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Vacuum Polarization in a Strong Coulomb Field*f
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A study is carried out of the vacuum polarization in a strong Coulomb 6eld. Radiative corrections are
neglected. A perturbation calculation is avoided by making use of the explicit solutions of the Dirac equation
in a Coulomb 6eld. The Laplace transform of the polarization charge density times r~ is found and used as
a basis for further study. It is proved to be an analytic function of the strength of the inducing charge.
It is verified that the erst-order term in a power series expansion in the strength of the inducing charge just
corresponds to the Uehling potential. The third-order term is studied in some detail. The leading term in
the polarization potential close to the inducing charge and the space integral of the induced potential
divided by r are found to all orders in the strength of the inducing charge. Ambiguities are handled by a
method corresponding to regularization.

Some experimental applications are considered. The corrections to the Uehling term in these cases are
found to be small.

E. INTRODUCTION

ECENT measurements of energy level diGerences
in mu-mesonic atoms have raised the question as

to whether quantum electrodynamical corrections to
these level separations are of observable magnitude. '—'
It is expected that the main quantum electrodynamical
eGect on the levels in mu-mesonic atoms would be the
eGect of vacuum polarization, arising from the coupling
of the electron-positron Geld to the Coulomb field of
the nucleus. '

Likewise quantum electrodynamical corrections to
the x-ray fine structure separations in heavy elements
may be of observable magnitude. In this latter case,
vacuum polarization can be expected to be important,
although it is not the only quantum electrodynamical
eGect expected to play a role. ' '

The phenomenon of vacuum polarization in an
external field, to first order in a power series expansion
in the strength of the inducing field, has been discussed
previously. " Furthermore, in the case of a constant
external field, it has been discussed to all orders in the
strength of the inducing field. ""For the case in which
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the inducing charge is a point charge, the 6rst-order
potential will be referred to as the Uehling potential. It
is well known that it gives rise to a measurable con-
tribution to the Lamb shift in hydrogen. The effect of
the Uehling potential on the x-ray 6ne structure
separation and on the levels in m,u-mesonic atoms has
also been considered. "' ' ' It may here be remarked
that the Uehling potential falls o6 exponentially at
large distances from the inducing charge, and behaves
as (Inr) jr at small distances.

The Uehling potential is the leading term in a per-
turbation expansion in which o,Z is treated as a small
expansion parameter. (n is the fine structure constant,
and Z is the magnitude of the inducing charge, in units
of the elementary charge. ) The use of the first-order
term only when considering the effects of vacuum
polarization on hydrogen levels can thus be expected
to be a very good approximation. This may not be the
case when one considers mu-mesonic atoms or x-ray
fine structure in heavy elements, since nZ is then of
order unity. It is thus of interest to consider higher
order e8ects.

7Vith this in mind, we have undertaken a study of the
vacuum polarization in a strong Coulomb field. Ke
avoid a perturbation expansion by making use of the
explicit solutions of the Dirac equation in a Coulomb
field. Radiative corrections are neglected.

%e first consider the general expression for the
induced charge density and we show how the sum over
states representing the charge density may be broken
up into partial sums referring to diferent angular
momenta. %e next show how these partial sums may be
expressed in terms of a contour integral of the Green's
functions of the radial Dirac equations. The Green's
functions are explicitly constructed, and their relevant
properties discussed. Some further discussion is given
in Appendix I.

The Laplace transform of the polarization charge
density times r' is found and discussed. The expression
is regulated and renormalized, and shown (in Appendix
II), to be an analytic function of nZ inside the circle
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FIG. i. Feynman diagram for
the polarization potential using a
Coulomb field interaction repre-
sentation.

sentation based on the solutions to the Dirac equation
in the Coulomb field.

The sum (2) is divergent as it stands. In the course
of our study we shall try to give a more proper defi-
nition and to separate the physically meaningful
quantities from meaningless in6nities.

We study the Dirac equation in the Coulomb field,
and consider simultaneous eigenstates to E, J, and the
Hamiltonian. "Ehas all nonzero integers as eigenvalues,
and I, has the eigenvalues;

m= —1k/+a' —)kf+p ''' (kf —-'. (3)

We are then led to radial equations which we write in
the form

~crZ~ =1.The first-order term is extracted and shown
to correspond to the Uehling term. The third-order
term is discussed in som, e detail, and likewise the be-
havior of the polarization potential close to the origin
is discussed. Except for the Uehling term, the charge
renormalization turns out to be finite up to o,Z= 1.

Higher-than-first-order vacuum polarization effects
on the energy levels of mu-mesonic atoms are con-
sidered and found to be small.

Ke also study vacuum polarization sects on the
x-ray 6ne structure separation, arising from the first-
and third-order terms.

The contribution to the Lamb shift in hydrogen from
third-order vacuum polarization is found to be neg-
ligible.

In Appendix III, the asymptotic behavior of the
polarization potential is discussed briefiy from the
standpoint of the Euler-Heisenberg Hamiltonian.

In Appendix IV, some summation formulas are
derived.

(X),+s)Lw(x)) =0, (4)
where

d
—+1.)
g dx g

Ql S = K] S j'N2X )

y =ctZ =e'Z/4sr p pkc,

x=r moc

s= E/mpc'

(E is here the energy).
The complete solutions can be written in terms of

the radial eigenfunctions, and spherical harmonics as

i k k+m ——,'&
pi(km; r) = —— wi(x) F'lp;l;"—

&(8; p),
x [k[ 2k —1

k —m —-' &
2

I'i p-:i-i"+*'8" &)
2k l

2

Pp(km; r) = ——wi(x)
SWe are interested in the vacuum expectation value

of the current operator;

j„=-',e(vac
~ py„f py„p~

vac), —
(~)

'(~' &)
k 1 'k —m+-',

-wp(x)
2k+1 .(1) Pp(km; r) =—

II. EXPRESSION OF THE POLARIZATION CHARGE
DENSITY AS A SUM OF CONTRIBUTIONS FROM

DIFFERENT ANGULAR MOMENTUM STATES

where —e is the charge of the electron, in the presence
of a Coulomb field arising from a point charge of mag-
nitude eZ located at the origin r=0.

Only the timelike component of (1) is different from
zero, and we may thus write the induced charge density;

p(r) = 2e P(„&trace(P(r)P(r)),
—i2e P& i trace(P(r)P*(r)), (2)

where f(r) is the solution to the time-independent
Dirac equation in a Coulomb field, and (+) indicates
a sum over all positive energy states (=electron states),
and (—) indicates a sum over all negative energy states
(=positron states), as de6ned by the Coulomb field.

This charge density gives rise to an electrostatic
potential, Vt (r), which may be represented by the
Feynman diagram in Fig. 1, using an interaction repre-

k+m+-', &

I"l~+.l-."+'(~' V)
1

&4(km; r) =-wp(x)
x 2k+1

The labels k and s are suppressed in zo~ and mg. Using
addition theorems for spherical harmonics, we And

trace(P(km; r)P*(km; r))

J 4

= P Py, *(km;r)y, (km;r)
re~7 rs~l

— Q w„(x)w.*(x), (j= ~

k
~

——,') (6)
4m

n L. I. Schiff, Quantum 3lechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), first edition.
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so that
R - plone

with

e2[u( 1 p~,cq
~2(r) =-

2 42r r20l2)

XLP(+){wl(x)w1 (x)+w2(x)w2 (*)}

L (
(R:R')

/ ~+R'. .a a a aa a a aa a\a &aa a\&%aaa aaa aa%~

(.~(R:R')

—P, ,{w (x)w *(x)+w (x)w *(x)}), (8)

where fw(x)j are solutions to the radial equation (4)
for a given k, and given E, and with appropriate nor-
malization. (+) and (—) indicate respectively sum-
mations over positive and negative energy eigenstates
to the radial equation. After the summation over m the
spherical symmetry of the induced charge density is
apparent.

We shall now focus our attention on the radial equa-
tion (4) and for convenience we shall suppress the
index k from the solutions in the next paragraph, as we
have done so far.

wp(xi q 2)w„(x2i 6)E„.(xi,x2, z) =g
(e) z

(10)

III. EXPRESSION OF THE SUMMATION OVER THE
RADIAL EIGENSTATES AS A CONTOUR INTEGRAL

OF THE RADIAL GREEN'S FUNCTION

Let 0(p (i.The boundary conditions,

(a) (w) finite at x=o,
(b) [w$ bounded at infinity,

define the eigenvalues and eigenfunctions of the radial
equation (4). I,et z be any complex number, 220t an
eigenvalue to (4). We may then construct a Green's
function, E, to the radial equation in the form of a
bilinear sum;

.-iR

Fro. 3. Special contours used in the discussion of the contour
integral representation of the sum over the energy states.

The Green's function is an analytic function of z,
except possibly at the location of the eigenvalues. The
set of eigenvalues consists of a point set on the real
z-axis, between 0 and 1, and with z=i as a point of
accumulation, and of the half-lines

z~ 1 and z ~ i.
Let us introduce cuts in the z-plane along the half-

lines defined by (12). It will be found that the Green's
function has simple poles at the discrete eigenvalues
and branch points at z=i and z= —1, and that it is
otherwise a single-valued analytic function in the cut
plane.

Let us consider the contours E(R) and P(R) in the
cut z-plane. (See Fig. 2.) E(R) is a simple curve, starting
at the point +R+Oi, ending at the point +R—Oi,
which encircles all the discrete eigenvalues precisely
once. I'(R) is a simple curve, starting at the point
—R—Oi, ending at the point R+Oi—, which encircles
none of the discrete eigenvalues.

After the introductory remarks on the Green's
function as defined by (10), it is apparent that the sum
over states in (8) that we are interested in can be
represented by:

—P {wi(x)wi*(x)+w2(x)w2*(x)}

P {wi(x)wi*(x)+w2(x)w2*(x)}
where the sum is over all eigenvalues e. This Green's
function has the property (provided [wj is properly
normalized); (—)B

(n~i+ s) (E(x,x2, s)) = I'1 (xI x2). — 1
dz trace(E(x, x; s))

2m'i ~ p (gl)

Z - plone ds trace(E(x, x; s)) (13)
27K u P(R)

-RJ
aaaaaaaaaa ~ aaag

P(R)

IR
~aaaaaaoaaaaaaaaaaP

+I
(

Fxo. 2. Contours used in connection with the contour integral
representation of the sum over the energy states.

in the limit E. , 8~00. This limit will exist only after
some regularization process has been performed.

In view of the analyticity of the Green's function, we

may deform the contours E(R') and E(R) . In particular,
we consider the contours Ci(R), C2(R), C2(R), C4(R),
E(R), Li(R; R') and L2 (R; R') shown in Fig. 3.
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Thus

dz E=—,
~ z(a)

dz E— dz E—, dz E
C1(gr,) ~ C'4(a)

ds E=,' dz E+
~ 1(a) ~ gg(a)

dz E.

ds E — &ts E, (14)
L,1(a; a') "I.~(R; a')

The utility of (13) is a consequence of the fact that
there exists an alternative expression for the Green's
function in terms of the regular and irregular solutions
to (4) for z not an eigenvalue, so that the summation
over states in (10) can be avoided. Thus: For z not an
eigenvalue, we construct two linearly independent
solutions fw&'&(x; z)$ and Lw"&(x; z)j to (4), by re-
quiring that Lw&i&j be finite at the origin and Lw&'& J
bounded at in6nity. Let

E(z)=ws&'&(x; z)wi&'&(x; z)—wi&'&(x; z)ws&'&(x; z); (15)

This is a convenient set of contours, since it will turn
out that the physically meaningful contribution will

appear as an integral along the contour I(R), while the
ambiguities are connected with the other contours.
Upon regularization of the expression for the charge
density, and passing to the limit E~~ and E'~,
only the integral along the imaginary s-axis will con-
tribute.

then
(8/Bx)E (z) =—0,

and E(z) 00, if z is not an eigenvalue. I.et

+1 if x)0
8(x)=~+-,', if x=0

.'0 if x&0.

(16)

8(xp —xi) fwl (xl j z)wl (x2 j z) j wl (xi j z)W2 (x2) z) )
E (s) Ewp (xi s)wl (x2 j z) j w2 (xl j z)W2 (x2 y z) ~

e(xi —x,) (wi& (xi, z)wi"'(xsj s); wi "(xi,.S)ws"'(xs, z))
(1't)

E(s) Ewe (xi s)wi (xs j z) j ws (xi j z)ws (xs j z) )

The diagonal elements of E are continuous functions
of x~ and x~, the nondiagonal elements have a finite
step-discontinuity at x&=x2. It is apparent that

(n*&+z).(E(xi,xp, z))=8(xi—xp), (18)

functions:

I'(p+e) I'(q) t"
~(p;q; t)=—Z

=p F (q+&s)I'(p) e!
(21)

so that we have indeed found another expression for the
Green's function. This construction is very similar in
principle to the construction of a Green's function for
an ordinary second order linear diQ'erential equation. "

The solutions fw&'&j and ['w&'&j can be expressed in
terms of the functions defined below. Ke de6ne single
valued functions in the cut plane:

(s+1)'* by (z+1)', p
——1;

(s—1)'* by (z—1)i,=p ——i;
(s'—1)'*=(z+1)'*(s—1)'.

I'(p+1 q)1'(q)
G(p;q;t)=—t' ' F(P+1 q; 2—q; t), —

I (2 q)I (p)
(22)

(23)&(p q; t) =—~(p; q; t) —G(p; q; t),

where
arg(tt ')= (1—

q) argt.

I" (p;q t)

For some of the properties of these functions, see Ap-
pendix I. We note here the integral representations

Thus

Im{ (z' —1)i})0.

s= (k' —y') '*,

valid when

I'(q)

Re{p})0, Re{q—p})0;

1

~

t dxe*'xi' —'(1—x)p-" ', (24)
1(pF(q- p) ~.

a= s—iyz/(z' —1)1,

t&= 2s+1,
X=0—iP/(s —1) '.

(20) P(p; q; t)

r(p+1 —
q)

e'
~

dxe ~'x™-l(x 1)~' (25)
1(p)P(1-q) ~.We will use the following conQuent hypergeometric

where —ss. &argt &-',vr, valid when Re{p})0, and q not
Physt'k (Veriag Ju1ius Springer, Ber1in, 1931),Part L a positive integer. Forfurtherdiscussion& see Appendix I.
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Having made these definitions, we are able to deter-
mine $w&'&] and Lw&"] in terms of the confluent hyper-
geometric functions, by examining the behavior of F
and 6 at the origin and at in6nity, The variables x1 and
x2 are real and non-negative, and by (19) we may
write

—-'22r &arg{ i—X(Z' 1—)l} &-2,2r,

and thus get

wi&'& (x; z) =i(z 1—)'$2x(z2 —1)&]' expgix(z2 —1)2]

X{XF(a;b; 2—ix(z' 1—)b)

+aF(a+1 b; 2i—x(z' 1)—&)}

(26)

w2&'&(x; z) = (z+1)bt 2x(z2 —1):]'exptix(z2 —1)']
X {XF(a; b; —2ix(z' —1) '*)

aF(a+—1;b; 2ix—(z' 1)—l)},
(27)

wl& &(x z) =i(z —1)&L2x(z2—1)~]' exp(ix(z' —1)&)

X{XH(a; b; 2ix—(z' 1)b—)
+aH(a+1 b —2ix(z' —1)&)}

w2&2& (x; z) = (z+1)~L2x(z2 1)l]' explbx(z' —1)&]

X {liH(a; b; 2ix—(z' 1)'*)—

aH(a+1; —b; 2ix(—z' 1)')—}.
Thus,

I'(a+1—b)1'(b) (i b)
K(z) =4'(z2 —1)' exp

~
(. (28)

r(2 —b)r{a) E 2 )
The last result is best obtained by letting x become very
small in the solutions (27), and using (16).

Using (27) and (28) and the definition (17), we may
construct the Green's functions explicitly in terms of
the confluent hypergeometric functions. By examining
the Green's function we may establish that (see Ap-
pendix I for some details):

{a) The Green's function has simple poles at the
discrete eigenvalues. These, of course, lie on the real
z-axis between s=0 and a= 1.

(b) With the exception of the poles, the Green's
function is a single-valued analytic function of s in the
cut s-plane.

(c) The Green's function has branch points at z=1
and at s= —1.

(d) With xi (or x2) fixed and finite, and z in the cut
plane, not at a pole, the Green's function considered as
a function of x2 (or xl) is finite at the origin, and bounded
at in6nity.

+ F(a+1; b; 2ix—(z' 1)'—)
1+a b—

XH(a+1; b; 2ix—(z' 1)1)—

+azkF(a; b; 2ix(—z' 1)')—

XH(a+1; b; —2ix(z' —1)i)

+F(a+1;b; 2ix(z—' 1)')—

XH(a; b; 2ix(z' —1)&)] .—(29)

F- (p; — )= "D (; )d* (30)

This Laplace transform exists everywhere in the cut
plane when s is not at a pole of E.

YVe denote:

I= ip/2(z2 —1)l,

g=L1—~]yt1+ ~i]LIy~(~—1)],

pz L1—~]LId~i]
g= ln

(z' —1)b t1+t(2b —1)]

(31)

(32)

(33)

Using the integral representations (24) and (25), we

get

%e discuss in Appendix I how various propagation
functions may be de6ned in terms of contour integrals
of the Green's function, and how these can be used to
solve the time-dependent radial equation.

IV. THE LAPLACE TRANSFORM OF THE TRACE OF
THE GREEN'S FUNCTlON WHEN xI=x2=x

Using the results of the preceding section, we find:

Db (x; z) = trace(Ãb (x,x; z)+E b (x,x; 2) )
r (a)r (1—b) p 2i—x(z' 1)—b]"

= —2z
r (b)r (a+1—b) (z' —1)b

X exp {2ix(z'—1)&}

ZV

X t F(;b; — ("—1)')
1(.—1)b.

XH(a; b; 2ix—(z' 1)')—

—2z p1

Db(X; Z) = L
—2iX(Z' —1)b]2a dg

(z' —1)b "0 41.
dlt exp{ 2ix(z' —1)'((—q—)}

(z' —1)& I"(a)r(b —a)
~0

Xp—l(q —1)a—ly/b-a —l(1—$)b-a—l+ ~.(~-1).~~.-'(1-8~.-'
r (a+1)r (b—a—1)

(a+1—b) 8
+z (a—l (1 q)

b—a—l~ b—a—2 (~ 1)a+ ga(1 ])b-a—2~b—a—l(~ 1)a—l

r(a)I'(b —a) I' (a+1)I' (b —a—1)
(34)
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whence

122
l

E,(p; —is) = dp
z2—$ dp

iv r (b) r (b)
dn ]a—1(1 ()D a —l~—ba -1(—~ 1)a—I+

(s' —1)' I'(a)r(b —a) r (a+ 1)r (b—a —1)

I

y Pa(1 ()ba -2~—ba -2(~— 1)a
aI'(b)

pa(1 p)
b a —2~—b a —1(—~ 1)a—I

r(a+1)r(b —a—1)

(a+1—b)r (b) V-'(1-&)"-'~"-'(~-1). ~

L +~-&]-'
r(a)r(b —a)

z2

with «=1/2«. Thus

«I
oa

t
i~ - 2«ba 1(-~ —

1 )a-I

(s'—1)& [u+2«]'- [u+2« —1]a [u+2«] '[u+2« —1]'+'

a~b a 1(~—
—1)a—I (a+1 b)~b

——
2(I« 1)

[u+2«)~ I[u+2« 1]—+' [u+2«]b '[u+2« 1]—
[1—t]'

a[1—t] (a+1—b) [1—t]

[1+ut]~ -'[1+t(u—1)]'+' [I+ut]~'[I+«(u —1)]'

iv
dt

(s' 1)b -[1+ut]~ [1+t(u—1))' [1+ut]~' '[1+« (u —1)]'+'.

1 tI iy '
1 |

Eb(p; is) =— dtQ' exp( ig}—
z' —1 ~p (s' —1)b -[I t]L1+ut] [1+t (u —1)]

Q (a+1—b)
z

[1—t][1+t(u—1)] [1+ut]
(35)

V. DIVERGENCE DIFFICULTIES AND
REGULARIZATION OF THE

LAPLACE TRANSFORM

According to our earlier considerations, we should
now perform the contour integrations of (35) in ac-
cordance with (13) and pass to the limit, and finally
sum the result over k as indicated by (8). We should
then get an expression for the Laplace transform of the
induced charge density times r . By inspection of (35),
however, it is seen that the result would diverge. In
addition, delicate considerations would arise as to
what order should be followed in the integrations and
summations. In our opinion, the theory does not give
any answer to such questions.

To deal with this situation, we will proceed as follows:
We first sum Eb over k in accordance with (8). We then
carry out the integration over t (which will give an
infinite term in first order in y). We finally carry out the
contour integrations over z and at the same time we

will remove ambiguities by a regularization process.
For convenience, we shall-erst remove what will be

shown to be the Uehling term from our expression. We
write

iy

s' —1 J II (s'—I)&

X
[1—t][1+ut] [1+t(u—1)]. (s' —1)b

X
[1—«][1+ut] [I+ t(u —1)]

72

+sk 1—ig+-'g2 ——lnQ
2k [1—t)[1+t(u—1)]

iVz'
[1 2g][1+.t] ("-1)' -L1—t]L1+t( —1)]

+ . (37)
[1+ut].

The expression (37) arises from the first three terms
in a power series expansion of (35) in y. Let

Eb(p; is) =Eb'(p; is)+E—b"(p; —is), — (36)
W" (p; is) =p k—Eb" (p; —is).

tt«' 1
(38)
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Let 0«&~ and 0(8(~.

W'(p; —iz; e; b) =
s —1 4~

z'y

dt Q kQ"
(s'—1)&

A(P; —is; e;b)

8 zs
ln(1+u)

ris 3u'(s' —1)&

is'

oonss 3(»'- 1)"'

x [1—ig)
[1+t (u —1)].

2 1
+sk 1—ig ——,'g' ——lnQ

2k [1—t)[1+t(u —1)]

Consider the coefficients of the even powers. When
integrated over the contour I(It), the integrals will
vanish. The only possible contribution actually comes
from the contours Li(R:R') and Ls(R:R'), and so is
dependent on the way we pass to the limit in the contour
integration. Ke mill set these terms equal to zero. It is
also clear that the induced charge must change sign
when the inducing charge does, and therefore even
powers of y cannot occur in our result. Evaluating
g &'), we get

1

W"'(pl «l ei b)

1 1 3

(z' —1)& 2u' e 2 4u 2(1+u)

1 t'1 1) 1 s'
—s'

1

——
1

——+—ln(1+u)
2us Ee 2) 4u

W&'&(p; —is; e; b)

+0(.)+o(b), (41)

1 its'
[1 ig]

[1+ut) (s'—1)&

1
X +- (39)

[1+ut] [1—t][1+t(u—1)] 1

It may be shown (see Appendix II) that for u finite,
the order of summation over k and integration over t
may be reversed in (38). The expression (38) is thus
consistent with our program, and it is also gratifying
to see that the ambiguity concerning the order of in-
tegration and summation exists only for EI,'.

The expression (39) is a polynomial of second degree
in y. Let us write this explicitly as

W'(p; is; e—; b) =W&'&(p; —is; e; b)

+~W& &(p; -'.;.; b)+~'W&'&(p; -", ; b). (40)

1 1- i - 1 1 ~1 3yx1—+—+ —+
u u' (z' —1)&. 2 2u' Ee 2)

1 p1 1 1y—
I +O(e)+O(b). (43)

4u E 2eus 4u' 4ui

The first sum in (42) is independent of e and b. Inte-
grated around the contours and passing to the limit R,
R'—+~, the only contribution comes from the integral
along the imaginary s-axis. Let s= iy in this integration.
Finding the inverse Laplace transform, we thus get for
the induced charge density and the potential, to first
order in y,

(y i ~" y'L3+2y']
yl"."'(r)=

47resr E3z.) ~o [y +1
218per

Xexp — (y'+1)l, (44)
k

e t' p q (2mscp ' p" y'[3+2y')
Vp"'(r) =-

«r (3z& ( 5 ) ~s [y'+1)&

2mocr
Xexp — (y'+1) ' (45)

In the expression for the charge density the infinite
point charge at the origin, required to eGect charge
renormalization, has been omitted. The potential (44)
is precisely the Uehling potential.

The contribution from the term 2 in (43) we set
equal to zero. Its actual value depends on the way we
perform the limiting process for the contour. Ke see
that it is of the form

co+ cs (1/p)',

or, 6nding the inverse Laplace transform, this corre-
sponds to a charge density

cs'(1/r)'b (r)+cs'(1/r).

Such terms in the charge density vanish upon regulari-
zation, which is easily seen from a study of the dimen-
sions of the coeKcients. "

We now study W" (p; iz) and —write

W"'(P; iz) =W" (P—; —is) —ysW&si (P; is), (46—)

1+u. 3 (s' —1)"' 2 (s' —1)&

+a(p; —is; ', b), (42)

"W. Pauli and F. Villars, Rev. Modern Phys. 21, 434 (1949).
co' has the dimension of a charge and is therefore independent of
the pair 6eld mass, while c2', having the dimension of charge
divided by an area must be proportional to the square of the
mass. In the notation of Pauli and Villars, the conditions
J'p(x)dx=0, J'p(x)x'dx=0, remove these terms.
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where

ysW
"&(p; —is)

1 j.
dt Q kQ'

zs —1 J, s=t (z'—1)'.[1+ut)[1—ij

p" dx 1+x+- ' —ln(1 —x') In
l —x

1 1+u 1+u
--+u In — —4u' lnu

$ —I 1—Q

2 (1—u) ln'(1+u)
(s' —1)'u'(1 —u')

ks
I1—ij[1+i(u—1)3 [1+ui) —(11u) lP (2,u') —u'(1 —u')+ —u'

3

X —
g +——

g lnQ+ ——g—
2 ks (s' —1)»

I
2 In(1 —us) —u In +3us(1 —u ) Inu

I—I
X—

[1—&][1+&(u—1)l [1+uij-
1

)& ——lnQ —-g' . (47)

This expression arises from the third power of y in a
power series expansion in y of E" in (36).

I et us define the function &p(2; x), when
I xI &1, by

the power series:

(1-u)»I (2»)
(z'—1)u(1 —u')

—(1+3u)k(2, —u) —2u(1 —u') —~'(1+u)
6

I—In +u In(1 —u') —2u(1 —u') lnu . (50)
1—I

&P(2; x) =Q —,
n=j ~2

The expression W&s& is a continuous function of u for
positive N. It further satisfies the relation

W&" (p; is) =W—"&(p; iz) ',—i (z' —1—)—

where

4s' —15s'+6

3(s'—1)'

2 lnu

6(z' —1) (s' —1)'
(49)

2i (s' 1)»W&'—& (p; is)—
S4 4

—Ins(1+u)+2&P(2 u') ln(1 —u)
(s' —1)'u' 3

2 7r2 dx
+ u' [ln(1—u')+u'~+2 ~l ln'(1 x'

3 3 0 g

1 n—2 ln(1 —u') ln +2u' Inu
1—I

S2 1+u
+ — &P(2,u) ln

(z' —1)u' 1—u

1+u——ln —2u +u lns(1+u)+-,'u»I (2,us)
6 1—I

and let I (x) denote the Riemann zeta function. We
carry ottt the integration over t in (47) and get

I
IT'"&(p; —is)

I
«& Iu/(s' —1)'I

for some ct if 0&u &1. We thus see that W&s& inte-
grated over the contours Cj, C2, C3, C4, 1.~, 1.2 vanishes
in the limit E, R'—+~. We shall call W&s& the "regulated
5'(3)," and in general denote regulated functions by a
bar. On the other hand, the bracketed expression in

(49) gives a contribution to the contour integral
depending on the manner in which we go to the limit.
The result would be of the form

kt+ks lnp.

Both these terms can be removed by regularization. "
The remaining terms, W"'(p; —is), can be handled

in exactly the same way. In this case only the integral
along the imaginary axis of this function contributes
to the contour integral for the charge density, and the
contribution is finite for all p. To renormalize the charge
it is necessary to remove a term constant in p; the
remainder, denoted by W"'(p; —is), then vanishes at
p=0. We have further proved that the integral of W"'
is an analytic function of y in the region

I yI &1 (see
Appendix II) .

"This corresponds to a charge density of the form: k&'b(r)/(r')
+k, '(1/r'). This has, oi course, no very precise meaning, since in
order that the Laplace transform "exist" it is necessary that k1'

be inhnite.
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VI. FURTHER STUDY OF THE RENORMALIZED
LAPLACE TRANSFORM

converging when. 0(p(2, or

+ (0 170044) (p/2)' —(0.274793) (p/2)'

By the results of the preceding section, and of Ap-
e y'(mpc) '

pendix II, a power series expansion in y can be carried 4«& les )
out. The radius of convergence is IVI =1, and only odd
powers of y will occur. Let us denote

q(p) = due-& p(r)xs, (51)
—(0.118519)(p/2) 4 lnp

+ (0.303301)(p/2)4+O(p') }. (59')

q(p) P +2n+lq(2n+1) (p)
n=p

q'"(p) =q(p) —yq&'&(p) —7'q"&(p),

q'(p) =q(p) —yq"'(p).

We thus have

(52)

e (2 )(Aq'
42repr (2252r) Empcr)

The term proportional to p'lnp is not unexpected.
It gives rise to the leading term in the third-order
charge and potential at large distances:

(53)

e (mpc)s t"
"q"'(p)=-",I4~2(a) J

e (40'( Aq'
p"'(r)-

42rr &2252r] Empcr)

(60)

e (mpc)' ("
(p)=—

I I
t dye'"(p

4+& a)
The induced charge gives rise to an electrostatic poten-
tial Vr (r), according to e (mpC)' 2r 7 2

limq'2& (p) = —
I I

————|'(3) . (61)
42rs& A, J 6 9 31 p~ i

V, (r) = —p(u)u'du+ — p(u)udu. (56)
rap ~„ &p ~ ~ We now return to W"'(p; y). After an integration by

parts with respect to t, we may write it in the form
We also de6ne

(55) (as r-+oo). The same term, can be derived from the
Euler-Heisenberg Lagrangian. (See Appendix III.")

For large p, we get

U(p) = V„(r)e1'xdh, r= (A/mpc)x,
f

and get (using Poisson's equation)

(A)21 1
~(p) =

I I
——,„i q(p') dp'.

hmpc) ep p' jp

(57)

(58)

&"'(p y)

f' [1—t][1+ut]+[1+t(u—1)]
dt

[1+ys]» p [1—t][1+ut][1+t(u—1)]

kQ*cosg —Q"I k ——g' —-'2ysinQ
I

k 1 2 )

From this we may find the Laplace transform of positive
integral powers of x times the polarization potential by
a differentiation with respect to p.

We expand (50) in powers of p, and carry out the
integration over y. Using (54), we thus have

e (mpc) (p ) (2r) 52r' 13
7'q"'(p) =~',

I I I

—
II

—
I

— +-
4~2( tt ) &2) &4) 72 24

2&y' p' dt
[kQ' cosg

[1+ys]&"p [1+ut] &-1

(1+y')'—Qs(k —-', kgs —-', ys lnQ)] —— [ksQ' sing

—(&'g —-'&v —-'»'g l Q—lv'g)Q"] +~"'(y) (62)

(py' 2 ~2 19 gpss(2rq+ + +
E2) 3 6 15 (2) E4)

312rs 1-
t pq 4 16

x — -+- +I —
I

— lnp
360 2 & 2) 135

8x 3347'
+ +O(p')

6 is 2835

X'"(y) is determined so that, identically in y,

lim W'"(p; y) =0. (63)

'1 The discussion in Appendix III implies p"'(r) falls off faster
than (1/rr) so that (60) indeed gives the leading term in the
charge density at large distances. Since the Uehling term will be
seen to. dominate at small distances, one notes that the induced

59) charge densities at large and small distances are always of op-
posite sign.
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We find (see Appendix II)

ks
~"'(y) =

L1+y']"=' t "+ Y[1+y'] '

7$ 2p 00 00+,ZZ
ko(1+y') [1+y']'*

(e+s)k k

(nPs)'+ y'&'[

2k'

8 q'"(p)—
Bp

e (nzpcq'
I (v~)

(„=p) 4s'( ))i j
k[rP+2es]

X PP
(rl+s) +y + (tt+s)[(i+s) +y ]

2k(e+s)
f ~( ) —gof„o(&)

(e+s)+[(e+s)'+y']l
I-i; y'- k ks

+P —k s —k+——
2 2k 2(k+s k+s) ( )

—fo")—V'fa") (66)

~2ky2

(64)
(rs+ k) '(1+y')

We may also find the limit of the integral of (62) with
respect to y, when p goes to infinity. The result is (see
Appendix II)

e (mocy '
lim q"'(p) =

4~p( a )
t'ai v 1v'

X —2&k tan
(s) k 6k'

eke eke
+4K 2~=»=) (++s)'+y' (n+k)'

yk—k tan-
t l+

(~yk) ) ~+s& (~+k)

kv3

3(e+k)' 2 (0+k)'

The fact that this limit is finite corresponds to the
presence of a point charge at the origin, just as in the
case of q(')(p).

q"'(p) can be expanded in powers of p, for small p,
and expressions analogous to (65) obtained for each
coeKcient. We have carried out the calculation for the
lowest terms only, obtaining

The f's are terms added to remove the (diverging)
terms to erst and third order in y.

For small p, we may expand

8
q"—'(p)

-ap

e (Bzpc)

(,=o) 4or'L h )
5 1 i - ~~ ig

X &' —|(2)—-f'(3)+—f(4) +——f(5).64 8 64 32 2

95 55 -
) e (moc)'

t (4) t (6) +0(y ) '=
I

16 16 l 4or' E f) )
X(y'(0.015191)+y'(0.007127)+O(y')). (67)

For
t y t

~ 1, we msy write

8
q"'(p)—

-~p — b=o)

e (mpcy '

4~o& e )
Xy'[0.015191]F)(y'). (68)

The function Ii j is shown on the graph in Fig. 4.

VII. POLARIZATION POTENTIAL AT SMALL
DISTANCES. CORRECTIONS TO ENERGY

LEVELS IN MU-MESONIC ATOMS

We return to the question of the polarization charge
at the origin. We combine (61) and (65) and write

(5)
&Q'=4~

t l
»m Lv'q") (p)+q'"(p)] (69)

Eeoc) ~"
Expanding for small y, we get

~Q'=- y' -f (3)+——+y' ——f(4)+-f'(2)
3 9 6. 20 4

27 2——(f(3)—f(4))+-(|(3)—l (5))
5 3

-34
+v' l (5)+—t(7) t

-1g+——lf(6)+12t (5)
21 3 E 24)

i 5
+-f'(2)f(4)+-l'(3) +oh') (7o)

2
or

8Q' ——e(y'(0.020940)+y (0.007121)Fp(y )} (71)

The function Fo has been rather roughly evaluated
numerically and is represented graphically in Fig. 4.
For small y, we have [from (70)]

~oh') =1+&'(0 51g3)+O(V') (72)

8Q' represents the part of the higher-than-first-order
polarization charge which is located at the origin. Since
the total polarization charge (to higher than first order)
vanishes; —l)Q' is the part of the higher-than-first-order
polarization charge located outside the origin. Thus, for
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0.5
y2

I.O

Fro. 4. The functions Fp(~') and fl&(p') defined in the text in
connection with the polarization potential near the inducing
charge and the space integral of the polarization potential divided
by r.

r small compared to the mean radius of the outside
charge distribution, we get for the higher-than-first-
order potential

Vp'(r) = Vr (r) 7Vr ~'i(r) —8Q—'/(4prepr). (73)

A mean radius, r~, for the charge distribution outside
the origin may be defined by

goo
rp' 4pr r'——p'(r)dr —8Q'

f} 8 f'A )4
=»m ——V'"(p)+—C'"(p) 4

~

-Bp c}p Empc)

1+ps (0 2692)Pi (p~)-
=(0.8579)

~ ~
. (74)

(mpc) 1+y'(0.3401)Fp(p )

The mean radius is thus about equal to the Compton
wavelength of the electron. It is also interesting to note
that the mean radius does not change much in the
range:

{)w~ w]

We use (73) to estimate the displacement of energy
levels in mesonic atoms, due to higher than first order
terms in the vacuum polarization.

We use Schrodinger wave functions for a pure
Coulomb 6eld to describe the meson, and assume that
Z is sufficiently high, and the principal quantum
number sufficiently small, so that the meson is well
inside the mean radius (74). We thus find the leading
term in the displacement, AE„',simply as the expecta-
tion value of the potential Vi'(r). Let E„denote the
unperturbed energy. Then

~E.'=(~~ V '(r) ~~),

DE '/E„——2 5Q'/Ze= 2n(y'(0. 020940)
+y4(0.007121)Fp(y')) (75)

Thus, for uranium, Z= 92:

AE„'/E„1.6—X 10-4.

For low Z, the approximation (75), while not so well

justified, is almost certainly an upper limit. The con-
tribution is then particularly small due to the smallness
of y.

In this estimate, we have ignored the effect of the
finite nuclear size. Nevertheless, we are confident that
(75) gives a good picture of the order of magnitude
involved. Our conclusion is thus that with present day
experimental accuracy, level displacements in mesonic
atoms, due to vacuum polarization in higher order than
the first, are not detectable.

The effect of the Uehling potential (44) on level dis-
placements in mesonic atoms has been considered
elsewhere. '" ' In this case, the eGect must be con-
sidered susceptible to measurements. In some recent
measurements' on x-rays from mesonic atoms, for the
purpose of obtaining a value for the mass of the mu-
meson, there is indeed some indication that the eGect
of vacuum polarization has to be considered in the inter-
pretation of the results for consistency with other mass
determinations. In the case of the first-order term, it is
also easy to extend the result to the case of a nucleus of
finite size. '

VIII. EFFECT OF VACUUM POLARIZATION ON X-RAY
FINE STRUCTURE. THIRD-ORDER CONTRIBUTION

TO THE LAMB SHIFT IN HYDROGEN

We consider the effect of vacuum polarization on the
x-ray fine structure separation in heavy elements, in
particular the 2pi —2p; separation. Our interest in this
question derives from attempts that have been made to
infer something about the nuclear size from an analysis
of measured separations.

Schawlow and Townes '~ have pointed out the
existence of a systematic deviation of the experimental
separation from the theoretical prediction, which varies
rapidly with Z. They demonstrate that such an effect
could be attributed to short range departures from the
Coulomb interaction. An attempt to attribute the
eAect entirely to the finite size of the nucleus leads to a
nuclear radius considerably larger than that obtained
from other experiments. It is clear that quantum elec-
trodynamical modifications of the Coulomb interaction
will also contribute to the effect, and indeed if one now
regards the nuclear radius as known from other experi-
ments, one may make use of this eGect as a means of
observing quantum electrodynamical eGects in heavy
elements.

One such eGect, although by no means the only one,
is the eBect of vacuum polarization. Estimates of the
contribution from the Uehling potential to the 2pi —2p*,

separation have been made previously, taking the
leading term only in an expansion of the expectation

's A. L. Schawiow and C. H. Townes, Science 115, 284 (1952).
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FrG. 5. The contribution of the Uehling potential to the
2Pg —2pg separation in heavy elements in units of the Rydberg.

—~(2P. I
7~ "'I2P:-)=

—9mpc'o, 'Z'
-(2P:),

1120m

—27spc Q Z
-(2P:)—e(2P~ I el'p"'I2P~) =

ii20x

The contribution to the 6ne structure separation thus
becomes

EBi &". 5i "'= (n'Z'—/—80m-)C,
(77)

C= L9C(2P~) —2C(2P1)3/7,

where E„is the Rydberg constant. C(2P~), C(2P;), C,
and 8~&') are given in Table I, and 8~&') has been repre-
sented graphically in Fig. 5 for some values of Z.

The large values of C shows that the lowest order
approximation is not justified. Note in particular the
rapid variation of b~&'& with Z.

We have here neglected the presence of the other
electrons in the atom. They give rise to two corrections
which may properly be considered in this connection.
The first correction is the effect of screening on the
wave functions for the 2P electrons, and is the more

values in 7.8 This approximation turns out to be
inadequate when Z is large, and we have therefore
carried out a more precise computation, as follows:

Using relativistic Coulomb wave functions for the
2P; and 2P; states, we have calculated the level shift
due to the Uehling potential by evaluating the expec-
tation values in the appropriate states. We express the
result in the form of correction factors to the shifts one
would obtain by taking the leading term only in an
expansion in y. Thus

important one. It could in a rough way be depicted as
a diminuition of the parameter Z occurring in the wave
functions for the 2P electrons. It would thus decrease
the parameter C. Such an estimate would, however,
necessarily be rough, since it is the very different be-
havior of the 2P~ and 2P; wave functions near the
origin that gives rise to the shift due to vacuum
polarization, and only a calculation using "screened"
wave functions could establish how screening affects
this different behavior. The second eQ'ect is given by the
difference in radiative corrections to the interactions
between, respectively, the 2P~ and 2P~ electrons and
the rest of the electrons in the atoms. This can be
expected to be small.

Let us next consider the eQect of the third-order
polarization potential on the fine structure separation.
From the Laplace transform (57) it is easy to obtain
the expectation value of V~&" (r) over nonrelativistic
wave functions in a Coulomb field, as an expansion in
powers of p. It is considerably more difEcult to find the
expectation values over Dirac wave functions because
of the occurrence of fractional powers of r in the ex-
pression for the square of the wave function.

As an orientation we shall first consider the con-
tribution to the fine structure separation for small y.
This may be found as follows: We expand the square of
the Dirac wave function in powers of p and take only
the leading term. We thus get (after an integration over
angles)

J~ x~IP(2P~) I~= (1/24)y(yx)4+O(y6)

dw x'IP(2p)) I'= (1/24)y(yx)'

X I (v*)'+ (9/4)7'$+O(v').

(78)

Using (57), (58), and (59'), we thus get

~(2P) I
y'l'i "'

I 2pl) e(2P& I
v'l'i "'

I 2P&)—(3/32m)ny'mac'(0. 01417)+O(y'), (79)

giving the ratio of the third- and first-order shifts:

Bi ~'&/8p&'& ~—(0.212)y'+O(y'). (80)

95
90
85
78
70

c(&py)

3.82
3.20
2.74
2.24
1.85

cg&~)

0.65
0.65
0.65
0.66
0.67

4.73
3.92
3.33
2.69
2.19

0.287
0.172
0.104
0.0500
0.0213

g„(3)/g~0)

—0.06—0.06—0,06—0.06-0.05

tIn obtaining this result, the constant C has been set
equal to 1 in (77).g

We have tried to improve the estimate given by (80)
by a method which cannot really be strictly justified.

TABLE I. Values of the parameters de6ned in Eqs.
(76) aiid (77).



UACUUM POLARIZATION IN STRONG COULOMB FIELD

We carried out the following computation: Using (57),
(58), and (59') we 6nd the averages of the polarization
potential V(3& over xe ~, x'e &, x'e ~ and x'e & . We
then use these averages to find, by interpolation, such
averages as x'e & where g represents the fractional
exponents occuring in the square of the Dirac wave
function. In this way, we arrive at the values of 8„")
given in Table I. In view of the fact that the numbers
in the last column are fairly small, it did not seem justi-
fied at this time to carry out a more elaborate evalua-
tion. We estimate that the errors in the last column of
Table I may be as high as 50/o.

One may thus assume that the Uehling term gives the
main contribution to the shift arising from vacuum
polarization. The shift has the same rapid Z dependence
as the deviation found by Schawlow and Townes, "and
is of a similar order of magnitude. It has, however the
wrong sign, which may be taken as an indication that
other quantum electrodynamical eGects play an im-
portant role.

The contribution from V&&" to the energy level dis-
placement in hydrogen is easily computed, using (57),
(58), and (59).The result is, for the 2s state, 308 cycles/
sec, and therefore entirely negligible.

APPENDIX I

F(p; q; t), G(p; q; t), and H(p; q; t) are special solu-
tions to the differential equation

d2

t—+(q—t)—p 1!'(t)=o.
dt' dt

6 and H are defined so that they satisfy the same well-
known recursion relations as Ii.

Using Pochhammer's contour I'," we may 6nd an
integral representation for F, valid for all p and q,
except when p or p —

q is an integer:

—r (q) exp( —i2rq)
F(p q t)=

4I'(p)r(q —p) sin(2rp) sin[2r(q —p) j
dzz

—(1—z)2-~-'e" (2)
P

By deforming this contour, we get the asymptotic ex-
pansions:

r(q)
F(p' q' t) = (+t) "g(p' p q+1' t)e'""'

r(q —p)

when —~x & argt ~-',x, where

o.= sign (argt),

r (22+q)r (22+p)
g(p;q t)-Z t ".

r{q)r(p)N!

The integral representations (24) and (25) are easily
established: (24) by direct evaluation of the integral,
and (25) by noting that the integral satisfies the dif-
ferential equation (1), and that it has the same leading
term in the asymptotic expansion as II, as given by (4).

Let us now study E'(x),x2, z). If we write (for the
case x1 (x2):

1

E(xt,x2., z) = g Q A~„F(a+22,b; —2ix(z' —1)&)
nm m=O

we may write
XII(a+2)2 b 2ix—(z' 1)&—), (5)

Let
XG(a+2)2; b; —2ix(z' —1)&). (8)

[20«) (x; z)]—= [2()(') (x z)]—[2()(2) (x; z)]. (9)

We shall study the behavior of E" as we pass the cut
in the z-plane. Let us denote: (where f(z) is a function
of z)

p)1 or p( —1,

f+(p) = lim f(z), f (p) = lim f(z), (10)

(p' —1)+'=—(p' —1)-',

b 1=a++a, —

I &+ I
=

I
&-

I
=

I a+ I
=

I
a- I,

(p-1)+'/(p-1)-'= —p/I pl

(12)

(13)

(14)

F+(a; b; 2ix(p' —1)')—
=exp[2ix(p' 1)'* jF-—(a+1;bi —»x(p' —1) )~ (15)

(1)— ( 1)a .2()1 (1)

Ipl l~+a+

+(x1 x2 z) + (x1 x2 «)+It (x1 x2 z) (6)
I i

K'(xt, xs, z) = P Q A„„F(a+I;b; 2ix—(z' 1)'—)
n=o m=o

XF(a+2)2; b; —2ix(z' —1)&), (7)
1 1E"(xtxs, z) = P P A „F(a+n;b; —2ix(z' —1)&)

(3)

r(p+1
&(p;q;t)= g(p; p —q+1; t), (4)—

r (1—
q)

' K. Y. Whittaker and G. N. Watson, 2 Coze'se of Modern
A)salysts (Cambridge University Press, Cambridge, 1950), fourth
edition, p. 256,

(1)— ( 1)s

Ipl ~+a+

p l~l' r(1—a+)r(a+)
(2) —( 1)—~ ~+( )

I pl l+a+ r(1—a-)r(a-)

p l~l' I'(1—a+)I'(a+)
(2) = ( 1)-~ g)~(ft)

I p I lt+ai r (1—a )I (a )

(16)
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() X I'(()+)I'(1—a+)
E-(p) = — E+(P)

a+~+I'(~-) I'(1—~-)
Thus:

E "(x,,xg, p) =E+"(x)',x, ; p).

(17)

(Ge(x),x, ; 7))= ds(E(x, ,xg, s))e-"*.
2)l Z

(20)

By inspection, we see that E"has no poles, and that
E" is regular at s=1 and s= —1. Thus; E"(x),x2, s)
is a single-valued analytic function in the whole complex
plane. It follows that E" when integrated along E(R)
or I'(R) gives zero. The charge density could thus have
been dined only in terms of E'. However, an examina-
tion of the asymptotic behavior of E' using (3) shows
that then the method of deforming the contours so
that all physically signi6cant contributions would come
from the integral along the imaginary axis would fail.

Concerning E' we see that possible poles are located
at the zeros of E(s), i.e., at the points where a is a non-
positive integer. A closer examination shows that the
poles are precisely at the bound-state eigenvalues, and
the correctly normalized bound-state eigenfunctions
may be obtained from the residues of E' at these poles.
The correctly normalized continuum state eigenfunc-
tions may likewise be obtained by considering the sum
of the integrals of E' over the contours I. (R); R') and.
L~(R; R'), letting R go to R'.

I.et us now consider the time-dependent radial equa-
tion:

(&.~+~~/~~) [(t (»' ~))=0 (19)

I.et C be some contour in the cut s-plane, which does
not go through a pole of E (x)x~, s). Let

co. Using the radial equation inside the integrals (21)
and (22), and letting r—+0, the result (23) follows
readily, provided that the interchanges of order of dif-
ferentiation and integration are allowed.

All these remarks are purely formal; to be more
precise means essentially to prove an expansion theorem
for the radial eigenfunctions.

We thus see that the transformations (20) play the
role of time development transformations ("propagation
functions"), and various types of such functions can
be constructed by selecting suitable contours.

The procedure here outlined makes possible the con-
struction of radial propagation functions for each k.
From the matrix elements of the radial propagation
functions and products of spherical harmonics, we may
construct the corresponding propagation functions of
the full Dirac equation in the case of a Coulomb field,
in the form of a sum over k. If we let the strength of the
Coulomb 6eld go to zero, the sum over k can be ex-
plicitly carried out, and we obtain the usual propagation
functions for a free Dirac field.

APPENDIX II

We prove here that

(P' y)J,
is an analytic function of p and y in the region

Re[p)&0; ]y[ &1.
Writing

x= (1-&)/[1+&(u-1)), (1)
then, after performing an integration by parts, we may
write W" in the form

Consider in particular the contours I'(R) and E(R) ~

These contours de6ne transformations G~(g) and G~~g)
such that if [f(x)) is some "physically well behaved"
function, then:

Lf(* )) ( )=J dy(G ( )( y', ))Lf(y)), (21)
0

[f(x; 7))p(s) J dy(G&(z)(x, y; r))[f(y)), (22)
0

~"V;y)=~."(p;y)+~." V;y),

W "'(p; y) = dx P T (') (p; y; x),
Jp k=1

1

ll'"'(P'y)= t dxZT2(")(f y x)
1.=(1+y')',

T("'(P y *)

(2)

are solutions of the time-dependent radial equation.
This result is easily verified formally by substituting

(21) or (22) into (20), and inverting the order of inte-
gration and diGerentiation.

For certain functions f the transformed functions
approach a limit as E goes to inanity. In this case,

[f(x; o))s+[f(x; o))~=[f(x)) (23)

We can see this in a somewhat unprecise way as follows:
Let f(x) be expanded in terms of the radial eigen-
functions, (both discrete and continuum eigenfunc-
tions), and let f be such that there is a eo such that no
eigenfunction occurs in the expansion whose eigenvalue
is larger in absolute value than cp. Let E be larger than

1
kQ' cosg

p' 1+x(u—1) x[1+u—x) .

kQ"—) kQ'g' —) y~Q" lnQ) (3)

T2(")(p; y; x)

2pg Q
[kQ' cosg

p' [1+u —x)[1+x(u—1))
P—Q"(k ——',kg' ——,'y' lnQ)) ——[kQ's sing

Vg

—(k'g —-', k'gs+-,'ky'g lnQ —-', y'g)Q") . (4)
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and

It is the behavior of the T~~' at x=0 and x= 1 which '&hen,
prevents the analyticity properties of the integral over
8""from being almost self evident. We therefore split
the x-integration into three intervals

A2(p; y; y) =Q dx T2~"',
a=l Jo

(10)

with
0&x&(,. (&@&1—6; 1—5&x&1,

0&&&-,'; 0&b&-', .
IA (p;y;y)l =E."

1+y' l1+Nl'

We consider the region

«(p})0; (6)

vy
g=—ln

P

xL1+~—*j
I

L1+x(u—1)j

The idea of the proof is to show that the integral over
the central interval has the desired analyticity proper-
ties, and the other two integrals tend to zero with e and
b, uniformly in the region de6ned by (6).

We have

Re (1—y')'*& )p) 0
P

for some 0&p, &2, depending on yo only.

Q=xL1+x(N —1)3/I 1+I—xJ,

for some E& independent of p, y, y, and e. Also,

IPI
dy. A (2P;y; y) &E2~"

1+ IPI

for some E3 independent of p, y, and e.

(b) Let e &x&1—k Then

I QI &1—b,
(13)

B~(p; y; y) =2
k=1 4,

Ch T2(~),

and B2(p; y; &) is an analytic function of p and y in
the region

l~l &vo, «(P})0.
Furthermore,

Ke consider 8"2'".I.et

A2(P;y y)=„
0

dx Q Tm'"',

y
IB~(p y'»)

I
&Ea

1+y' I1+ml'

for some El independent of p, y, and y. Then,

~ dy B2(p;y;y)
~o

C2(p; y; y) = dx Q T2&".

Furthermore,

IQ~'- '& singl &xi'Eo,

IQgl =*E.,
IQg'I &x~E„

IQg I
=*E.,

IQ lnQI &x~E„

IQg lnQI &x~EO.

IQI =-:, IQ"'-"'I &x"Eo(4)" ',

(a) Let 0 &x & e. Then there is a Eo, independent of

p, y, y, e, xsuchthat:
IQ('- ')'cosgl &x E,,

is an analytic function of p and y in the region

Ivl&yo, «(P})0,
and

IPI
dyB&(p; y; y) &E4

1+Ipl

for some E4 independent of p and y.
(c) Let 1—8&x&1.Then,

l»QI &3(1—x) &-' lgl &3(1—x) &-',

IkQ o g
—

Q (k —-'kg —-'y'1 Ql &E,(1—*)*k,
I
ksQ' sing —Q" (k'g —~k'g'+-', ky'g lnQ —-', p'g

I

&E|;(1—x) 'x~k'

for some Eq independent of p, y, y, and 5. Also,

~0 1+x(N—1)

1
ds ~—c~

I1+el

yb
dxT2"& &E6

I
1+~I' C1+y2j

Ill yb
I~2(p' y' v) I

&E~
I1+~l' ll+y g

(16)
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fol soine Ks independent of p, p, 3) and y. Then)

Ipl
Cs(p; y; y)dy ~Kryo

1+IPI

for some Kr independent of p, y, b.
(d) Thus

dvlvs'"(P; y)
~o

is an analytic function of p and y in the region:

Furthermore

(17)

—-', ksP"it"[ln'rt)+-', kg'ri" [in+
—-,'[in&)[lnrt) p"rts I . (21)

We then expand [1—f'rt) ' in a power series, and inte-
grate the resulting double series term by term.

The expression (66) can be derived by similar
methods. It may be noted that a certain care has to be
exercised in all these integrations, especially in the
regions

0. t~] y~ 00 .

APPENDIX III

&~s'"(P y)=
OQ oo

dx P Ts"&=+ dxTsis&,
k=l k~ls)p

We consider the Euler-Heisenberg Lagrangian den-
s,ty2o, m.

"o

Ipl
dye "'(P; y) ~Ks

1+I~I
L[x)=-', epE'+ — +O(Es).

3t50x'mp4cv

dylvi'"(ip' y) ~
1+ IPI

(19)

for some E9 depending on yo only.
Using similar methods, we may prove that the order

of integration over t and summation over k may be
reversed in the expression for 8"&'&, and the analytic
properties of W&s& may be studied using (47) in the
text.

Concerning the derivation of the expression (64) for
)I,"'(y), we see that the contribution from 5's"' vanishes
because of (12), (14) and (17).To find the contribution
from W'i'" we may set I=0 in 2'i &s' in (3) and expand
the denominators in powers of x. Integrating the double
series term by term we get (64).'

In deriving (65), we first note that Wi"' gives no
contribution because of (19).The constant comes from
integrating X'"(y), and from 1Vs"'. To find the con-
tribution from 8 2'" we replace t and y by the new vari-
ables (which may be justified):

[1—t)[1+It)
rt= (20)

1+It [1+t(st—1))

We let ~pe and get

dyes"'(P; y)

~l pl 00

dg I drt[1 8) ' 2—kP'rt' cos[y lnrt)
J, k-c

1——ksP'st* sin[y inst)+O'P"rts[lnst) —kerf'
7

for some Es, depending on pp only.
The proof for lV&"' is entirely similar, only the

estimate now becomes

E is the electric Geld strength, and the magnetic Geld

has been put equal to zero. We assume that the 6.eld can
be derived from a spherically symmetric potential, and
thus get the 6eld equations from the variational prin-
ciple:

E=—~v(r), 3 rsdrLtV(r)) =0,

OI

d dV (dv) (dv)
I—r'ep + I I +Ol

dr dr 90s'mp4c7 E dr ) & dr )
e4A

Assuming the leading term to be a Coulomb potential,
we immediately get the asymptotic form of the poten-
tial:

V(r) =
4xeor

2Zsns( ft q' (1)
I+ol —

I
.

225' (mpcr) &r )
This agrees with (60).

it (I; x) =+ —.
]gag QtL

We shall study only lt (2; x), which occurs in the ex-
pression for W&s&. We have the integral representation:

I' dt
f(2 i x) = —

~

—in[1 —tx),
~p t

when lxl (1. Introducing an appropriate cut in the
x-plane, we may continue lt, using the integral repre-

ss W. Heisenberg and H. Euler, Z. Physik 98, /14 (1936).
"H. Euler, Ann. Physik 26, 398 (1936).

APPENDIX IV

(a) We may define a function it (n; x), when
I xl (1

by the power series:
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sentation. In particular we get the relations:

P(2; 1—x) =P(2; 1)—Llnx)Lln(1 —x))—P(2; x),

P(2 —x)= —P(2; 1)——,
' ln'x —

P~ 2; ——
~,

x)

~(2; -1)= —l~(2; 1),

P(2; -,') =-',P(2; 1)——,
' ln'(2),

O(2; 1)=~(2).

(b) In deriving (66) and (67), we have to evaluate
certain double series. We shall tabulate the sums we
have evaluated, and indicate the method. Let p) 1 and
q&1. Then:

00 00 1 1
+

-~ m&(m+e) & m&(m+e)&

Using these results, we may easily constru'ct the
table:

Z Z, =l-(3),
-~ ~=~ m(m+e)'

00 00 1
=-ll (4) -!r'(2),

~=~ ~=& m(m+n)'

e0 00 1
=!1'(2)-lt. (4),

n 1m=1 m2( m+ e)
o

00 00 1

, =2K(5) —f(2)l(~),
=i m(m+e)'

00 00

=31 (2)t (3) (11—/2)l (5),
~-& ~-& m'(m+e)'

00 00=2 Z —+ =~(P)t(~)-1(p+q)
= +1 ns~e~ ns~e~

Let r ) 1 (r an integer). Then

~-r m=x me(m+e)"

r 'dx
= (—1)'L(r—1)g ' —Dn 'x)Eln'(1 x))

~p X

= (—1)~'P(r—1)!) ' lim
y -,' Ogyr —1

'pl
X ~lim dxx" '(1—x)'

a. ~,

00 60

= (9/2)l (5)—2l (2)f(3),
~=& ~=& mo(m+e)o

00 ce 1
=-.&(6)——.-V(3),

~=~ ~=~ m(m+e)'

00 00

= t'(3) (4/3) f—(6),
n=i ~-i m (m+e)

00 00

Z 2 =-:V(3)—-'0(6),
n-1 m=1 ~3 ~

00 00 1
Z Z =f(2)f(4) 'l( )3—+ll'(6)
a=~ m=& m4(m+e)

a -~ r (y)r (1+.)= (—1)~'f(r—1)!) ' lim lim
o:t, o ay~i .-e r (1yy+,)

n=l m=1 m Q &
=l(p-1)-l8); »3,

X
-=~-(e+~)' (e+~+y)'-

1 1

.-i (e+ ~+y e+ei

= (+1)l.(2+ ) Z~(2+-I) l. ( E)-

=-:Ef(p—1)—~(p)); P&3
a=i m=i (m+e)~'

The last two relations are trivial if one chosen (m+e)
as a new variable of summation.

To evaluate these sums numerically, we have used
the tables of Davies for the Riemann zeta function for
integral arguments. "

~ H. T. navies, Tables of Higher Mathematical Functions, Vol.
II, p. 244.


