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Quantum Field Theory in Terxns of Vacuum Expectation Values

A. S. WnHTMAN
Palmer Physical I.aboratory, Princeton University, PrAsceton, %em Jersey
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Vacuum expectation values of products of neutral scalar field operators are discussed. The properties of
these distributions arising from Lorentz iavariance, the absence of negative energy states and the positive
definiteness of the scalar product are determined. The vacuum expectation values are shown to be boundary
values of analytic functions. Local commutativity of the field is shown to be equivalent to a symmetry prop-
perty of the analytic functions. The problem of determining a theory of a neutral scalar field given its vacuum
expectation values is posed and solved.

l. INTRODUCTION

KCENT work in relativistic quantum Geld theory
has made heavy use of certain basic singular

functions defined as vacuum expectation values of
products of Gelds taken at various space-time points.
In this paper, we present some results of a systematic
study of relativistic Geld theory based on such vacuum
expectation values. For simplicity, we treat the case
of a neutral scalar Geld interacting with itself. The
methods used have generalizations in any Geld theory.

The objects of our attentions are the singular
functions:

F "'(x), x„)= (4 p, P(xr)&f (xs) y(x„)@p),

where%'0 is the vacuum state, assumed to be the unique
state of energy and momentum zero, and p(x) is a
neutral scalar Geld. As is well known, P&"& has to be
understood as a distribution in the sense of L. Schwartz.
It is a linear functional which gives a complex number
for each infinitely differentiable function f(xr, x„)
which vanishes outside a bounded region of space time:

Geld which has these J (") as its vacuum expectation
values. We do not show that any set of F&") outside of
those determined by the free Geld actually exists.

P&"&(», . x.)=p&"&(Ax,+a, "Ax„ya) (2)

for {a,A} without time inversion. Here we have used
(I) and the Lorentz invariance of the vacuum state:

U(a, A)+p ——4'p.

For Lorentz transformations with time inversion, we
have, on the other hand, '

2. CONSEQUENCES OF LORENTZ INVARIANCE

For Lorentz transformations without time inversion,
we know that U(a,A) is unitary. Thus,

F&-&(x„" x„)=(U(a,A)e„U(a,A)y(x,)" @(x„)~p)
= (%p, $(Ax&+a) $(Ax„+a)%p)

and therefore

F&"& (f)= ~d4x& d4x„f(x.i, x„)P&"&(xi, x„).

(We call such f testing functions. ) Furthermore,
p&a& (fs) ~0 if a sequence of testing functions

fs(xr, . x„) (vanishing outside a fixed bounded region)
and all their derivatives converge to zero uniformly in

space time. We shall study the structure of F&"&, ex-

ploiting systematically the Lorentz transformation
properties of &t (x) which are given by

Thus,

F&"& (xr, x„)= [F&"& (Axi+a, .Ax„+a)]* (4)

for {a,A} with time inversion.
A somewhat similar relation is derived from the

hermiticity of P(x):

U(a,A)y(x) U(a,A)
—'=y(Ax+a). (I) Thus,

F&"& (x„~ x„)= [F& "&(x„, .xi)j*.
Here, {a,A} is an element of the inhomogeneous Lorentz

group meaning the operation of transforming by the s. CONSEQUENCES OF THE ABSENCE OF
homogeneous Lorentz transformation, A, followed by NEGATIVE ENERGY STATES
translating by a. U(a,A.) is the corresponding unitary or
antiunitary operator which yields the transformed wave From 2, we see that F("& is a function only of the

differences of the x~, . x„.We shall therefore write
functions. we shall also determine the consequences
for F&") of the assumptions that no negative energy p(~& —p&s&(pr . . .g, )
states exist in the theory and that P(x) is a local field. ' For convenience in printing we shall often denote the complex
Finally, we shall show how, given a set p

~
'a

& ~ conjugate, a, of a number a, by [a7*; this fatter notation is the
~ . , one can construct a theory of a neutral scalar same as the notation we use to denote adjoint of an operator.
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where Ke introduce the notation

$1 X1 X21 t2 X2 X3~
' ' ' kn—1 Xn 1 Xn. z;, ;+1——f; i—2I;

~e shall assume that F("' has a Fourier transform and Equation (2) implies the Lorentz invariance of G("':
shall show that if

G'"'(Pi "P=i)=G'"'(Api, "Ap- )-
F("'(5, &-)= exp( —iZ P"4)

j'=1

then G(n& vanishes unless the p; satisfy

p,2= (p.0)2 p.2)P p.0)P

by virtue of the assumption that no negative-energy
states exist.

If + is an arbitrary state, its component of mo-
mentum p is

e "d'aU(a1)%'

Thus, by our hypothesis that no negative energy states
exist,

)
e'&'d'aF("'(&1, 4-1, k, +a, 4+1 5 -1)

e'n'd'a(+„P(X1) .0(X,)

X(t (x,„—a)" y(x„—a)+0)

=
~

4o, y(x ) p(x;) I e'"'d'aU( —a, 1)

vanishes unless p is within or on the forward light cone.
Therefore, G("'(Pi, ~ P„ 1) vanishes if any of its
arguments lie outside the forward light cone. In the
special case e= 2, this result is well known.

It is an important consequence of this property of the
6&") that the distributions F&") are boundary values of
analytic functions. This result is displayed in and
simultaneously proved by the formula

F("'(&1 igi, . g—~, i2I„1)—

for A without time inversion, and Eq. (4):
G'"'(Pi P -1)=LG'"'(—Api —Ap -1)j"'

for A with time inversion. Consequently, we have
~ ~ ~

throughout the tube

(Z12y' ' Zn —1, n) F (AZ12) ' ' ' AZn 1,n)—
for A without time inversion and

F(-&(z„, . z. , „)=P'(-iPz„, Az„, .)j* (7)

for A with time inversion.
We use the following theorem, whose proof will be

published in another paper.
Theorem. A funct—ion f(zi, z„) of 23 four-vector

variables s1, s„analytic in the tube:

—~ (Re s;„(~,Im s; in the future cone,

and invariant under the homogeneous Lorentz group
without time inversion:

f(z„z„)=y(Az„Az„)
is a function of the scalar products s,"s&,j, k= i, 2, e.
It is analytic in the complex manifold over which the
scalar products vary when the vectors s1, - s„vary
over the future tube.

If we introduce the complex vectors

j—1

zi&=p zk, 2+1 foi 2( J&

then the theorem tells us that the P&"& are analytic
functions of the squares of the lengths of these vectors

F(ni F(n) (z 2)

As the variables s;, ;+1 vary over the tube each variable
s;,~ varies in an open set of the complex plane. From
the explicit form

n—1

exP( —i 2 P1" (4 i~j))—
j=l

XG'"'(pi) p. 1)d'pi d'P. if

where the four-vectors q, are restricted to lie in the
future light cone. The 8(23—1)-dimensional open region
thus defined in the 8(23—1)-dimensional space of the
components of the $1, $„1,2I1, . 2I„1 is called the
future tube. Thus, F("'($1, $n 1) is a boundary value
of a function analytic in the future tube.

one can easily see that this set fills the entire plane
except for the positive real axis and the origin. The
situation is indicated in detail in Fig. i. Of course, the
2:;,& are not independent, so that the manifold they
define is not just the topological product of cut planes.
The theory of a scalar field can be regarded as a
boundary value problem for this set of analytic func-
tions. We give an example of such a set, those arising
from the theory of a scalar field p (x) satisfying (Q+m2)

Xg(x)=P and the commutation rules Lg(x), P(x'))
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FIG. 1. Domain of variation of the complex variable 22= (p 4ri)—'
=P—g' —2ig g, when g varies over all space time and y in the
future cone. The labeled points indicate values of s' in the physical
limit q —+ 0 for typical positions of g.

8$ 1
(t,xi), P(t, x2) =—8(x,—x2).

8(ct) i

Integrating over all space, we have

=z-'a(x —*'):
's odd J

dxi
Bp

(t,xi), y(t, x2) =i '
8 (ct)

( m'q " ' Hi "(m(si2')'*)
PI )(z, 2) =

I

kg i) m(si22) &

Hi"'(m(z242)&) H&&" (m(s i,„')l)

m(s24')
* ms--1, ''

or

lim (2cd, t) '
I J

d'x iLQ( t+Atx i), p(t, x2)j
4 t~o

—)"d'xi[a(t At, xi), y—(t,x2)$ =2 '. (13)—
The sum in (9) goes over all "pairings" of the sequence
(1 22), a "pairing" being a division of the set into
(e/2) disjoint subsets. The formulas assume a more
familiar aspect if one goes over to the physical limit in
which

(m ) Hi&'&(m(s')f) -AI" (~)
E g~) m(z')'

4. CONSEQUENCES OF THE COMMUTATION RULES

The local commutation rules

I~(.),~(~)j-=o, (.-y)'&0,
imply that

P'"&(xr, . x;,xj+], ' ' 'x ) P (xi ' ' 'xj+\ x; x„) (10)

as long as x; and x;+~ are space-like separated points.
These relations can be extended by analytic continua-
tion to relations of the analytic functions pt"&(z;p):

p(n) (z. 2) p(a) (pz, 2) (11)

where P stands for the operation of permuting the
subscripts j and j+1, and, by delnition, z;&2 ——z&,2. The
proof is simple. (11) coincides with (10) for all z;22

on the negative real axis. Consequently, it holds every-
where by analytic continuation. Thus, the local prop-
erty of a field P(x) is characterized by a global sym-
metry relation on the analytic functions J &").

Unlike the local commutation rules, the more special
canonical commutation rules require a certain amount
of heuristic juggling before a translation in terms of
of analytic functions is possible.

Now we assume that, in the limit, the only contribution
to this integral will come from the singularity on the
light cone, an assumption whose validity will be dis-
cussed at the end of this section. For the erst term in
the erst commutator of (13), the integral then can be
written

~0
d2x, . . . =42r I dP{ 22L(cht)2 P]l). . .

J ~ (,a, t)'

where $= (cAt, xi —x2). In the complex plane of Fig. 1,
this corresponds to an integration just below the real
axis from (cht)2 to the origin. From the first term in the
second commutator we get a similar integral just above
the real axis. This suggests that the two terms con-
tribute a contour integral around the branch cut. The
second terms combine to given an equal contribution.
Thus, it seems plausible that the canonical commuta-
tion relations are equivalent to the requirement that

2p(n) (z 2) — pin —2i (s 2) (14)
e(a) 2m-i

where the contour, C(R), is that indicated in Fig. 2,
and it is understood that on the right-hand side the
point x, is identified with x;+~.

It is not dificult to verify that the J'&") of the free-
6eld case satisfy (14). One writes

Hi"'(m(s') 1) J&(m(s') '*) Y&(m(s')')
+i

m (s') & m(s') &
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Now Ji(m(s2)&)/m(s2)& is an entire function of s', so This is indeed correct ifJ'pdg(00, but ifJ'pdg= oo,
that the contour integral of (14) vanishes by Cauchy s then (17) is somewhat misleading, as the following ex-
theorem. On the other hand ample shows.

I.et
Vi(m(sp)&) 1 (—m's'/4)"

m(s )0 22r ~p r l (r+I)!

X 2 log
m(s') &

P(r+1—)—f(r+ 2)

The precise definition of the f(r) is irrelevant since
their contribution to the integrand is an entire function.
The contribution from the last term is

dg(m) =dm, for m) 0.

Then, using a standard integral representation of the
Hankel function, we get

f
P"'(s) = d&(t' —1)& m'dg(m)

&&expL —m$( —s') l]

m'
t

2i 1—

gori~ c(in orm s z 22ri

From the terms involving the logarithm, we get

1 (—m2R/4) "+'

22r —o r!(r+1)!(r+1)

which approaches zero in the limit R —& 0.The resultant
formula,

H i &'i (m(s') &) 1
hm
z-0J c&ii, m(s2) &

shows that the F&"i of Eq. (9) satisfy (14).
In current renormalization theory, the canonical

commutation relation (12) holds for the unrenormalized
6elds, :but the renormalized 6elds are supposed to
satisfy

=(g~i) ' L(s') ')

The corresponding singularity of the commutation re-
lation is obtained by examining the distribution:

(+o,L4 (z )A (*)1-+o)=»m(~ "i(s)—L~"i(s)j*&
~0

'0 P= (z,—z,)2(0

where o($) = sign(P).
o($) (P) '* is that very special kind of distribution, an

integrable function. However, its derivatives are not
functions nor can they be expressed in terms of b func-
tions and their derivatives except in the following
rather singular way. Let f be a testing function. Then

8$ 1

,(*) @b) =—.~(x—y), (15)

where 0 &Z & I. H Z&0, our previous analysis requires
only trivial modifications: a 1/Z appears as a factor
on the right-hand side of (14). However, for Z=O, the
commutator is essentially more singular than in the
case of a free Geld. In order to understand this case,
we study F&') in more detail.

It is an immediate consequence of the Lorentz in-
variance of G&", that the most general F&'& is of the form

1——
I dQ($) f($)o($) — f($)o($) (P)- d4$ (20)

t2Q ~z,

In (20), the first and second integrals on the right-hand
side are over the entire mantle of the light cone, while
the third is over the four-volume later and earlier than
the hyperboloids P=f'2 P)0 and P= f' P(0, re-
spectively. The second integral can be written

m(s') I

m' Pi&'i(m(s') &)
F(2i(s') = dg(m)

~ p 8~i
(16) 2

dII(~) o(k)f(f) = — d4&o(k)~(P)f(k),
f 2J |2Q

1/Z= ~ dg(m). (17)

(apart from a constant), where dg is a weight function
which will be shown to be positive in Sec. 5. It would
be tempting to argue that the operation indicated in
Eq. (14) can be carried out under the integral sign
in (16) so that

which is just of the right type to yield the right-hand
side of (15).

To obtain the commutation rules at a fixed time,
one takes f=8&/4Ix', where h is positive and symmetrical
in time, and shrinks to zero the time interval in which
h is nonzero. The first term of (20) is then zero and the
last two diferent from zero. If f is held 6xed and $ —& 0,
each of the last two terms becomes arbitrarily large,
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although their sum nearly cancels. The expression as a
whole is proportional to 14 (0) in an approximation which
becomes better and better as h shrinks toward the origin
of time. Thus, the right-hand side of (15) should indeed
be i 'oo&&(x—y) but it does eo&! arise from a term in

(@o,(p(x),P(y)$ +o) of the form (2&ri) '~o(x —y)
Xb((x—y)') as the derivation of (17) would indicate.
Ke conclude that the treatment of the canonical com-
mutation rules in the case J'o"dg= &4&, requires a direct
consideration of the singularities of F&"'(s). In such a
case, to replace (14) by an appropriate alternative is
not dificult, but to avoid complications unessential to
the present paper we defer the discussion. In particular,
in Sec. 6 we consider only the local commutation
rules.

5. POSITIVE DEFINITENESS CONDITIONS

Since the length of a vector is greater than or equal
to zero, we have

We shall not study the relations (21) in detail in this
paper but we want to point out their general significance
for field theory. F~") is intimately-connected with the
5-matrix elements for those processes in which the
sum of the number of ingoing and outgoing particles
.s e, e.g.,

is the S-matrix element for the scattering of two mesons
of momenta pi and po, to produce two mesons of mo-
menta pi' and po'. The positive-definiteness conditions
will therefore imply relations not only for the S-matrix
elements of a given process, but also relations between
the 5-matrix elements of different processes. It might
be argued that such relations can yield nothing more
than those results arising from the conservation of
probability. We do not believe that to be true. The
positive-definiteness conditions deserve a detailed
investigation.

o&ofo+o+&i~ d x&fi(xi)4t&(xi)+o

f P
+Go d xld xof2( xl )x2) &t()xl)4( xo)+ 0+' ' '

for all no, ni, n, , and all testing functions fi(xi),
fo(xi,xo), . Therefore,

s j OCZi&j ' ' ' i &I, ' ' ' &&

v J

XF&+'&(x, x, "»,y, y;)f, (yi, y;)

Xd4xi d4x,d'yi d'y, )0. (21)

We will rei'er to (21) as the positive-definiteness con-
ditions. The simplest consequences of (21) are obtained

by setting all but one of the n; equal to zero. For
example, for &ri/0, we find

6. INVERSE PROBLEM—DETERMINATION OF A
THEORY FROM ITS VACUUM EXPECTATION

VALUES

If one is given analytic functions F&"&(s;,'), e=0,
1, 2, , then one can construct a theory of a scalar
field, p(x), in which the e-fold vacuum expectation
value of p(x) is just the boundary value of F&"&, pro-
vided that the E'") satisfy certain conditions, most of
which have been discussed in the preceding sections.
The construction will be carried out explicitly, the
conditions on F("' being introduced as they are needed.

First, we reconstruct the Hilbert space from the
F("'. Certain vectors of it will be defined as conjugate
linear functionals on the spaces of testing functions.
Then addition, multiplication by a scalar factor and
formation of the scalar product will be defined for these
vectors. The full Hilbert space is then obtained by a
standard completion process.

Let 40 denote the conjugate linear functional which

yields for the testing function f&"'(xi, x„) the value

) fi(xi)F"'(xi—xo)fi(xo)d'x&d'xo &0. (22)
' f'"'(xi . x )d4xi. d4x F&"&(x, x ).

It, can be shown that (22) is a necessary and sufEcient
condition that F"' be a Fourier transform of a positive
measure of not too fast increaseo (generalized Bochner
theorem). For aopO, we have

f, (x&,xo)F &" (xi—xo) xo—yi, yi —yo)

Xfo(yi)yo)d'x&d'xod'y, d'y, ) (23)

an inequality whose consequences have not been char-
acterized as neatly as those of (22).

' L. Schwartz, Theoric des

Bistros

blti orls (Hermann 8z Cie,
Paris, 1951), Vol. 2, p. 132, Theorem 18.

J et 0, ( & denote the conjugate linear functional which

yields for the testing function f&"&(x&, x„), the value

f&"&(x x )F&"+ &(x„, xi,yi, y„)

Xg'"'(y, " y-)d'x "d' .d'y

The +,f & and 4'0, together with the null functional 0,
can be made into the basis vectors of a linear vector
space if we define multiplication by a scalar and addi-
tion as follows: n4, & & is defined as 0', ( &, while

N, &-&+&If@&-& is the conjugate linear functional which
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yields for the testing function f&'&(x&, . x)) the value

f"'(*, )F" '(, ,y, . y-)
aJ

Xg&"&(yi, y )d'x, d'xid'y, d'y

by virtue of the Lorentz invariance property of the
F&"& given in Eq. (2). Furthermore, on the basis
vectors,

U(a,A) U(b, M) = U(a+Ah, AM) (26)

The operators U(a,A.) can be extended to all vectors in

@by linearity and, so defined, are unitary.
For the {a,A) containing time inversion we define

+ f&'&(x&, x))F&'+"&(x&, . xi,yi, y„)

Xh'"'(yi, . y„)d'xi. d'x, d'y, . d'y„.
U(a,A)so =eo,

U(a,A)+o& &=Co«&, (27)

The sum +p+@,& & is defined similarly. It is obvious
indeed that addition is associative and commutative
and has a zero, the null functional. Further, inverses
(negatives) exist and scalar multiplication is commuta-
tive, associative, and distributive. In short, the set of
all linear combinations of the basis vectors +, ( ~ and
4'p forms a linear vector space, @.

We introduce a scalar product into @ by means of
the following formulas:

(+ &«) 4'))& )) = y'"&(x) x„)F'"+"&

X (x xi yi y )&'"&(y& . y )

Xd4xi . .d4x„d4yi. . .d4y , (24)

(+pP. -)= ~F'-'(y, " y-)

Xg(-&(yi, ".y-)d'yi d'y- (»)

Equations (24) and (25) define the scalar product for
the basis of our linear vector space. It then turns out
that for linear combinations of the basis vectors, it is
consistent to de6ne it as linear in its second argument
and antilinear in its first.

The scalar product so defined will have the desirable
property, (C P)= [(+,C)]*,by virtue of the hermiticity
condition (5) on F&"&. It will be positive de6nite
by virtue of the positive definiteness conditions (21)
on F&"&. Thus, with this definition, @ has all the prop-
erties of a Hilbert space except completeness. So we
complete it by the standard method.

Next we de6ne the unitary operators U(ag) which
give the representation of the inhomogeneous Lorentz
group. Consider first the action of U(a, A) for {a,A)
without time inversion"on the basis elements 4'0 and
Qg (~):

U(a,A)Co= 0'p,

U(ag)%, &.&=4, &»&,

where

g'&"&(x„. x ) =g&"&(A—'(xi —a), . A
—'(x„—a)).

The U(a, A) preserve scalar products of the basis
vectors,

where

g&«"&(x)) . x„)=[g&"&(A—'(x,—a) A
—'(x„—a))]*.

This definition has as a consequence

(U(a,A)e, & &, U(a, A)e'))& ))=[(e,&»&,&I), & &)]*,

by virtue of the Lorentz invariance property of the
F&"& given in Eq. (4). Just as for the operators for
{a,A) without time inversion, (26) is satisfied, and the
U(a,A) can be extended to all vectors, and, so defined,
are antiunitary.

The U(a, A) which are determined in this way are
guaranteed to contain no negative energies by virtue
of the analyticity of the F("~ in the future tube. The
details of their momentum spectrum can be ascertained
from the set on which the Fourier transforms of the
Fi"& do not vanish. The real four-vector, p, is in the
momentum spectrum of U(a,A) if for some Fi"&, the
Fourier transform with respect to at least one of the
variables does not vanish at p.

The action of the 6eld operator P(x) [or better its
average, &t)(f), with the testing function f(y)] on the
vector +,&-& is defined as follows: &t&(f)@,& & is the con-
jugate linear functional which, for the testing function
fi & (xi, . x„) yields the number

f& "& (xi, x„)F i"+"+'&(x„, xi,y,yi, y„)

Xf(y)g-(», y)d"' d".dy' dy.
This is just the vector 4'i, & &, where f(y)g&~&(yi, y )
is regarded as a testing function in (m+1) variables.
&t)(f)rois de6ned a's 4'y. &t)(f) is defined as the closed
linear extension of this operator.

On the basis vectors and their finite linear combina-
tions &&&(f) possesses the property

&(f)*=4(f),
where f(x) is the complex conjugate of f(x). Thus,
g(f) will be formally Hermitean if f is real.

The transformation properties of the operator p(f)
follow immediately from those of the 4', &-&. For U(a, A)
unitary, we have

U(ag)&t)(f)+, &»&= U(a,A)@z, «

=e, ;- =y(f') U(a,A)e, .
(U(a,A)%, &-&,U(a, A)+), &-&)= (+,&»&,&I )) &-&),

Therefore,
U( A)4(f)=4(f')U(, A),
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with f'(x)= fLA '(x—tt)] in agreement with (1). For
the anti-unitary U(a, A) we have similarly:

Therefore,

with fic defined as in (27) in agreement with (1).
The local commutation rules of g(f) can be veri6ed

as follows:

Q (fi)$(fp)Q ( ) =+f f g («&=4f f g ( )=$(fs)Q (fi)4 ( )

when fi(x)fs(y) for all (x—y)'&0. The proof depends
on the fact that for such fi and fs,

Our reconstruction remains valid in a theory in which
the field p(x) is not a complete description of the sys-
tem, e.g. , in a theory of interacting neutral mesons and
nucleons. However, in such a case the reconstruction
process given here will not recover the entire Hilbert
space. If one were to deGne a theory by its analytic
functions F&"', rather than by its Geld equations and
commutation rules, then, to be sure that the theory was
one of a single field @(x), one would have to impose
some kind of "completeness" requirement. For example
one could require that the set of vectors g (fi) Q (f„)4p
for m=0, 1, 2, ~ span the whole Hilbert space, where
the f; are testing functions which vanish outside of a
spacelike slice of space time of arbitrarily small thick-
ness ht in the time direction.

by virtue of Eq. (10).
To complete the reconstruction of the theory we

need only show that the vacuum expectation values of
products of p(f)'s are the F&"& This .is an easy conse-
quence of the formula P(fi)@(fs)' ' '@(f )0'p=%t, ...f„.
It implies

(+pl(fi)" tt (f-)+p)

~ fi(xi). f.(xe)&'"'(xi, xe)d'xi d4x„,
eJ

which was to be proved.

7. CONCLUSION

A theory of a neutral scalar Geld can be reformulated
as a theory of a denumerable set of analytic functions of
complex variables, E&"&, m=0, 1, 2, . Relativistic in-
variance implies that the P'"& are invariant under
Lorentz transformation without time inversion and are
therefore functions of certain complex variables s;,'.
Local commutation rules of g (x) imply F & "&(s;ts)
=F&"&(Ps;ss), where P is any of a certain'set of per-
mutations of the labels i, j; the positive definiteness of
the scalar product implies a set of inequalities con-
necting the boundary values of the F&"'.&iGiven a set
of J"&") satisfying the conditions listed, one can re-
construct a theory of a neutral scalar Geld.
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Radiative corrections associated with the electromagnetic Geld have been determined for the decay of
a fermion of arbitrary mass into a lighter one with the emission of a single boson or of two other fermions;
no special assumptions have been made about the nature of the interaction responsible for the instability.
The particular example of the muon-electron decay has been worked through in detail. Su%ciently accurate
experimental determination of the muon spectrum would permit the observation of a I.amb term without
vacuum polarization. Modified formulas for the Michel parameter p are given.

INTRODUCTION

A LL instabilities of the elementary particles are
somewhat modi6ed by Quctuations of their elec-

tromagnetic fields."These Quctuations are responsible
6rst for the emission of real photons, simultaneous with
the decay and independent of the surrounding matter
(inner bremsstrahlung) and second for damping effects
associated with the unradiated Geld. This damping may

' S. Hanawa and T. Miyazima, Progr. Theoret. Phys. (Japan)
5, 459 (1950).' T. Nakano et al., Progr. Theoret. Phys. (Japan) 5, 1014 (1950).

be described in terms of virtual photons and is exactly
similar to the processes responsible for the Lamb-
Retherford shift. The total probability of decay with
and without inner bremsstrahlung would of course
exceed the probability of unperturbed decay, were it
not for the damping effect of the virtual photons„
however both effects are of the same order and must be
considered together.

%e have considered the decay of an arbitrary charged
fermion into a lighter one with the emission of a single
boson or of two other fermions, without making any


