pdn=eHotd, (58)
and an operator S could be defined by
B, =55, (59)

as in the single-channel case. Since, however, the set of
®,’s is not linearly independent, a given basis function
®; may be represented as a linear combination of others

&= f a(n)®.dn, | (60)

and if H, were a linear operator, it would follow that

H®,= f E#n)a(n)®.dn, (61)
which is in general not compatible with
H0®1=E1®1. (62)

Consider as an example a basis function ®, which
represents a bound state of all but one particle and the
remaining particle with small kinetic energy so that E;
is negative. ®; can be represented as a linear combina-
tion of the “free” channel functions &,/ which are just
products of plane waves and form a complete ortho-
normal set by themselves:

&= f (@), dn, (63)

and if H, were a linear operator,
Hb,= f E (8,0 B0)®,7dn, (64)

whereas by the definition of H,,
Hb=Ey f (@ B2 d. (65)

Since these two expressions should hold for every point
of configuration space, we may conclude from the
uniqueness of Fourier integrals that they are incom-
patible. Hence, no linear operator H, can be defined,
and therefore neither can any operator S in the usual
sense (i.e., no one-to-one association of one dense set
of state vectors to another one). It is also impossible
to define, in the general case, a linear wave operator Q
through

Yat=0P,. (66)

As a proof, consider again the representation of the
basis function ®; with negative energy E; by plane
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wave functions ®,/. If a linear operator existed, we
could conclude

Y= f (@7 D), dn— f @ B)YaHdn.  (67)

However, we have shown that all ¢,*’s are mutually
orthogonal; hence the linear combination of ¥,*/ must
be orthogonal to ¥+, contrary to the above conclusion.
Therefore the continuous matrix S(%,) must be con-
sidered simply as an array of numbers rather than, as
in the single-channel case, a particular representation
of a linear operator defined in Hilbert space.

VIII. TRANSFORMATION OF THE S-MATRIX

It is not possible to make use of the general transfor-
mation theory of linear operators as in the single-
channel case. Nevertheless, the usual transformations
can be carried out without difficulty. First, the choice
of the basis functions &, is sufficiently arbitrary so that
linear combinations of degenerate ®,’s can be formed
to obtain functions which are eigenfunctions of the
total spin, isotopic spin, etc. Second, the R-matrix
which is a function of two sets of momenta may be
represented as a sum of spherical waves with respect
to both variables: one only has to expand both &, and
¥»® and carry out the integrations. In this manner, one
obtains the usual discrete matrix elements S,,, well
known in the time-independent theory.

However, it is not possible to use spherical waves at
the outset of the theory. Time-independent functions
which represent outgoing or incoming waves are singular
at the origin and therefore not useful as basis functions.
Standing spherical waves lack the property that packets
of the form

V()= f c(n)®ne i Ertdn

become (and remain) asymptotically solutions of the
Schrédinger equation, since a part of a packet of
standing waves will ultimately flow back to the origin.
Hence, only functions of the plane-wave type are
acceptable basis functions.

IX. INTEGRAL EQUATIONS

We have defined two matrices R*(m,n) which are
equal on the energy shell E,=E,, but not otherwise.
We shall now obtain integral equations for these
matrices.

If in the equation defining ¢, [Eq. (29)]

¢n+:¢n'— (H-En—-ie)_l (H_ En)én) (68)

each term is premultiplied by (H— E,,)®,, one obtains

((H—E,)®m, ") =(H—E,.)Pp, ®,)

—((H—En)®m, (H—E,—ie)\(H—E,)®,). (69)
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We now assume that the rigorous eigenfunctions
¥+, together with negative-energy solutions ¥ (bound
states of the total system) form a complete set and we
represent the function (H—E,)®, as a series of these.
Using the definition [Eq. (44)] of R*, we obtain the
integral equation

R*(ml) R+ (nl) dl
E()— E(n)—1ie

(H= Ep)®p, ¥1)((H—E,)®,, Ys)*
b E.+| Bl

In the last term, the transition to the limit e=0 can
be carried out since all E;’s are negative.
Similarly, one obtains the integral equation for R~:

R=(In)R~*(Im) i

E(l)— E(m)—ie
((H—E)®m 1) ((H— En)®um, )

5 Em+| Es| )

R () = (H— o), @) — f

. (70)

R(mn) = @, (H—E,)®,)— f

(71)

These integral equations have the great disadvantage
of being nonlinear. The impossibility of finding linear
integral equations in the general case seems to be
connected with the nonexistence of a proper scattering
potential V.2
Iteration of the integral equations leads to results
quite similar to those of the usual perturbation theory.
If we set
((H_Em)q)m; ®,)= V(m”); (72)

(although there exists no linear operator of which V' (mn)
is the matrix element), the two expansions are, in
absence of bound states,

V(ml)V*(n
Rt(mn)=V (mn)— f%i)l?(n_g—l)idl+ teey (73)
- . V (ml) V*(nl)

Since?
V*(n,m)= (®n, (H— En)®n)= ((H—En)®,, ®») (75)

is equal to V(mn) on the energy shell, the two expan-
sions are equivalent.

The third term in Egs. (70) and (71) can be evaluated
explicitly and could be considered as a correction to

2t Note added in proof.—If the functions &, were eigenfunctions
of a linear operator Ho, Eq. (70) would reduce to Eq. (5.14) of
reference 9. For the scattering of mesons by a fixed nucleon, Eq.
(71) is identical with Eq. (5.36) of G. C. Wick [Revs. Modern
Phys. 27, 339 (1955)], where & is defined by Wick’s equation
(5.23) and use is made of Eq. (5.28).

2 It is easy to verify the self-adjoint property of (H—E,) with
respect to the functions ®, and ®m, from their definition in
coordinate space, by Green’s theorem,
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the first term which is Born’s approximation: whether
it is of practical value remains to be seen.

X. DISTINGUISHABLE PARTICLES

If all particles are distinguishable, certain simplifi-
cations are possible. The basis functions ®,, are then
eigenfunctions of H, [Eq. (17)]. That part of the wave
function which is in channel « has the asymptotic form

Mty (),

where .. is time-independent. For the present case,
bound states of the total system, y¥», may also be
considered without additional complication. The total
wave function has the asymptotic form

. \I:,t(x,t)_)Za e—m“(‘—“’)xlla:i:(x)'f‘zb e—iH(t——to)lpb. (76)

The states ¥, vanish exponentially in the external
region, and are asymptotically nonoverlapping with
the wave packets of the channels. Hence they may be
included as an additional channel b, with Hy=H :

Y)Y e 0 (). (77

Clearly, ¢b+=¢b—
Let P, be a projection operator which annuls the

wave function everywhere except in the channel a.
Then,

P,g:exp[—iH o(t—10) Wax(%). (78)
We define operators U, by
U, (tto) = eiHlalt—t0) P =il (t=to), (79)

Since W (£) = e~ H (-0 (1), it follows from Eq. (78) that

tl_lilw Ua(t,10)¥ (t0) =y a (), (80)

and the limit exists under the indicated conditions.
In general,
Uu(£ oo, ty)= lirin exp[iH o (t—ty) 1Pa
t—+4-0
Xexp[—iH (t—tp)]. (81)

Since the projection operators P, cover nonoverlapping
parts of the wave function for /= =,

Jim (Po¥,PaE)=0  (a=p). (82)

Hence, the constancy of the normalization (¥,¥)
requires that

grilwza(P o, Po¥) = (¥ (t),¥ (1)) =2 a(Yat¥ax). (83)

It follows from Eq. (80) that

Za UaT(:}: @, tO)Ua(:t ®©, t0)=1? (84)
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and

Yoy = Ua(:b @, tO)‘I'(tO)
=Ua(E£ o, 10)2.a Ual (£ =, tO)‘/’ﬂ:&y (85)

For the single-channel case, these equations reduce to
UtU=U0Ut=1, (86)

which expresses the unitarity of the U-operator. The
operators U,t(Z& 0, fp) have meaning only when they
act on wave packets ¥, i.e., on square-integrable wave
packets of channel eigenfunctions (), as can be seen
from Egs. (84) and (86).

In order to relate the state of the distant future to
that of the distant past, we observe that, by Egs.
(80), (84), and (81),

Var=Ua(,0)¥(0)=Ua(,0)26 Usl(—», 0)¢s-
= lim Y g eiHutP g~iH(t=nPoe—iHgnyy — (87)
1>

Since each of the operators e~#87 acts only on a wave
packet of channel functions (8), the resultant function
will still be in the same channel, so that the operator
Pg may be omitted.
We define operators
Sﬂﬂ=U¢¥(w,0)UﬂT(— 00,0), (88)
with domains restricted in the foregoing sense. Then,

Var=2_p Sap¥p—. (89)

The constancy of the normalization requires again that

Za(‘/’a—;‘x&a—) = Za (‘/’a+s¢a+) s (90)
Za SeplSar=1, (91)

if the unit operator is meant only to reproduce wave
packets of channel eigenfunctions (v). By interchanging
+ and — signs in Eq. (87) and in view of Eq. (88) we
have

and, hence

V=25 Spa'¥ss, (92)
and constant normalization requires that
2aSyaSpal=1, (93)

with respect to any wave packet of channel eigen-
functions (B).

Let us summarize the results: the state in the distant
past (future) is completely specified by the sets of
functions Yo (¥ae+). Each function y.. is a square-
integrable wave packet of channel eigenfunctions (a);
they are not mutually orthogonal. The connection
between past and future is given by a square array,of
operators Sqs by the scheme:

Y1t Su S
Yor

S21 S22

Y1
Yo

(94)
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if the functions ¥a.(¥.-) are considered as vector
components and the operator array acts in the sense of
matrix multiplication. The inverse to Eq. (94) is

Vi Sut St Y14 |
Yo Stat St Yoy

. - (95)
. Niey
While none of the operators Sqg is unitary, the array of
the Sag is unitary in a somewhat extended sense of the
word.

The general case of indistinguishable particles can be
reduced to that considered here, if it is postulated that
the wave packet ¢, should be equal (or the negative of)
any ¥, which corresponds, in configuration space, to
the interchange of any two particle coordinates. This
is the analog of the usual procedure in the time-
independent formalism.20

XI. IDENTIFICATION WITH HEISENBERG’S
S-MATRIX

In the case of distinguishable particles, the R-matrix
obtained from time-dependent theory can be connected
with the asymptotic form of the time-independent
solutions ¥, * in configuration space. Consider a channel
a which corresponds to the free motion of N fragments,
with mass centers r;---ry. The interaction term V.,
vanishes if all relative distances (r;—r;)- - - are suffici-
ently large. The Schrodinger equation for ¢+ may be
written

(HG‘E)‘//B = Va‘//ﬂ+7 (96)

where (3 is the ‘“entrance channel,” i.e., Y5+ has the
asymptotic form &g. In channel ¢, Eq. (96) yields

l[/ﬁ =— (Ha—' E— ié)—l Vu¢p++ Ba,scbg. (97)

Equation (97) is now written in that representation
which diagonalizes the momenta of the fragments,
k;- - -ky and the internal energies of the fragments, i.e.,

Yver=2 gk kn)xa(7),

where the functions x; are products of bound-state
eigenfunctions of the internal Hamiltonians.

N
gz=5aﬁ(k—k’)—;[W'(kn)—Ez—ie]‘lVa%*- (98)

The remainder of the calculation is identical with the
one in the single-channel case®® except that several
momenta_k and coordinates r’ areljinvolved. One
transforms g; into coordinate representation by Fourier
integrations, going to the limit of large r, and large
relative distances (r;—rs)---. The result is a product
of Green’s functions of the individual fragments with
a coefficient
(@a,Vapst) =Rt (namsg),

S mP A M. Dirac, The Principles of Quantum Mechanics (The
Clarendon Press, Oxford, 1947), third edition, p. 196,
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where &, corresponds to those momentum vectors
which point toward the location of the fragments (i.e.,
ks, etc.).

This identification of the matrix R with the asym-
ptotic form of the time-independent solution is valid
only for identifiable particles. For the general case,
the connection is complicated, as can be seen from the
exchange scattering considered in Sec. IV. We obtained
there the direct and exchange scattering amplitudes
together from the general formalism, but we would
have to add up contributions from two essentially
different parts of configuration space if we wanted to
obtain the observable cross sections from the time-
independent solutions. The only possibility for using
time-independent formalism is to disregard the identity
of the particles at first and to. make the necessary
corrections subsequently, as it is done usually.?® In
field theory, such a procedure would be extremely
awkward, if at all feasible. Thus, the only reliable
foundation for scattering in field theory is the time-
dependent approach. This was the main motivation
for the present investigation.

XII. CROSS SECTIONS

In scattering, the question is not that usually con-
sidered: given the state at an initial time, what are
probabilities at a later time? It is rather: given that
the state at a time (say, zero) is known when the target
is removed to infinity, what are probabilities at times
t— o when the target is returned to its place (say,
x=0)? The data obtained in the monitoring experiment
can be evaluated as follows: If it is known that a wave
packet is described by

¥()= f c(n)® e Entdn, (99)

for all times at which the target is sufficiently far from
the projectile, then the monitoring experiments provide
information (partial or complete) on ¢(%), since

¥(0)= f c(n)®ndn, (100)

after removal of the target. When the target is restored,
Eq. (100) does not hold, but ¥(#) is still described by
Eq. (99) for t—— «, when the projectile is far removed
from the target. Hence, the monitoring data describe
the function c_(%).

The particular form of ¢_(#) usually considered (and
from which the more general case can be handled by
linear superposition) is that for which ¢_ describes a
state in which the internal coordinates are characterized
by sharp discrete quantum numbers, while the mo-
mentum k of the projectile is almost sharp. Suppose
that, in the monitoring experiment, the wave function
was found to have the form of a plane wave with
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propagation vector ko,= K, inside a large box of edge g,
and to vanish outside. We can then infer that in the
scattering experiment

2 \ ¥sin(ak./2) sin(ak,/2)
_(kn)={ —
(k) ( ) k. k,

a
sin[a(k,— Ko)/2]
D G —— )
k.— K,

(101)

nng,

where ¢ has been normalized as usual, and » stands
for all discrete subscripts of ®,. Let

1 sin(ex/2)

a()=~ (102)
T x
and
si=(2) =, (103)
T x
so that
li_)rgé,,= 8(x) (104)
and ’
Lim(A4)*=5(x). (105)

The asymptotic probability density for finding the
system characterized by momenta k and discrete labels
n, is

2

)= f (k| S|K'n)o_(k'n')dk!| . (106)

If @ were taken to the limit now, the result would show
no scattering because a projectile spread over all space
has a vanishing chance of hitting a finite target.?* We
are interested in the number N (k,#) of measurements
if the current density j of projectiles is given. Clearly,
the number of incident particles per second is

n=aj, (107)
and, hence,

N=a2jtP. (108)
It is now possible to let @ increase, j being fixed. The
number of measurements (k,z) per interval dk and

per second is

N
—=7lim
t a—o

2

5 f a(kn|S|K'n)e_(k'n')dk'| , (109)

24 This is due to the fact that we use no box to define the basis

functions. The fact that in an idealized scattering experiment, the
probabilities vanish and the cross section appears as an alternative
to (rather than proportional to) the probability, is pointed out
by W. Heitler, The Quantum Theory of Radiation (The Clarendon
Press, Oxford, 1954), third edition.
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or, by Egs. (101-103),

= jlim|2n f dk’ (k| S| K'no)
t a~—n0
2

Xda(k)oa(k,)Aa(k.'—Ko)| . (110)

If the two functions §, are first taken to the limit, the
integral gives, by Eq. (43), for k' k,,

- 27!"&(](71/ [ R l Pono) (dﬁ/dEO)Aa (170— KO);

where E, is the energy of the initial ® as a function of
momentum p, and p, is that momentum which satisfies
Etina1=Eo(p). After squaring, A, is taken to the limit:

N 475 2 d_p j —_—
—= n)] Gl R| o) ( = ) st00— K9

0

0

vipotef LY s
=(27r)]lR/ol (dE) dpa(E, Ey). (111)

The differential cross section is

o
do=— | Nkdk
jt

dp dk
— (2m)4dQ f |Rpo| e (B Eo)dE,
dE, dE,

(2m)%dQ| R ]gﬂdk £ (112)
" iR, dE,

0 &Ly

where Ry and the other factors are taken on the energy
shell. Although we have used units =1, Eq. (112) is
also correct in cgs units if p and % are considered as
propagation vectors rather than momenta. Equation
(112) can be written in terms of final and initial
momenta and velocities py, v;, v; in the more familiar

form
do= (2m/1)*dQ| Ry:|*(p 2/ vivy). (113)
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It has now been shown that the S-matrix defined in
Sec. IV has the same relationship to cross sections as
the S-matrix usually defined for the single-channel case.
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APPENDIX

In the following, we distinguish between strong and
weak convergence of asymptotic limits. From

lim ¥ (#)=0,

| ¢]—0

(A1)

it follows that (¥(f),V¥(f)) vanishes asymptotically,
but, of course, not that (¥,¥) or (¥,W¥) vanish.
The equation

lim V() =0 (A2)

| ]

holds in the strong sense, i.e., it can be formally multi-
plied by a bounded function, integrated over space,
and the time limit taken subsequently while (A1) holds
only in the weak sense. To avoid confusion, all equa-
tions involving time limits of functions, except (4a), are
meant to hold in the strong sense. To summarize the

notation explicitly, Eq. (A2) is an abbreviation for
lim(£,V¥(9) =0, (43)
where ¥(¢) is a solution of the time-dependent
Schrédinger equation, square integrable, and contain-
ing no admixture of eigenstates of the total Hamiltonian
which belong to the discrete spectrum, and f is a

bounded function, not necessarily square integrable.
A more precise mathematical discussion is found in
reference 12. The possibility of including admixtures of
discrete-state eigenfunctions is discussed in reference 10.



