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with f'(x)= fLA '(x—tt)] in agreement with (1). For
the anti-unitary U(a, A) we have similarly:

Therefore,

with fic defined as in (27) in agreement with (1).
The local commutation rules of g(f) can be veri6ed

as follows:

Q (fi)$(fp)Q ( ) =+f f g («&=4f f g ( )=$(fs)Q (fi)4 ( )

when fi(x)fs(y) for all (x—y)'&0. The proof depends
on the fact that for such fi and fs,

Our reconstruction remains valid in a theory in which
the field p(x) is not a complete description of the sys-
tem, e.g. , in a theory of interacting neutral mesons and
nucleons. However, in such a case the reconstruction
process given here will not recover the entire Hilbert
space. If one were to deGne a theory by its analytic
functions F&"', rather than by its Geld equations and
commutation rules, then, to be sure that the theory was
one of a single field @(x), one would have to impose
some kind of "completeness" requirement. For example
one could require that the set of vectors g (fi) Q (f„)4p
for m=0, 1, 2, ~ span the whole Hilbert space, where
the f; are testing functions which vanish outside of a
spacelike slice of space time of arbitrarily small thick-
ness ht in the time direction.

by virtue of Eq. (10).
To complete the reconstruction of the theory we

need only show that the vacuum expectation values of
products of p(f)'s are the F&"& This .is an easy conse-
quence of the formula P(fi)@(fs)' ' '@(f )0'p=%t, ...f„.
It implies

(+pl(fi)" tt (f-)+p)

~ fi(xi). f.(xe)&'"'(xi, xe)d'xi d4x„,
eJ

which was to be proved.

7. CONCLUSION

A theory of a neutral scalar Geld can be reformulated
as a theory of a denumerable set of analytic functions of
complex variables, E&"&, m=0, 1, 2, . Relativistic in-
variance implies that the P'"& are invariant under
Lorentz transformation without time inversion and are
therefore functions of certain complex variables s;,'.
Local commutation rules of g (x) imply F & "&(s;ts)
=F&"&(Ps;ss), where P is any of a certain'set of per-
mutations of the labels i, j; the positive definiteness of
the scalar product implies a set of inequalities con-
necting the boundary values of the F&"'.&iGiven a set
of J"&") satisfying the conditions listed, one can re-
construct a theory of a neutral scalar Geld.
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Radiative corrections associated with the electromagnetic Geld have been determined for the decay of
a fermion of arbitrary mass into a lighter one with the emission of a single boson or of two other fermions;
no special assumptions have been made about the nature of the interaction responsible for the instability.
The particular example of the muon-electron decay has been worked through in detail. Su%ciently accurate
experimental determination of the muon spectrum would permit the observation of a I.amb term without
vacuum polarization. Modified formulas for the Michel parameter p are given.

INTRODUCTION

A LL instabilities of the elementary particles are
somewhat modi6ed by Quctuations of their elec-

tromagnetic fields."These Quctuations are responsible
6rst for the emission of real photons, simultaneous with
the decay and independent of the surrounding matter
(inner bremsstrahlung) and second for damping effects
associated with the unradiated Geld. This damping may

' S. Hanawa and T. Miyazima, Progr. Theoret. Phys. (Japan)
5, 459 (1950).' T. Nakano et al., Progr. Theoret. Phys. (Japan) 5, 1014 (1950).

be described in terms of virtual photons and is exactly
similar to the processes responsible for the Lamb-
Retherford shift. The total probability of decay with
and without inner bremsstrahlung would of course
exceed the probability of unperturbed decay, were it
not for the damping effect of the virtual photons„
however both effects are of the same order and must be
considered together.

%e have considered the decay of an arbitrary charged
fermion into a lighter one with the emission of a single
boson or of two other fermions, without making any
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special assumptions about the nature of the interaction
responsible for the decay; and for this general situation
have calculated perturbations associated with both
real and virtual photons. The simplest reactions covered
by these general results might appear to be

St~ Ss+3s
St-+ Ss+2p. (b)

FORMULATION

We consider the decay of a spinor particle (rest
energy mt) into a lighter one (rest energy trss) as the

Reaction (a), when the single boson is a photon, as well
as the corrections in question both belong entirely to
quantum electrodynamics; the discussion of (a) might
in this case appear entirely unambiguous. However,
the fact is that no example in which S=y has been
experimentally established. When S is a strongly-
coupled boson, the present calculations are not ade-
quate. Therefore, our general results will not be dis-
cussed for case (a), but they will be illustrated in
detail for (b). A well known example of the latter is the
muon-electron decay; this is the case of main interest.
Here one is relatively safe in applying quantum electro-
dynamics, since the muon as well as the electron is very
weakly coupled to other fields. As we shall see, however,
some questions of principle do arise in connection with
the beta interaction; fortunately the corresponding
numerical uncertainties appear to be small.

If the loss of rest mass is large, the order of magnitude
of the effect (measured by the fractional change in the
probability of decay) is

A(P/(P~ (1/137)Lln(m t/Bf0) j'.
In the muon-electron decay (in207)'=28. 4 so that the
eGect is large for an electromagnetic correction. In
addition, A(P/(P is energy-dependent.

Our main reason for starting this calculation is related
to this last point and has to do with the procedure for
inferring the beta interaction from the shape of the
electron (positron) spectrum. The interpretation of this
spectrum is usually based on Michel's one-parameter
formula; that is, it has become customary to express
the experimental results by giving the value of p.
However, since Michel s formula ignores radiative cor-
rections, it seemed possible that the observed spectrum
might diGer from his in a significant way, especially in
the interval near the endpoint, which is most important
for 6xing p and where the electron has an energy 100
rest masses. In that case, one would be misled about
the value of p and therefore about the nature of the
primary beta interaction. It turns out that although
one would not get into serious error in this way about
the general structure of the beta interaction, neverthe-
less these corrections, of the order of 5 percent, ought to
be taken into account, especially in discussing the pos-
sibility of a universal Fermi interaction.

result of an arbitrary tensor interaction (I'). If Pit=ms
and F=y„, one has the usual examples of quantum
electrodynamics.

An ordinary scattering of a particle without change
in rest mass may be described as a Lorentz rotation of
its momentum vector (p;); a scattering with change in
rest mass may also be regarded as a rotation in suitable
variables. ' Let the familiar angle of the Lorentz rotation
be 0 and let the new angle correlated with the change in
mass be co. They may be dedned by the relations

cosh8= Pt 'Ps/tÃtrrss,

40 = ln(mt/Ptss).

(1a)

(1b)

We shall express all results in terms of these angles. For
example, Michel's formula for the muon decay with no
radiative corrections is4

(Pd'p = $ttst'ttss'/2 (2sr)'Il EtEsc'jLEt (cosh8)

X (coshos —cosh8)+-s,Es sinh'8

+Its(cosh00 —cosh8) jd'p, (2)

+1 g0 +2(gl +gs +gs )+g4 s

+s=gt +2gs +gs,
&s= go' —2g P+2gs' —g4'.

(3)

The interaction Lagrangian suitable for studying radi-
ative corrections may be written as follows':

L' '= g Z ~.00 '(lt' I' V )+e Z Z ~ (lt'A'A' ) (4)
fy PP

Here the electromagnetic interaction is written in its
usual form. The first term is some arbitrary linear com-
bination of invariants mixed in the proportions g =gg,
where r=0 4, and constructed from the tensor fields
tpP' which are responsible for the decay )for an ex-
ample, see Eq. (14)j. The index p runs over all com-
ponents of each tensor. Equation (4) will be abbreviated

2
&'"'=g4t@'6+e 2 Cs~sls,

ZP+ 0P~P

A=+„a„~„.
(5a)

(5b)

RADIATIVE CORRECTIONS (VIRTUAL PHOTONS)

Denote the three diagrams of order e' by a, b, and c;
and let u be the vertex modi6cation. The correction to

s These new variables (P„) may be expressed in terms of the
usual four components (ps) as follows: pP;= p;, pPs= (m' —Zp;s)/
2m, pPs= (ms+ZPP)/2sm.

In the new variables, the change in length of a four vector
appears as a rotation in the 5,6-plane; i.e., if p =Xp;, then
P~'= P~ cosh' —iP6 sinh~, Pe'= —P» sinhco+iPg cosh', where
co= lnX.' L. Michel, Proc. Phys. Soc. (London) A63, 514 (1949).

~ We de6ne the F~~ as follows: Fo= 1; F~'=y ,. v2j. „„2
ss(y„y„y,=VP); I'P'=— Vp4s, &=—sos='ysVsysys Vfe —use the.

y's as defined in reference 0.
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the matrix element associated with this diagram is Fe(8) =28/sinh8, (9b)

a M(e) = (ge'/4rr'i) "y„(p2—Ir —m2)
—'

where'
y+(pi —k —mi) 'q„k 'C(k')d4k, (6)

Q (k2) — )t2k2 (k2 )i2)
—1 (k2 ) . 2)

—1

M(e) =p a y 'M(1' ').

By a standard reduction, one obtains

~ ~(+) ( ge /8a) (VP(P2+m2)P(Pl+mt)rpJ1
L'Yy'Y +(pi+mt)v +vs(p2+m2)P7 vsjJ2a

+v.v.~v.v.J3-), (7)
where

1 ( c0 sinh8 —8 smhaI )
Fa(8»)=

I
8+

sinh8 I cosho1 —cosh8 )

0 sinh8 —co sinh~ He "
F4(8») = 1+to+

cosh' —cosh' sinh8

to sinho~ —8 sinh8
Fa(8») = + 2 (CO

—2(0&) 4.
2(coshio —cosh8)

In P5 appears the upper cut-oG angle co~.'

co&——In(X/m2).

(9c)

(9d)

(9e)

(9f)

~1
J,= (dy/p„2) In(p„'/X; '),

Here I(x) is one of the Spence functions and is defined

1.(x)= t ln(1 —t) (dt/t). (9g)

(dy/p') p",
0

(7b)

The matrix element (7) simplifies slightly when
~1 taken between the initial and 6nal plane wave states.

dyI pw pw /ptl +4' 2o»()t'/pv )3 (7c) Then
0

p.=yp+(1 y)p—

Ji=LF1+8(Co —2M&) j/mim2 sillh8,

J2, p(F2 ——Fa)p2—,+Fapi, j/mim2, (8b)

A method of evaluating these integrals is indicated in
the Appendix. The results are:

&-~(~)=(-g"/2 )((p p.)J ~
Kpi J2e+—~'J2Pr)+ ~y,v.@'y.v,J3-) (10)

After mass and wave function renormalization the con-
tribution of the other two diagrams (the self-energy
diagrams b and c) is

—(ge2/21r) (R1,+R,)e,

where q denotes the momentum transfer in the decay:

J~,= (q,q,/q2)F4 —! (p2 q,+q,pg, )/2mim2jF3 where

R,= -', ln( /m2) In(mg/X—;„)+9/8= ', oi&+io&+—9/8
(11a)

q=P2-Pi
To get R„substitute mi for m2. Then

8d

The angles 8 and ~0 are defined in Eq. (1) and o1& is the
minimum cut-oG angle:

oi&=ln(X; /m2).

The functions FI, are defined as follows:

f2 sinh8q (2 sinh8y
F,(8») =I,

I

— — !—z, !(e"—e ~) &e' e")—
(S1Ilh-,' ((0—8))+ (oi—8) ln

I I, (9a)
I sinh-', (co+8))

'R. P. Feynman, Phys. Rev. 76, 769 (1949). We follow the
notation of that paper, except for the definition of e LEq. (1a)g
and for d4E'=dX1dE2dE8dE4. In particular, the scalar product
of two four-vectors a and b is defined by (a.b)=apbp —alibi—a2b2 —a3b3. C(k }is a convergence factor depending on the upper
limit X and the infrared limit X; .

R=R1+8,=a1&+2(e&—ao~+ 9/4. (11b)

a)lf (e)= ( ge'/2~)(Dp, p,)J,+R—)e
—;LpJ.~+4J p.3+!y.v.ey,v.J,). (»)

After elimination of the Dirac matrices, as far as this

7 The following relations were found useful in our calculations:

L(x)= —Z x"je',
n=1

x&1;

I.(x) = —-',x'—L(1/x)+-,' (Inx)'+In( —1) (Inx), x)1;
L(x) =in{1—x) ln(x) ——,'~2 —J.(1—x), 0 &x &1.

A detailed study and table of this and related functions is given
by K. Mitchell, Phil. Mag. 40, 351 (1949).

To order e', the total radiative correction to the matrix
element arising from the virtual photons is therefore
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is possible, Eq. (12) may be written as follows' ':
aM(r «4&) = (ge'/2~) {S+T&8/sinh8+rs}1 &' 4&, (13a)

AM (I'„&"&)= (ge'/2s-) {(S—-,'TW8/sinh8+r i)I'„&' '&

+A„F"4&), (13b)

DM (I'
&,
"')= (ge'/2') {(S—T—8/sinh8+rs) r &,

&"

+Spy "sB„F„&'&), (13c)

where

S= (8—Fi) coth8+ (1—8 coth8) (o&
—2o&~), (13d)

2'= (8 sinh8 —
o& sinh&d)/(cosho& —cosh8), (13e)

A„=[(F, F,—)/2rl, 5P&„a(F,/2m, )P,„
+L(msgr&ti) (F4/q')+ (Fs 2F3)/2m&]q„) (13f)

TRANSITION PROBABILITIES

In the two-neutrino decay:

Fp = P2~p 0'i) (14)

where the tensor q p is formed from the wave functions
yi and y2 of the two neutrinos.

The exact expression for the transition probability
may be written

depend only logarithmically on the upper cutoG ), and
if ) is chosen to correspond to the Compton wavelength
of the proton, the P-dependent terms amount to only
about 20 percent of the total calculated correction. We
shall interpret our results by assuming that the calcu-
lation is meaningful except for these uncertainties in r.

~&I3„=sDF2 F3)/m& jP&, r'(F—s/m2)P2p ( g) 0'd'p= (d'p/2(2s)'E&Rs) P a a (I '"/4)
r0 =3') &CO

3 1 (13h)
~~lppr

t1 2)

o&)+ so& 9/4.

(13i)

5»"p is the completely antisymmetric tensor of ab-
solute value unity. The result (13) is the lowest order
radiative correction to a transition associated with an
an arbitrary tensor interaction and connecting two
spinor states of different rest mass. It is applicable to
both reactions (a) and (b). It is seen that the transition
amplitude for the vector interaction (13b) reduces in
the limiting case where mt ——r&ss (or o&=0) to the usual
electromagnetic result. "

The infrared divergence appears in exactly the same
form in all five interactions. This contribution will be
cancelled by a similar term arising from inner brems-
strahlung, i.e., from the real photons.

On the other hand the cutoB for short wavelengths is
not cancelled except in the vector and pseudovector
cases. In addition, if there is no transition, i.e., if
co=0=0, then AM does not vanish except in the vector
case.

A held theory containing a beta interaction is not
renormalizable, i.e., it is not known how sensible results
may be extracted from the infinite terms arising in
such a theory. In the present calculations, which are
made to the lowest order, these divergent terms are
contained in r0 and r2. Fortunately, however, they

' This notation means the following: for the scalar case (a =Ol,
we pick up the upper signs and the left index in F" ); for the
pseudoscalar case (0-=4) we pick up the lower signs and the right
index in F( ~ ). An identical convention is understood for the
vector and pseudovector cases: always the upper and lower signs
correspond to the left and right indices in F('~ )), respectively.
Equations (13b) and (13c) for the matrix elements are dependent
on the representation of I"p. Qf course, this does not affect the
transition probabilities.' It is easily seen that the term proportional to q„ in Eq. (13fl,
vector case, vanishes identically in the case of electrodynamics
(co=0). On the other hand, it turns out that, for arbitrary co, this
term does not contribute to the transition probability for the
two neutrino decay, discussed in the next section.

XTr{(ps+r&&s)M;(pi+mr)M, "'), (15)

where Ej and E2 are the energies of the initial and final
charged particles and p is the momentum of the latter. "
M;(=M&";+AM;) is the complete matrix element
where 63fp are the virtual photon corrections given
in (13).Finally,

X ' d'f&: O'Is' "o (P i Ps fs Is') k—sk v'/—KK—', (15a,)J

where the k and E represent the momentum and energy
of the two neutrinos. After the sum and integration over
neutrino spin and momenta indicated in Eq. (15a) have
been performed, then Eq. (15) gives the spectrum of
the decay product. The coefIlicients defined in (15a)
have the following simple properties, which we take
from Lenard"

I~~ =0, OQa )

100—I44 —~r)2
)

I„"=I"=(2s/3)Lq q q'8 &,j—(15b)

(15c)

(15d)

I„,&,.;"——(s/12) (1—Pg, ) (1—F&&;)

X (q'8» 4q,q;)8», (15e—)

where I'~p. is a transposition operator. In virtue of
(15b), the double sum reduces to a single one

&p= L1/2(2s. )'E&Esj g. a.' Qpp (Ip, "/4)

X TrL (ps+ms) M "&p'(pi+mt) (M&", '+2AM, ') $

"Hereafter p and p refer to the three-vector momentum of
particle 2 while p2, as before, represents its four-vector momentum.

"A. Lenard, Phys. Rev. 90, 968 (1953). Equation (15b) is an
immediate consequence of the simple relation

Trb„P,y„F, j= —TrLv„I',vP', ],
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to order e'. With the aid of (15), (15c), (15d), and

(15e), the calculation may now be completed. In the
tensor case, there is a simpliication because M&')~, and

231& ~ are antisymmetric in Xp and X'p', respectively.
Hence, I"may be replaced by

I"=(~/3) 8» (V28- —4V.V'). (15f)

The final result may be expressed in the form

4 t'
6'=g/ 1+—n. f.

2~ )
(16)

Here the (P &'& are the unperturbed transition prob-
abilities and the e. are

2no, 4=5'~ -+T+ro,
sinh8

(16a)

8 —,'co sinhar —~8 sinhe
—,'nl, 3=S& + +rl, (16b)

sinh8 coshpp —cosh8+-', (cosh8&1)

—,n2=51

(pp sinhpp —38 sinh8) cosh8 —(coshcp —cosh8) (8/sinh8)

(cosh8) (coshpp —cosh8)+ 2 sinh'8

Here I{. and e are the momentum and energy of the real
photon; G and 0 are dehned by

G= pl —p2 —«, (17d)

f (p2 e ')I (p2 ' ») (pl e ')/(pl '»)) (17e)

(19)

where e; are the polarization vectors of the photon.
Setting m2 ——0 in Eq. (17), we obtain Lenard's results.
In that case, the pseudoscalar case coincides with the
scalar and the pseudovector with the vector.

We are interested in the spectrum of particle 2 rather
than in the differential transition probability. Thus,
the next step is to integrate over the photon momenta.
This leads to an invariant integral, which is most con-
veniently calculated in the rest system of particle 1.
As a rule, we integrate first over the photon energy and,
afterwards, over the angle. As a consequence of the con-
servation laws, the maximum energy of the photon
depends on its direction. Explicitly, in the rest system
of particle 1:

Mp= q'/2(ml —E2+P cosh),

where 8 is the angle between the photon and particle 2.
When rewritten in covariant notation, these integra-
tions yield

a,dpp=dpp(e2/2~)g. b.s ~».,

where 5, T, and r; are given in Eq. (13d), ff.

(16c) bo; 4 =2D+ (cosh8+ 1) '(coshpp —cosh8) W

b=2D,+fQ+ (cosh'& —cosh8) 2I )
Xf3 (coshrp —cosh8) (cosh8%1)+sinh28) ',

INNER BREMSSTRAHLUNG b2=2D+ f2Q+2(coshpp csoh )—8')
Xf3 (coshlp —cosh8) cosh8+2 sinh'8)-'The process of inner bremsstrahlung also contributes

corrections of order e'/23r to the spectrum of particle 2.
The diGerential transition probability for this process

has been worked out by Lenard. " However, Lenard
used the approximation of neglecting m2 in comparison
with the momenta and energies involved. Following the
pattern of that calculation, we obtain the following
differential transition probability for the case of arbi-
trary masses m& and ns2.

where

D=2(8 coth8 —1) (pp —4p& —1—ln2)+ fL(e~ ")
—I (e' "))(coth8) —1—8e "/sinh8

+f28 coth8+ (sinhpp)/(sinh8) —1) In(1 —e ' ")
+f28 coth8 —(sinhpp)/(sinh8) —1) ln(1 —eo-"),

Q =4(8 coth8 —1) sinh24p,

W'= (5/3)8 coth8+8(cosh4p)/3 sinh8 —2,
Q(ppdopdp»= fdppd3»e /8 (23r)oE1E24)p g 2' (17) 7= (10/3) (8 coth8 —1)+f(5/3) coshlp+ 1)(8/sinh8),

A"o, 4——f (ml&m2)' —G')G'0

+2(» G)'G'/(pl «)(p2 «), (17a)

~Pl 3—{G'f-', (ml&m2)'%2mlm2 —G')
+ (m12 m22))Q+4G +(».G)2

Xf2G'+(mlam2)')/(p, ») (p, .»), (17b)

lJL' =f( '— ')'—4(p. )(p )—-'G'

2(m12+m22)G2)Q (».G)2

X fG'+4(p p))/(p ')(p, ')—4G'

+4f(p ')(p' )-'-(p' )(p.')-')
Xfpl. G+p2 G) (17c)

1 8 cosh' 5 5 sinhlp sinh2 (pp —8)Z=- -+-8 coth8 —— ln
6 sinh8 6 3 sinh8 sinh-', (pp+8)

It is important to observe that in the expression for
D there is a factor fnamely, ln(1 —e™))that is
logarithmically divergent at the end of the spectrum
(8=&p). Now, let us suppose we ask for the probability
of finding particle 2 between P2—DP2 and P2, where
AP2 represents the experimental interval (more ex-
plicitly, AP2 is a four vector of components AE2 and
~y2," the last two quantities representing the energy
and momentum intervals, respectively). In order to
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answer that question, we imagine that we integrate
Kq. (19) with respect to ~fPP between y —Ay and y. As
Ap is assumed to be very small in comparison with the
energies and momenta involved, all the well behaved
functions of Eq. (19) may be regarded as constants and
taken out from the integral sign. The divergent func-
tion ln(1 —eP "), however, requires a more careful con-
sideration. To an excellent approximation, an ele-
mentary calculation yields

ln(1 —e ")dPP
~ p p-~pp

=ln(1 —e' "+e™(pi.Ap, )/mi' sinh8). (20)

The final result of the bremsstrahlung calculation is
then given by Eq. (19), ff., where in the expression for
D, we must replace the factor ln(1 —e ")by the right-
hand side of Eq. (20). Of course, we imagine that in Eq.
(19),d'p is replaced by LVp, the experimental momentum
interval.

The divergence at 0=or is now removed. Further-
more, Eq. (20) shows that in the vicinity of the end
point, the shape of the spectrum depends logarith-
mically on the experimental energy interval.

TOTAL CORRECTED TRANSITION PROBABILITIES

Combining Eqs. (16) and (19) and taking into
account Eq. (2), our final result may be written as
follows:

(Pd p = (mipm 'd'p/2 (2pr)4hiEiEpc')

X[E(cisoh ')8(coshpi cosh8—)+pPXp sinh'8

+Xp(coshpp —cosh8)], (21)
where

np ——u4=2U+2(1 —q)
' lug+6(pp) —

p~) ——',,

ni ——np=2U+6(3 —2g) '(1—q) 1ng —4,

(24a)

(24b)

ap=2U+2(3 —2v)) (3—q)
' 1nq —2(p~) —

p~) —(9/2),
(24c)

where

U= P ~ /m' ——',H+(in~)[ln(n '—1)—2~]
m~1

+ (5/2) p~
—p~P+2p~&[lng+&o —1], (24d)

b =pb4=2 V+ eip'Pe '+4 17']—
X[lng+~]+6 —2n ', (25a)

bi=bp=2V+-', [(1—g)g '(3—2g)-']
X([5q '+17—34'][lng+pi]+34' —22}, (25b)

bp ——2V+ip[(1 —g)g '](3—g) ']([7g '+22 —17']
X [lng+&p]+22' —34—6(g '—1) ln(1 —

~t) }, (25c)

of the spectrum; moreover, we shall express our results
in the rest frame of particle 1. In this approximation
the scalar and pseudoscalar, as well as the vector and
pseudovector, radiative corrections coincide.

Let us define
Ep ——-', mi, g =E,/Ep.

Thus, Eo is the maximum energy attainable by particle
2. Then, our results may be expressed as follows:

(P (g) diI =A [3Eig (1—g)+ 2EpvP

+3Xp(mp/Ep) (1—g)]indy, (23)

A =m,E,'/3 (2ir)'fi'cP,

where the K's are defined in Eqs. (21a), (21b), (21c),
and (21d). The n's now reduce to

+i=gp +2(gP+gP+gp )+g4,
+2 gl +2g2 +gp 1

Xp=gp 2gi'+2gp' g4'—, —

g.'=g'[1+ (~/2~) (~.+b.)]

(21a)

(21b)

(21c)

(21d)

where

V=+ g /mP —1+2(~p—p~& —in2)(lnq+p~ —1)
m=1

+ (2 lnii+2p~ —1—ii ') in[1—ii+ (2/mit, )AEp]. (25d)

Thus, the inQuence of the virtual photon corrections
and inner bremsstrahlung may be regarded as a per-
turbation of the interaction constants g, . Of course, this
perturbation depends on the momenta pi and pp through
the angle 8.

LIMIT CASE OF SMALL MASS

When m2 is negligible in comparison with the energy
E2, our Anal expressions for the radiative corrections
can be greatly simplified. Of course, this approximation
is applicable to the study of the muon decay, provided
that we do not consider the low-energy part of the
spectrum. In this section, we shall retain terms of order
mp/Ep or e'/2pr and neglect terms of higher order (e.g.,
e'mp/2~rEp or (mp/Ep)') whenever this approximation
does not introduce divergences in the high-energy part

We observe again that the infrared divergences
arising from the virtual photons are compensated by
similar terms originating in the inner bremsstrahlung
calculation. The divergent terms associ.ated with high
photon energies in the radiative corrections again
cancel for the vector case, but in the other cases we
find uncompensated logarithmically divergent terms
[see discussion following Eq. (13)].Moreover, in the
vicinity of the end point of the spectrum (p= 1), these
results depend logarithmically on the experimental
energy interval AEp (the last term in the expression
for V).

In Table I and Fig. 1, the functions (e'/2pr) (n, +b,)
are given for the three cases (S, T, and V) for an experi-
mental energy interval of AE=2ns2. The "virtual"
coefIicients 0,; are nearly independent of energy, while
the b; are positive and decrease near the end point;
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This expression has the advantage that the whole
eGect of the radiative corrections is concentrated in
the function h(rf; hE). Equation (27a) is a three param-
eter expression. Following Michel, " we can eliminate
one of the parameters by integrating Eq. (27a) from
q=0 to q=1 and equating the result to ~—', where v is
the mean lifetime of the muon. We obtain

4/rA =E'i(1+At)+2Es (1+As)+ (2ms/Ee)Es, (27b)

where

Ai,.s(DE) =4J h(tf; DE)f3&'(1—rf); rf'jdr). (27c)

I

OA

i

0.6 & 09 I,O

Here the subscripts 1 and 2 in A~, 2 correspond to the
first and second terms in L; j, respectively. In Eq.
(27b), we have already neglected a term of order
e'm, Es/2wEs.

Solving for Ei in Eq. (27b) and substituting in Eq.
(27a), we obtain finally

FIG. 1. Percent change (100 A(P/(P) in probability of decay for
the various tensor cases as a function of the energy (y).

therefore the total correction u~jb, , also decreases there.
This decrease in the b; may be understood as follows.
Over the whole spectrum most of the inner brems-
strahlung is emitted only in a narrow cone along the
motion of the electron )angular opening (2ms/Es)'*7;
however, near the end point the conservation laws in-

creasingly restrict the maximum-energy photons allowed
in this cone."

We also notice that the energy dependence of
(e'/2s. ) (cr,+b,) is very similar for the three cases
(scalar, vector, and tensor). This fact may be used to
derive a simple expression which may be useful for
reducing experimental results. Suppose we approximate
the three curves (e'/2w) (n,+b;) by a function h(&,DI:)."
Then taking into account Eqs. (3) and (21), we can
write

E,=E;P1jh(ti)3.

With this approximation, Eq. (23) reads

(27)

(f'(rf)dr)= A (1+k(rf; AE))r)drl[3Etrf(1 rl)—
+2Esip+ (3ms/Eo)Es(1 —ii)). (27a)

'2 The dominant contribution to the integral of Kq. (17) may
be approximated as follows

1+P
Dn(g'/2m(x )g dp(P' —l+2p —p')p '

x —P .

where p= 1 —P cosy. The integrand is peaked in the forward cone.
As in the approximation leading to Eq. (20), q may according to
the conservation laws be replaced by 2mzei~(cosh&o —coshe
+p&np2/m&m&e); therefore the logarithmic factor decreases near
the end of the spectrum (O~co)."It is true that the three cases differ significantly in the low-
energy part of the spectrum (p&0.1). However, on the one hand
the intensity is very weak there and, therefore, this error will not
affect appreciably the A;, On the other hand, the parameter p is
essentially determined in the region q)0.2. In our numerical
calculations we have'defined the function h(q) by simply taking
the average of the three (a;+b;)(e//2~) at each point but, of
course, the results are not sensitive to this particular choice.

.(I (~)d~ =4ndnL1+h(n) AX~~—(1 n)—
+2p~( (4/3)~ —1+-',A,~—A, (1—&))

+ (~s/&o) p'(1 —n) (1—2n)] (28)

Here p and p' are two parameters related to the E; by

p = —,'EsrA = 3EsLEi (1+At)
+2Es(1+&s)+2(ms/Es)Esj ', (28a)

(28b)

We notice that for p'&1, the last term in Eq. (28)
is extremely small in comparison with the main terms
except for the region of small energies (see footnote 13).
Neglecting this term, we get.()'(q) &g = 4q'&g j1+h(n) —&i)L3 (1—g)

+2p{(4/3)tl —1+-,sAiti —As(1 —t))}j. (28c)

This one-parameter expression, together with Eq.
(28a), represents to a good approximation the influence
of radiative corrections on the muon spectrum. If we
neglect the radiative corrections, i.e. if we set h(rf) =Ai
=As ——0, Eq. (28c) reduces to Michel's formula.

The function h(tl) as well as Ai and As are slowly
varying functions of DE, the energy interval used in
the experiment. " In general, this dependence on AE
will only aAect the shape of the spectrum near the end
point. As A~ and A~ involve integrals over the whole
range of q, we can expect their dependence on DE to be
still less than that of h(rl). (Obviously, this is especially
true for A~ because in that integral the region near the
end point gives a very small contribution. )

Ke observe that the inclusion of radiative corrections
modi6es the interpretation of Michel's equations in two

'4 I,. Michel, Phys. Rev. 86, 814 (1952).
'~ As the three functions (n;+b;))(ss/2s. ) depend on AE through

the same term Ltwice the last term of Eq. (25d)g if we want to
pass from a certain AE to a new AE~ we can simply set

h(q, AE*) =h(g, hE)+2(2 lnq+2~ —1—q ') ln
(1—&)m e+2aS*
(1—q) (mme) +2aE'
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ways. On the one hand, the theoretical expression for the
decay is slightly modified (Eq. (28c)$ and, therefore,
for a given experimental curve, the p obtained by com-
parison between theory and experiment will be slightly
diferent. On the other hand, the connection between p
and the E; is also modified $(28a) $ and, therefore, for a
given theoretical combination of the g, (i.e., of the
unperturbed interaction strengths) the theoretical p
will also be slightly diferent.

In order to illustrate this last point, we have calcu-
lated the 4„for BE=2ms (i.e., approximately 2 percent
of the spectrum range) and obtained Ai =4.6X 10—' and
A, = 1.6)&10 '. Inserting these values of A, in Eq. (28a)
for an interaction S+aT+bP (a= &1; b= &1) in the
charge retention order, we get p=0.727 instead of the
value p=0.750 obtained without the consideration of
radiative corrections. Similarly, for an interaction
S+aA+bP, we get p=0.480 instead of p=-,'.

With the same values for A, , the form of Eq. (28c)
suggests that the p obtained by comparison of theory
and experiment will be slightly increased.

DISCUSSION

The energy-dependent radiative corrections described
in Eq. (23), 8. and in the figures produce a distortion
of a few percent in the Tiomno-Michel curves. If this
distortion can be experimentally established, it is
thereby possible to isolate the "Lamb term" for the
muon, since there is no contribution from the vacuum
polarization. This experiment on the fine structure of
the muon spectrum therefore provides information
complementary to that obtained from the mu-mesic
atom where the situation is reversed: there only the
vacuum polarization is observed and the Lamb term is
negligible.

We have considered the muon particularly since this
is the case best covered by the theory. Other particles,
the neutron and one of the E-particles, for example,
undergo beta decay; but at least in the case of the
neutron the most important radiative correction is not
electromagnetic, but mesonic.

A nonrelativistic second-order perturbation calcula-
tion with Chew's model, including the cuto6' and
coupling constant appropriate to the pion scattering,
leads to the result that the Gamow-Teller constant is
increased relative to the Fermi constant by about 30
percent. "The experimental evidence on nuclear beta
decay implies that go T./gp. is greater than one, pos-
sibly 1.2. These numbers are compatible with the
assumption that in the Fermi interaction itself S=T
and that the apparent inequality is associated with the
meson cloud. Although no convincing quantitative
argument can be based on meson theory, the sign and
order of magnitude are correct; as with the correction
to the magnetic moment, which is very similar, the
prediction is qualitatively right.

16 R. J. Finkelstein and S. A. Moszkowski, Phys. Rev. 95, 1695
(1954}.

TAnLE I. Percent change (100 d(P/(P) in probability of decay
for the various tensor cases as a function of the energy (q). The
function h(q) is the average of the three lines of this table.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

Scalar 19.3 9.8 7.4 6.1 5.2 4.4 3.6 2.5 +0.94 —0.90 —4.7
Vector 26,3 11.3 7.7 6.0 4.9 4.1 3.3 2.3 +0.99 -0.74 —4.4
Tensor 33.9 13.6 8.7 6.6 5.3 4.2 3.3 2.2 +0.66 -1.1 —5.0
h (q) 26.5 11.6 7.9 6.2 5.1 4.2 3.4 2.3 +0.86 —0,91 —4.7

According to the idea of the universal Fermi inter-
action, the same coupling, both in form and strength,
should be responsible for the decays of the neutron and
the muon. According to experiment the strengths are
nearly equal. But even if the primary couplings are the
same, one would expect the observed rates to be dif-
ferent, because for example only the neutron carries a
meson cloud. The net rates will certainly be inRuenced
by radiative corrections which are different in the two
cases. We have found that the change in lifetime asso-
ciated with the electromagnetic corrections to the
decay of the muon amounts to about 3 to 5 percent. In
order to clarify the situation about the universal inter-
action, it is evidently necessary to carry through a cor-
respondingly accurate calculation for mesonic correc-
tions to the decay of the neutron.
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APPENDIX

Consider the integral

(4/p. ')»(p'/~-')

If we make the substitution

y = b cothn+a, a= —(ps q)/q', b'= a' —~ss/q',

pv' b'q' csch'n——
then this becomes

coth ~(ps q)/q~

—(1/bq') t dn( —2 ln sinhn+lnb'q'/)t ')
coth 1(pt q)/qg

The 6rst term may be integrated by using the ex-
ponential form of sinho. . The result is

2 8 (4 sinh-', (co—8) )-in]
brims sinh8 2 4 sinh-', (oi+8) ~

(sinh-', ((o—8) q (sinhrs (oi—8)
+21-/

E sinh-', (o)+8) ) & sinh-', (oi+8)

Using the relations of note (7), we easily pass to the
form of Eqs. (9). The other integrals are done in the
same manner.


