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Effects of Short-Range Correlations between Two Protons in Elastic Scattering
of High-Energy Electrons by Heavy Nuclei*

3. W. DowNst
Stawford Urtsoerst'ty, Stamford, California

(Received October 3, 1955)

An expression is obtained for the leading term in the two-proton contribution to the scattering cross
section, with a two-proton charge density which is a Yukawa function of the separation between two protons.
The cross section for scattering from more complicated charge distributions can be generated from this basic
result by differentiation with respect to the Yukawa range parameter. The two-proton cross section is
evaluated for a charge density in which short-range correlations in position between two protons appear.
Results are given for the scattering of 600-Mev electrons by heavy nuclei.

L INTRODUCTION

~ 'HE eGect of correlations in position among the
nuclear protons in the elastic scattering of elec-

trons by nuclei appears in the scattering theory when
account is taken of the virtual intermediate states of the
target nuclei. A general discussion of these correlations
has been given by Lewis. ' In the second-order perturba-
tion theory, the cross section can be expressed as the
sum of two terms, one of which contains the coordinates
of the protons taken one at a time (one-proton cross
section), while the other contains the coordinates of the
protons taken two at a time (two-proton cross section).
The two-proton cross section contains information about
correlations in position between two protons. In a recent
paper, SchiG2 evaluated the one-proton cross section for
the scattering of high-energy electrons by nuclei and
estimated the magnitude of the two-proton cross section
for the large-angle scattering of 200-Mev electrons by
carbon and gold. For the latter calculation, SchiG made
no attempt to specify the two-proton charge density or
to take account of position correlations; instead, he
relied on certain assumed average properties of the
charge density.

The present paper supplements the work of SchiG by
presenting a detailed evaluation of the leading term in
the two-proton cross section for a particular two-proton
charge density. It is the purpose of this paper to indicate
the extent to which it may be possible to isolate correla-
tion e8ects by an examination of the experimental
scattering data.

The second-order scattering cross section arises from
the product of the first-order and second-order matrix
elements. Assuming that the electrons interact only
with the electric charges of the nuclear protons, SchiG
has obtained an expression for the second-order cross
section cr&@ for the scattering of high-energy electrons by
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nuclei. For elastic scattering his result is'
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The f„(R) are the nuclear wave functions for states
with energy e„, Pp(R) and ep being the wave function
and energy of the ground state. The radius vector of the
ith proton is R;, and r is the radius vector of the
electron. The nuclear integrals extend over the coordi-
nates of all the nucleons. The sum over e extends over
the virtual intermediate states of the nucleus. The
electron energy is E, and Z=kp —kr, kp is the wave
number vector of the incident electron, and kf is that of
the electron scattered at an angle 8 from the direction of
kp. The angle between kp and H= r—r' is Hp„, and Hf, is
the angle between kr and H. The first-order form factor
is F(q), the complex conjugate being indicated by a bar.

Schiff has evaluated the sum over rt in Eq. (1) with
the closure relation for nuclear wave functions, replacing
e„by some unspecified, average value of the energy ~„
of the excited states which contribute to the sum over n.
The evaluation of the sum over e is discussed here in
somewhat greater detail to indicate the extent to which

s See reference 2, Eq. (13);a sign error is corrected.
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variations in e„may inhuence the two-proton cross
section. Equation (1) contains the energy p„ in two
factors. The factor (1/Ac) (E+pp

—p„) is probably not
sensitive to changes in e„ for large values of the electron
energy; this factor is assumed to be constant, and is not
discussed. The other factor, e &i»"'&' '", may vary
appreciably with e. In order to evaluate the sum over n,
p„ is replaced by the nuclear Hamiltonian H&(R), which
is considered to operate only on the unprimed nuclear
coordinates. The P„(R) are eigenfunctions of H~(R)
with eigenvalues e„. After e„has been replaced by
H~(R), the exponential factor does not depend upon
specific values of e; consequently, the sum can be
evaluated directly by means of the closure relation for
nuclear wave functions. The resulting nuclear integral
is put into a convenient form for evaluation by replacing
e "»"'&~& '» by its series expansion. The rapidity with
which the resulting series converges depends upon the
size of (p/Ac) (p„—pp). If the average value of the energy
is not unexpectedly high (p —pp is expected to be about
10 Mev), (p/Ac) (p„—pp) should be a small number. The
largest values of p which make appreciable contributions
to the oo)0 terms of Eq. (1) are expected to be of the
order of nuclear dimensions. The long-range electron-
nucleus interaction is contained in the m=0 term of Eq.
(1);and, for x=0, s&'»"' ~'o 'o& = 1.The Grst term in the
series expansion does not contain B~(R); it can be
obtained from Eq. (1) by setting p„= pp before the sum
over e is performed. It can be shown that the second
term in the series, which is linear in B~(R), contains
only the coordinates of the protons taken one at a time. '
This term does not contribute to the two-proton cross
section. The two-proton cross section, then, arises from
the 6rst, third, and higher terms of the series in H~(R).
The calculations of this paper are made with the leading
term of the series, which is obtained from Eq. (1) by
setting e„=~0.

Xb(RQ —R;)Pp(R)dR. (3)

It is noted that S is the center of gravity of R, and R&.,
k —kp —kf is the electron energy divided by Ac;
Kp= p(kp+kf); and 2KQ y/kp=cos8Q, +cosefp

It is assumed that the two-proton charge density has
the form

ppp'"(R. R p) =f(S)g(D) (4)

where D =R o
—R,= s—s' —y. With Eq. (4) the four

integrals of Eq. (2) can be separated; this is the ad-
vantage of the form just chosen for the two-proton
charge density. The disadvantage is related to edge
eGects in the nucleus; it is discussed in Sec. III, where a
specific expression for g(D) is selected. With Eq. (4) the
S integral of Eq. (2) can be evaluated at once to give

exp(iq S)f(S)dS= r(q). (5)

In order to separate the remaining integrals of Eq. (2),
it is convenient to express g(D) as a Fourier integral:

g(D) = expL iv D—]G(v)dv (6)

Since g(D) is assumed to be a function only of the
magnitude of D, the Fourier transform G(y) is a func-
tion only of the magnitude of y. With Eqs. (4), (5), and
(6), Eq. (2) becomes

Schiff obtained Eq. (2) from the two-proton part of
Eq. (1) by changing the variables of integration from
r, r', R„and R p to s= r—R., s'= r' —R p, S= -', (R,+R p)

and y= r—r' after having de6ned the two-proton charge
density

8 g
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II. BASIC TWO-PROTON CROSS SECTION

The leading term in the two-proton part 02&2) of the
second-order cross section is'
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s

In order to evaluate the s and s' integrals of Eq. (7),
convergence factors e "are inserted in the integrands
with the understanding that the limit b—4 will be taken
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at the appropriate time. The use of these factors is
justi6ed by the (hitherto neglected) screening which the
atomic electrons provide between the nucleus and the
scattering electron. The s and s' integrals yield

(v—-'q)" ~ (V+oq)'
(8)

It is noted that the s integral is infinite when y=-,'g and
the s integral is infinite when y= —oq. These infinities
could be formally removed by retaining the convergence
parameters b until after the y integral of Eq. (7) has
been evaluated. Retention of the convergence parame-
ters is unnecessary, however, because the contributions
to the y integral from the neighborhoods of y= &~q are
finite.

In order to evaluate the y integral of Eq. (7), a
convergence factor e '& is also used. The lrst term in the
8 integral (2) has the value

47rk (1+cos8)
(A) =

(p—Ko)'—(k+ib)'

2b' —2ikb ib
X lim

. (p —Kp) —(k+ib)' ( y —Kp)

'p" exp( —Lb —i(k —
) y —Kp ()jp)

X~t dp
p

ib
lim

exp( Lb —i(k+ I y Kol) jp)
X) dp . (10)

p J

The convergence parameter b in Eq. (9) is not discarded
at this stage as were the corresponding parameters in the
s and s' integrals. The parameter b serves two purposes:
It prevents the denominator on the right-hand side
(rhs) of Eq. (9) from vanishing at y=&oiq where the
denominators in Eqs. (8) vanish, and it defines a contour
for the eventual p integration. In order to simplify the
angle integrals in the second term in the p integral (8),
the Kp in the factor (Kp p)/kp is expressed as the sum of
a vector parallel to Kp —7 and one perpendicular to
Rp —y. That part of (8) which arises from the latter
integrates to zero in the integration over the azimuthal
angle when the polar axis is chosen to lie along the
vector Kp —y. The integral (8) has the value

4m k'+E'p' —y' 4~ Ep' —Kp y
'

(B)=—1+ +-
k (y —Ko)' —(k+ib)' k (y —Kp)'

Eq. (10) is dropped at this point; it is of order b, and it
does not serve either of the purposes mentioned for the
retention of the convergence parameter b. With the
relations Ep=k cos(8/2) and q=2k sin(8/2), Eqs. (9)
and (10) are combined to complete the evaluation of the
p integral. The result is
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The angular integrals of Eq. (12) could be evaluated
6rst, leaving G(&) unspeci6ed for maximum generality.
This procedure is undesirable, however, because the
resulting integrands for the y integrals contain loga-
rithmic factors the arguments of which vanish for some
values of y; the evaluation of the y integrals is then
unnecessarily complicated. It is more convenient to
introduce a speci6c function G(y) at this point. The
G(y) which is used is the Fourier transform of a basic
Yukawa function gp(D),

go(D) =Pe eD/D, p)0.
The function gp(D) just chosen offers flexibility. By
differentiation with respect to P and by addition, one can
generate from go(D) any function of the form g(D)
=P(D) e e~; P(D) is a polynomial in D" with n) —1.
From Eqs. (6) and (13), Gp(y) is obtained:

E 1
Go(V) =

2s' (v'+P')
(14)

With G(y) replaced by Gp(y) in Eq. (12), the cross
section is designated by r2, 0&2&.

The next step in the evaluation of Eq. (12) is a
partial-fraction decomposition of the first two denomi-
nators in each term:
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With the values of the s, s', and y integrals given by
Eqs. (8) and (11),Eq. (7) becomes

The lower limit of the integrals in Eq. (10) was changed The contributions to o'o, p&@ arising from the two terms on
from 0 to o because both integrands are in6nite at p=0 the rhs of Eq. (15) are identical; therefore, the rhs of
while their sum is finite. The second term on the rhs of Eq. (15) is replaced by twice the first term. With Eqs.
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(14) and (15), Eq. (12) becomes
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It is noted that Eqs. (17) and (18) are not valid when
q=2P; however, use of these equations does not intro-
duce a discontinuity in the final result at q= 2P.

With Eq. (17) the first integral (C) in Kq. (16)
becomes

1 dy
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In order to simplify the integrals in Eq. (19), an
auxiliary integration is introduced by the identity'

(20)

With the help of Eq. (20), the angular integrals of Eq.
(19) can be evaluated at once with a shift of the origin
to f (1—z)/4)«. The y integrals are evaluated by means
of a contour integration in the complex y plane, the
contour being the real axis and an ininite semicircle in
the upper half-plane. This contour encloses one second-
order pole for each integrand of Eq. (19).The s integrals
are evaluated last to give

ps

(C) = arcsin
qQ' —-'q') f3'+-'q'

(21)

where the principal value of the arcsine is to be taken.

' R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).
r R. P. Feynman, Phys. Rev. 76, 769 (1949).
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The integrals in Eq. (16) are evaluated with the help of
two additional partial-fraction decompositions:

With Eq. (18) the second integral (D) in Eq. (16)
becomes
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The angular integrals in Eq. (22) are evaluated with the
help of Eq. (20), which is used to expand the last two
factors in each denominator. The angle integrals can
then be evaluated at once. The y integrals are evaluated
by means of contour integrations, the contour being the
same as that described above. This contour encloses
three first-order poles for each integrand in Kq. (22):
One of these poles lies to the right of the origin near the
real axis; one, to the left of the origin near the real axis;
and one, on the imaginary axis. The first two of these
poles move to the real axis in the limit b—4. In the
limit b—4, the residues at these two poles give imaginary
contributions to (D). It is now assumed that both of the
form factors F(«) and 5'(«), which appear in Eq. (16),
are real. This is a reasonable assumption because the
first-order form factors F(«) usually considered' are
real, and the form factor P(«) is not expected to be
much different from F(«). With this assumption, the
imaginary part of (D) is cancelled when the complex
conjugate is added in Eq. (16). The real part of (D)
arises from the residue at the pole of each integrand
which lies on the imaginary axis. After the p integrals
have been evaluated, the limit b 4 is taken. T—he s
integrals are evaluated last to give the real part of (D)

z'(4k' —-,'q')
Re(D) =—

kq'(P' ——,'q')

z'(4k' ——'q'+)3') 2Pk
+ arctan . (23)

k(P' ——,', q') (P' 'q')—-
In Eq. (23), the arctangent lies between 0 and z..

With Eqs. (21) and (23) and the assumption that the
form factors are real, Eq. (16) becomes
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(ps & qs),
s See, for example, L. f. Schiff, Phys. Rev. 92, 988 (1953).
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(Z—1)
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The normalizing factor E, which multiplies the square
brackets in Eq. (25), was determined by the condition
J'g(D)dD= (Z—1).This normalization of g(D) implies
that f(S) is normalized by the condition J'f(S)dS=Z. 9

The value of g(0) is 1/3.69 times the peak value g(rp);
g(D) has zero slope at D=O. The ratio g(0)/g(rp) was

chosen in an attempt to take some account of the fact
that, if the protons in the nucleus are taken in pairs,
some pairs will be in a triplet spin state and some will be
in a singlet spin state. On account of the exclusion

principle, g(0) is zero for the triplet pairs; for the singlet

pairs, g(0) is not zero. The function g(D) falls off fairly
rapidly as D approaches the magnitude of the nuclear
radius in order to take some account of the possibility
that either R, or R& or both may be outside the charge
distribution. Whether or not. R, or Rp is outside the
charge distribution depends on the vectors 9= Rp —R,
and S=—2,(R,+R&). If the center of gravity of R, and
R 8 is near the edge of the nucleus, some orientations of

IO'

III. TWO-PROTON CROSS SECTION FOR A
PARTICULAR CHARGE DENSITY

The particular function g(D) with which the two-

proton cross section is calculated is

D may mean that both R, and Rp are inside the nucleus,
while other orientations may mean that either R, or Rp
is outside the nucleus. The function g(D) makes no
distinction between these two cases. The two-proton
cross section is calculated here for ro ——1.315)(10 "cm.

The basic two-proton cross section o-2, 0('), which is
given by Eq. (24), was calculated with gp ——(X/D) e &D.

The cross section os&2& for the function g(D) given by
Eq. (25) is generated from o 2, p&'& by differentiation with

respect to P.

8
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Q(qrp) = U(7/8) —U(9/8)+ (1/40) U(10). (28)

The function U(P) is

The subscripts on the square brackets indicate the
values of P for which the functions are to be evaluated
after differentiation. With the normalizing factor
X= (Z—1)/LSprrps(0. 7904)), Eqs. (25) and (26) are
combined to give

IOO

f L4k' —lq')+IX —lq') &

U(@=q
P2 2 q2) E 4P2k2+ Di2 1q2)2 )

wPL4k2 ——,'qs)

LP' ——,'q')' ~ kq'

2P ff' ——.'q'i
+—ar csin

q P2+-,'qs)

9'——:.q')

4P8L4ks —-'q')+2@92—-'q')'

2k jP4——,', q4)'

IQ28— Xarctan
P2 2q2

~ (29)

5
q'a

6 7 8

Fro. 1. The negative of the function Q(grp) which appears as a
factor in the two-proton cross section.

' See reference 2, Eqs. (6) and (18).

In Eq. (29), the principal value of the arcsine is to be
taken, and the arctangent lies in the range 0 to m. In the
function U(P), q, k, and P are expressed in units or rp,
U(P) is dimensionless.

The function Q(qrp) has been evaluated for krp= 4.00;
for ro=1.315)(10 " cm, this means an electron energy
of 600 Mev. The maximum energy presently available
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J f(S)g(D)dR = (Z—1)pp ' (R,). (30)

If a form for f(S) is chosen, pep'" (R,) is determined by
Eq. (30). To give an indication of the relation between

f(S) and ppp&'&(R, ) 6xed by Eqs. (25) and (30), f(S) is
taken to be a Gaussian function whose volume integral
is normalized to Z.

f(S)= exp( —a'5').
(~)1

With Eqs. (25) and (31), Eq. (30) yields

t&pp&'& (R,)=
2rrr p'(0 7904)aRo.

( 7
~

t' 9 q 1 (10
X Tl (

—2'f I+—2'I —
I (32)

& grpi' Egrpi 40 Ere
'4 See reference 2, Kq. (7)."See reference 2, Eq. (18).

for electron-scattering experiments is about 600 Mev.
For kr0=4.00, the de Broglie wavelength is roughly the
same size as the correlation distance ro, and the cross
section is expected to be sensitive to changes in the
charge density over a distance of this size. The function
—Q(qrp) is graphed in Fig. 1. For qrp=2. 50, the scat-
tering angle 8 is 36.5'; for qrp 7 7——5, .8=151.3'. The
contribution to Q(qrp) from U(10) is less than three
percent, being less than one percent for qrp~7. 00; the
function U(10) arises from that part of g(D) which 6xes
the value of g(0).

IV. DISCUSSION

The erst-order cross section 0&') and the one-proton
part of the second-order cross section cr~&') depend upon
the square of the first-order form factor F(q).' The two-
proton part of the second-order cross section 0.2&2)

depends upon the product of the form factors F(q) and
P(q). If F(q) and F(q) were the same, then c&",o &is&, and
os&'& wouldhave the commonfactor [4c'E'/(&&&cq)4)LF(q) j',
differences in magnitude and in dependence on the
scattering angle among the three parts of the cross
section would be apparent. In general, however, F(q)
and P(q) are not the same. The difference to be expected
in one case is indicated below.

From Eq. (5) it is apparent that P(q) is related to
f(S) in the same way that F(q) is related to the one-
proton charge density pppo&(R, ).ip Once the function

g(D) has been chosen, the relation between ppp"&(R, )
and f(S) and, therefore, between F(q) and F(q) is fixed

by the condition"

Erfg= (2/gs. )JJ*exp( —ts)dt is the error function. The
one-proton charge density given by Eq. (32) is 6nite at
R =0 and behaves like (1/E,) exp( —a'E, ') for large
R . The choice of the simple functions g(D) and f(S),
which are given by Eqs. (25) and (31),does not imply an
unreasonable one-proton charge density.

On account of errors arising from the edge eGects
discussed below Eq. (25), Eq. (27) cannot be applied
with any certainty to light nuclei. If the difference be-
tween F(q) and 5'(q) is neglected for heavy nuclei, osis&

can be compared with 0.&') and 0&&", which are given by'

4e4E'
IF(q) I' cos'(8/2);

(&&tcq)
4

4e4E' 7l 8
pi&'& =-

j
F (q) (' t sin(8/2) —sin'(8/2) j

(i'tcq) 4 hc

(34)

In the range 2.50~pro~7. 75, the absolute value of the
ratio o pa&/o. &'& is a decreasing function of qrp. The ratio
os&'&/o&'& for lead at qrp ——2.50 is —0.30; the ratio
ors&'&/oi"& is —56. Since the two-proton cross section is
negative, its addition to the first-order cross section
substantially reduces the cross section at small scat-
tering angles. Perhaps part of this reduction can be
observed near the maxima of the first-order cross sec-
tion, where this cross section describes the scattering
fairly well. "In the usual phase-shift analysis of electron
scattering, " that part of o-2&2) which arises from the
r4=0 term in Eq. (1) is included in the cross section;
consequently r2&" cannot be added directly to the phase-
shift cross section.

In conclusion, the correlation contribution to the
scattering, at least as estimated in this paper, does not
have a distinctive or easily recognized form. It is
possible, although unlikely, that this situation would be
altered if g(D) were chosen to have a different shape. It
is also possible that the absence of characteristic eGects
is the result of the choice of the separable form (4) for
the two-proton charge density.
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