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vestigations of the fission yields of U"' when bombarded
by 340-Mev protons have been carried out by Folger
et ul. ' Upon integrating these yields they find a fission
cross section of 2.0X10 " cm', which is somewhat
higher than the result reported here.

The bismuth fission cross section at 340 Mev as
measured in this experiment is in fair agreement with
the value of 0.239&0.03)&10 '4 cm' obtained by Hiller'

by integration of the fission yields.
The following conclusions may be drawn from this

experiment:
(a) The high-energy fission cross sections of uranium

seem to be independent of whether U"' or U"' is used.
(b) The relative 6ssion probabilities as well as the

6ssion cross sections seem to decrease strongly with de-
creasing atomic number.

(c) The 6ssion cross sections of uranium and thorium
seem to be fairly constant as a function of proton energy
in the energy region of 100 to 340 Mev.

(d) On the average approximately one-third of the
proton s initial momentum is transferred to the 6ssion-
ing nucleus at proton energies of 190 and 340 Mev.
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The solution of the cascade equations, obtained previously by
Bhabha and Chakrabarty, is rearranged in a form suitable for
numerical calculations. Although the solution is still in the form of
an infinite series, the first term alone gives practically the entire
contribution to the number of particles in a shower for all values of
the energy of the shower particles. The results are compared with
the values given previously by Bhabha and Chakrabarty and also

by Snyder. The defects in the analysis of Snyder are discussed.
Values of N(E, t), the total number of particles in a shower

having energies greater than E, are obtained for different values
I

of E, t, and E0. By the evaluation of a single integral it is now
possible to obtain the values of X(E,t) for any value of E in the
entire range (O,EO), and also the nature of the energy spectrum
of the shower electrons at different depths. Asymptotic values to
which P(E,t) and N(E, t) merge, when E tends to zero and
infinity, are derived from the general expression. It is shown that
the values of Ne(t)+Ns(t), derived previously by Bhabha and
Chakrabarty, is a fair approximation to the value of N(E, t) if
we take E= 2mc~.

I. INTRODUCTION

HE development of the theory of cascade showers
has been made by various authors at different

times after the original works of Bhabha and Heitler'
and Carlson and Oppenheimer. ' An accurate estimate
of the number of shower particles or photons and of
their energy spectrum is very important for the inter-
pretation of the different results of observations. In
previous papers the solution of the cascade equations
has been obtained by Bhabha and Chakrabarty' in the
form of an infinite series, and it was shown that the

*This work forms a part of a research project financed by the
Department of Atomic Energy, Government of India, and we are
indebted to the Government for the financial support.

' H. J. Bhabha and W. Heitler, Proc. Roy. Soc. (I.ondon) A159,
432 (1937).' J. F. Carlson and J. R. Oppenheimer, Phys. Rev. 51, 220
{1937).' H. J. Bhabha and S. K. Chakrabarty, Proc. Roy. Soc.
{London) 181, 267 (1943), hereafter denoted as (A); Phys. Rev.
74, 1352 (1948), hereafter denoted as (B).

first term in the series solution alone gives the major
contribution. The subsequent terms are of importance
only at large thicknesses and at the tail end of the
shower where their contribution is mainly to the number
of electrons whose energy is much smaller than the
critical energy, a region where the cross sections for the
radiation loss and pair creation are not well represented

by their asymptotic forms assumed in the analysis.
Thus the subsequent terms in the series are negligible,
except in the region where the basic physical assump-
tions are not precise. The rate of ionization loss assumed
in the analysis should also be modided in that region,
which will again considerably reduce the number of
particles in the actual shower. It was thus suggested
that the figures given in (B) were sufficiently accurate
unless improvements could be introduced in the basic
physical assumptions made in deriving the cascade
equations. Snyder' has modified the previous calcu-

H. S, Snyder, Phys. Rev. 76, 1563 (1949).
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lations of Snyder' and Serber' and has obtained a
solution which, except for notation, is the same as
derived in (B). He has, however, later rearranged the
expression for the number of particles in a form which
is not correct, as mill be shown later, for any value of E,
the energy of the shower particles, except when E is
zero, in which case the infinite series reduces to the
first term. In the derivation of the energy spectrum of
the shower particles, all the other terms appear except
the first in the series, and hence the results obtained by
Snyder4 differ entirely from those deduced in (B). The
major contribution to P(E,t), the number of particles
at depth t with energies in the range (E, E+dE), arises
in Snyder's analysis from the second term in the series
for cV(E,t), the total number of particles at depth t
having energies greater than E. But it is easy to see
that the first two terms in the series for N(E, t) give a
negative value for X(E,t) even for E of the order of P/e.

In the present paper we rearrange the solution ob-
tained in (B) in a form suitable for numerical calcula-
tions. Even now the solution is an infinite series, but
the first term alone gives practically the entire con-
tribution. In a later section we give the values of Ã(E, t)
for some values of E and t and for diGerent energies of
the primary particle. Ke also derive the values of
P(E,t) for some values of E and for a particular value
of the energy of the primary particle and compare them
with the results obtained by Snyder. Ke also give the
reasons for the existence of the difference between the
results of Snyder and that of the present paper.

where
$„(s,r) =Q„ i(s,r)$p(s+n, r)

0S i, r, (3)

$o(s+i, r)
&&II . , (4)'~ 4o(s+ p+i+1, r)

where p is any number. @„(s,r) then satisfies the dif-
ference equation (3). We thus have

(p )s+n
P (—1)"i —

i r(s+e)y„(s,r)
&E)

I'(s+p)1'(&+1)I'(—p)
2%i p $QO

(&i
EE

where —1&y &0. Substituting in (2) and simplifying,
we get

7',=0

and
&o(sr) = (D+r)!(r+) .) (r+ .)

A similar expression for P(E,t) was also derived in a
previous paper. ~

We now define p~(s, r) as a function of p, s, r, such that

@„(s,r) =Lim{|tp(s+X+1, r)}p+'

P(E,t) =- 1 p r (Eo)'
ds dr~ —

( P (—1)"
4 p~ & tp&

II. MATHEMATICAL SOLUTION

As in (A) and (B), we denote by P(E,t)dE the mean
number of electrons and positrons in the energy range
(E, E+dE), to be found in a cascade shower at a depth
t in radiation units, and by Q(E,t) the corresponding
expression for the number of quanta. It-has been shown
in [(B) Eq. (14)7 that the solution of the cascade
equations can be put in the form

~rE&'
P(E,t) =

2e.iEp & p &E)

P q -r(s+I)
X P )

——
~

it„(s,t) ds, (1)
I'(s)

where iP„(s,t), X„and p, have been defined in (B). By
applying a Laplace transformation in t, it can be shown
that

P(E,t)= P P„(E,t),

where

P (E,t)=
+'" (Ep)' ' 1

LP) 2~i2e.iP ~, ;„

I(+p)1(-p) ~~~"
X dp-

r(s) &E 3

exp( —X,+ t)G (s,p)

@8+m

P6+~ ~8+m
exp( —

t „„t)P„(s,p)

=P„"(E,t)+ P„p(E,t) (say),

where

G„(s,p) =I'(p+1) Lim{pp(s+1V+1, —X,+ )}p '

(6)

( p ) ~"I'(s+I)
&& I

—
I

e"'e-(s r) (2)
(E F(s)

' H. S. Snyder, Phys. Rev. SB, 960 (1938).' R. Serber, Phys. Rev. 54, 317 {1938).

i=a
Wm

i=0

' S. K. Qhakrabarty, Nature 158, 166 {1946).

xII ~.(+', -~., ) II 1&~.(+p+'+1, -~ ..),
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P„(s,P) =r(P+1) Lim(@ (@+++1,—p, )) +

N

X+4o(+', —p. )+1/4o(+P+'+1, —y, ). (7)
i=0

The solution given by (6) of the diffusion equation
of the cascade theory is also in the form of an infinite
series, but it divers from the expansions used in
previous papers, in particular in (B) t Eqs. (14) and
(19)],in at least one important point. From the values
of X, for real values of s given in (A) it is clear that the
real part of X, increases with s, and hence the contribu-
tion of terms containing exp( —'A.+~() is much smaller
than that containing exp( —X,t). Similarly the term
containing exp( —7,+pt) is smaller than that containing
exp( —X,+~t), and so on. In the expansions used in B(14)
and B(19),each term of the series contained exp( —X,t);
but in the form (6) and (7) given above P (E,t)
contains exp( —X,~ t), and hence exp( —X,t) is contained
only in Pp(E, t); thus the higher terms in the series are

insignificant as compared to Pp(E, f). But the form of
the solution given in (A) and (B) shows clearly one of
the physical aspects of the shower production, vis. ,
that "if we look for electrons with energy E at depth t,
the majority of them will have been created at t—g
and then had an energy E+pg, where g is of the order
of unity. "

In the numerical evaluation of (6) we have evaluated
the double integral by the saddle-point method. Snyder
has carried out the p integration by the method of
residues; each term P (E,t) and similarly N (E,t),
where

X(E,t) = P(E,t)dE

exp( —p,+ t) and have evaluated the double integral
by the saddle-point method in the usual way.

From (6) we have easily

Ã(E,r)= P Ã„(E,t), (9)

where

1V (E,t)

t I'(~+P —1)1'(—P)

( P ) 2mi & I'(s)

(p) '+" ' D X+-
p
—

& s+m&G (~ p)
EE) .p+ —),+

P s+m
+ e p8+tNtP (g p) dp

p a+m ~s+m

(E i '-' 1 t. I'(+P—1)1'(—P)

E p) 2~x&

) pq'+& —' D X,+—
X

~

—
~

~ """'G--(~,P)df (1o)
Aspect ~s+m

=N "(E,t) (say).

G (s,p) is a smooth function of s and p for every value
of m and its exact value for integral values of P, positive
or negative can be easily obtained. For later calculations
we need the values of Gp(s, p); exact values for some
integral values of p are given below:

Gp(s, 0) =1;
D

G, (s,1)=
(X,~g —X,) (y.+g —X,)

= g N„(E,t),

has been obtained in terms of an infj.nite series. In the
next section we evaluate the values of N(E, t) for diRer-
ent values of 8 and t and compare them with the
results given by Snyder and also with the results given
in (B).

III. NUMERICAL RESULTS

It has been pointed out in (A) that for all but small

t, the part of P (E,t) containing exp( —p,+ t) makes a
negligible contribution as compared to that containing
exp( —X,+ t), although in (B) we have retained both
these terms in evaluating N (E,t). A comparison of the
values of N p(E, t) given in (B) and that in the previous
paper' will indicate the order of the contribution of the
terms containing exp( —p,+ t). In the present paper
we have therefore neglected the terms containing

'H. J. Bhabha and S. K. Chakrabarty, Proc. Indian Acad.
Sci. 15, 464 (1942).

Gp(s, 2) =2 Gp(s, 1);
(x„,—x,) (~„,—x,)

Gp(s, 3)=3 Gp(s, 2);
(x„,—x.) (~„,—x,)

p,.—),
Gp(s, —1)=

D—X,

(~,—x, ,) (&. ,—x.)
Gp(s, —2) = Gp(s, —1);

D X

1 (X.—X, p)(p, p
—X,)

Gp(s, —3)=— Gp(s, —2).
2 D—X,

For numerical computations we have utilized these
exact values of Gp(s, p) for integral values of p and
different s such that (s+p) &0 and have obtained the
values of Gp(s, p) for intermediate fractional values of p
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TABLE I. Values of log.G0(s, p) as functions of s and p;
log, Gp(s, 0) =0.

s~ —2.0 -1.0
1.3 2.3002
1,5 1.6313
1.8 1.0679
2.0 0.8268
2,2 3.2023 0.6471
2.5 2.0773 0.4532
2.8 1.4974 0.3181
3.0 1.2338 0.2487

1.0
—0.9357—0.6332—0.3323—0.1994—0.0983

0.0131
0.0901
0.1320

2.0

—1.3917—0.8264—0.3054—0.0686
0.1109
0.3065
0.4409
0.5131

3.0
—1.5564—0.7657—0.0426

0.2846
0.5316
0.8003
0.9859
1.0764

—(& —&)

0.4883
0.6359
0.7689
0.8268
0.9423
1.0434
1.1549
1.2338

Ba)„/Op=0, 8(u /pcs=0.

Then, as shown in (8), we get

1
1V "(E,t) =—exp{co„(s,p„))G (s,p„)2'

(13)

~t
pj ppm pl cpm (S cpm)

X -I I, (14)
I ap as ~upas) I

where s, p, are the roots of the equations,

y p y x,+,„'t+ logI' (s) ————logr (s)—
cls c/$

d' D—A.,++—log
dS P s+m Xs+m

—y+—logr (s)+—logr (—p) =0.
dS dp

=0, (15)

for assumed values of yo, y, and t. We have calculated
the values of 1Vp(E,t) from (14) for some difFerent values
of yo, t, and y and they are given in Table II. It can be
easily shown that the subsequent terms in (9) make

by interpolation. It may be mentioned here that the
function E„(y, —y) used by Snyder is the same as
Gp(s, —s+1), but in the evaluation of E„(y, —y) he
has used a diGerent function and the values are slightly
diferent from what we have obtained, although their
effect on the calculation of Ãp(0, t) is not very sig-
nificant.

In Table I we have given the values of the function
Gp(s, p) for some different values of s and p in the
region of the saddle point, from which it will appear that
for the purpose of obtaining the saddle point in evalu-
ating (11) the variation of G (s,p) with s and p may be
neglected, without introducing appreciable error in the
6nal result.

We define a function co (s,p) such that
Gl~(s)p) = (s—1)yp —sy —Xe+~t

r(s)r( —p) D—x,,„
+log +log, (12)

I'(s) Ps+m ~ s+m
where

yo=log(Eo/0), y=log(E/0); s=s+p —1,

and determine the double saddle point s, p„ through
the equations

—(1/ )+0'( +1)—0'(—p) =0

d
=yp X,+—'t —-+—log

(s—1) ds ti,+ —X,+

D—X,+ =0

= (1/")+~'(+1)+O'(- p);
Bp

8 Q)m = (1/s') —&.+-"t+4'(s+1)—0'(s)
S~

d' D—),++—log
8$ P s+m Xs+m

~'~m
= (1/")+~'(s+1),

BpBs

where

~()=—1 gr(); ~'()=~(),
ds Zs

(16)

so that we get

tS 'Mm pI M (S ppml ~ 1=- -~'-"t+~'(- p)
l ap as &apas] s

™
O' D—'A,+—tp'(s)+ —log +0(s')

P s+m ~s+m

Consequently, when s tends to zero we get

where

1V(0,t) = P X„(0,t), (17)

X,„(0,t) =Ã„& (O, t)

= (1/2pr) exp{co '(s„P, —s '+1))
XG-(s-', —s-'+1){I--(s-',t) & ', (Ig)

and $ is the root of the equation

D—A.,+
-=0,

1 d
yp

—X,+ 't — +—log
(s—1) ds ti,+„—X,+,

ar '(s, —s+1)=(s—1)yp+1 —X.+ t

D—),+
(19)—log (s—1)+log

Ps+m ~s+m

1 d' D—X+
L (s,t)= X,i "t+ +——log

(s—1)' ds' p,+ —lI„+

only an insignificant contribution to 1V (E,t) Fr.om the
above expressions the values of X(E,t) when E tends
to zero can also be obtained by taking the asymptotic
values of &o, 8'or /Bp', 8'~ /Bs', 8'or /Bp8s, when s
tends to zero; since when E tends to zero y tends to —~
and s must tend to zero, we then have
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TABLE II. Values of Np(E, t) for different values of Ep, E, and t Ep. =pe»; E=pe&.

10

0.5

1.79

2.26
2.48
2.57

2.83
3.02
3.55

2.92
3.39
4.03

1.0

1.96

4.00
4.52
4.89

5.96
6.68
8.71

8.04
8.91

11.22

7,28
10.47
16.18

2.0

1.74

6.24
7.67
8.51

14.49
18.41
24.00

32.00
35.50
50.00

45.80
57.60
87.30

4.0

0.701

5.60
7.71
9.44

33.11
42.66
52.59

125.9
160.3
201.8

338.6
457.1
651.0

6.0

2.97
4.37
5.69

32.00
42.25
55.70

197.2
261.0
346.7

891.3
1175
1549

8.0

1.26
1.90
2.66

20.89
29.17
40.74

195.0
263.0
358.9

1288
1700
2291

10.0

0.797

10.59
16.05
22.39

144.5
201.8
285.1

1259
1718
2388

12.0

4.73
7.63

10.47

85.10
125.0
173.8

952.0
1380
1950

15.0

1.45
2.00
2.85

29.50
43.70
64.60

436.5
724.4

1072

20.0

3.80
5.75
8.71

80.30
127.9
197.2

The first term in the series (17), ass. , Np(0, t), is easily
seen to be equal to

e
p(sp', —sp'+1)Nz(8, t),

(2a.) *'

(20)

where Nq(E, t) is the number of particles in a shower
having energies greater than E if ionization loss is
neglected, and was calculated previously. ' Thus, since

Np(O, t) gives practically the entire contribution of
N(0, t), it is evident that the effect of introducing the
ionization loss is to multiply the number of particles
with energies greater than P (if ionization loss is ne-

glected in the calculation) at each depth by the factor
e(2n) '*Gp(sp', —sp'+1), which, however, will be dif-

ferent at different depth since so depends on t according
to (19). The values of Np(0, t) can be easily obtained
from (18) and (19) using the last column of Table I.
Some values have been given in Table II.

The energy spectrum of the particles in a cascade
shower can be easily derived from (6) by evaluating
the integral by the saddle-point method. We have as
before

EpP (E,t) =EpP„"(E,t)
1.

=—exp(o (s„,p ))G„(s„,p„)
2m

=y+(1/P)=o; y( —P)=1,

D—X,+ =0
d

=yp y X,+ 't+—l—og—
dS p 8+~—X8+srt.

8 GO~

=0'(s+P)+0'(1—P)+L1/( P)'1;—
8 2

D—X,+,d2

X,+ "t+P'(s+—p) P'(s)+ log- —
@s+m ~s+m

BPBS

ci m (d ~m)

Bp' Bs' (BPBs)

s and p are the roots of the equations

f)(o„/ap=O; 8~ /Bs=O.

It is easy to see that the saddle point lies within the
extreme values (s+p)~0 and (—p)—+0 and these
extreme values correspond to the cases when E tends
to zero and , respectively. Different values of s will

give different values of Ep and t. When (—p)-+0,

i r) ~~ c) ~~ (fl &mlx' —
( I, (»)

l ap' as' EapBsi

d2
=Llm —X,+~ t+ log-

—~p (—p)' ds' p„,+„—)t,+
Alsowhere

(sp)= yo (+P)y )+ t— —
= l, if m=0,

lim G (s,p )
y ~ ——0, if ns/0.

r(+p)r( —p)
+log +log

Ps+m,I'(s)
(19a) Hence, when E tends to infinity, i.e., —p tends to 0,

we have

1 exp(syp sy X,+~t+1+—log[—D X,+~/p, +~ X,+—~J)—
EpP "(E,t) =— G~(s~,O).

(—) „„"t+(d'/da) logLD —Z.,+„/t,+„),+ 1)t—
' S. K. Chakrabarty, Proc. Natl. Inst. Sci. India 8, 331 (1942).
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+,0

t'4 q e Br
pP-(E, i)=I -+

I

&3 ) 2V2 D X,+„—
X„(O,t) log, I

—I,
(Pi
EE&'

In a similar way it can be shown that when E~O,
(s+p)—4, we have,

and hence

PP(O, t) =PPp(0, t)

~4 y e 8& |pq=
I

-+~
I &p(O,i)»g. l

—I,
(3 ) 2%2 D X. — (E)

where

yp
—X.'t—

1 d D—A,
+—log =0.

s—I dS p,—X,

I I 14

Pro. j.. Graphs of log&&PRO(E, t) against y, for y0=6. Solid curve
for t=10; dashed curve --—for t=5. X and ~ are values

obtained in (3); the upper curves are from Snyder's analysis.

Hence

Px(E i) P x(E i)

e 1 t (Ep)'D
e "'ds

(2pr)i 2priEp " & E & p, —X,

= Pg(E, t),

where

P„(E,&) = P„"(Et)+ P„&( Et),

P(E,t) =P& (E,t)+P&(E,t).

It can also be shown that the term containing

exp( —p,+„~)

in (6) reduces to P„(E,t) when E is large. In a similar

way it can deduce from (16) that when. E tends to
infinity, i.e., (—p) tends to zero,

e 1 p t'Ep)~' 1
&(E,i) =

(2pr)'2pri& (E) s—

~s Ps
e
—

lent+ e
—sat 1, ds

pg Xg pg —Xg

Thus when E is large P(E,i) and N(E, t) given by (6)
and (9), nearly reduce to the values deduced in (A)
LEq. (24) and (34)jby neglecting ionization loss.

This shows that, when E tends to zero, P(E,t) ap-
proaches infinity logarithmically. This is due to the
fact that when (s+p)—&0, the integrand contains a term
X,+~+ps,+~1 which goes to X~p, ~ and thus goes to infinity
as B,C, when s tends to 1. If we look into the diffusion
equation it will be apparent that this infinity is associated
with the assumption that a photon of energy even less
than 2mc' can create pairs. If thus we restrict the lower
limit of the photon energy for pair production to 2mc',
this singularity will be avoided and then P(E,t) will

tend to a B.nite limit when E tends to zero. The above
expression for P(E,t) represents its value only when
E=O and not for any other value of E, and as expected
it is similar to the expression for P(E,i) derived by
Snyder. It is .thus evident that our solution for the
cascade equation in the form (6) is valid for the entire
range of values of E, and merges to the two extreme
values deduced earlier.

It can be shown easily that the solution obtained by
Snyder LEq. (40)j, is, except for notation, identical
with that given by (6) above. The difficulty in the
analysis of Snyder arises in the evaluation of the integral
(6) and (10) over p (in Snyder's notation it is s) by the
method of residues. It is obvious from (7), (10), and

(11), that the integral over p may be evaluated by the
method of residues, the poles of the integrand being at
p= (—s—1—e) where e is zero or any positive integer,
provided only that

Lim~p(s+1V+1, —X,+ ))1,
Pf-+oo

and not only if p)E. But from (3) it is evident that

Limgp(s+X+1, —X,+ )

=L1111——

N~~ (Xs+N+1 ~s+m) (ps+N+1 ~s+m)

which tends to zero as 1/log%. The evaluation of the
integral over p by the method of residues is thus
possible only when E is zero. The expression for E(E,&)
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given by Snyder PEq. (42)j can be used only when E=0,
in which case the series for N(E, t) reduces to the first
term, which is identical with the expression deduced
from Eq. (18) given above by making m =0. Similarly,
the expression for P(E,f) given by Snyder represents
its value only when E is zero.

In Fig. 1 we have plotted the values of Ps(E, t) for
some values of E, t, and y0=6. For purpose of com-
parison we have plotted the values of Ps(E, f) deduced
from our previous analysis (B) and also that deduced
from the results of Snyder. As expected, they indicate
that our previous values are smaller than the present
ones and the difference increases as 8 decreases; we
also see that the contribution of the higher order terms,
vis. , P2, P3, P4, etc., in the previous analysis becomes
more and more significant as we go much below the
critical energy. The values derived from Snyder's
expression are much larger than the present values even
when E(P and the expression is not valid when E)P.
For comparison we have also evaluated the contribution
of the second term in the series for Ns(E, t) given by
Snyder LEq. (42)] and the results are given in Table III

TABLE III. Values of 5'pp+1V'p1 for diferent values of y, t,
yp= 6, from Snyder's analysis.

3.34
4.74
8.88

—48.84—73.35—47.02

—2.20—11.88—16.41

23.04
24.00
5.76

35.29
42.10
17.92

45.16
57.12
28.69

8 $0

FIG. 2. Graph of Xp(E,t) againt t for yp =6. Solid curves are for
y=0, —2, —4, —~. Dashed curve (———) represent values ob-
tained in (B);crosses (x ) represent points derived from Snyder's
analysis.

which indicates that the series given by (42), from which
Snyder derived the form of the energy spectrum LEq.
(45)i, cannot be used, at least without further jus-
tification. In Fig. 2 we have plotted the values of
N(E, f) against f for some different values of y and have
also plotted the values of Ns+Ns derived in (B) and
that derived by Snyder. It is clear from these figures
that signi6cant differences exist between the results of
the present paper and that given in (B) only in the
region where the basic physical assumptions are not
precise, and the differences will be much reduced even
if the eGect of the ionization loss is properly introduced.
If we remember that with E=2mc' we have —y equal
to 1.93, 3.21., 4.00, 4.74, 4.63 for Pb, Fe, Al, H~O, and
air respectively, then, as long as we consider only par-

ticles with energies equal to or greater than 2nsc', our
previous values are a very fair approximation for the
total number of particles in a shower. In many problems
we are required to use the value of N(0, $), particularly
in the calculations of the size frequency distribution of
bursts produced by mesons under large thickness of
material, and the adoption of the value of N(E, t) when
E tends to 0 instead of that when E tends to 2mc' will
considerably alter the result and the subsequent inter-
pretation. We therefore feel that unless the basic
physical assumptions are improved, particularly in the
region of low energies where E&2mc', it will be better
to use for E=2nsc' the value of N(E, t) for the total
number of shower particle at any depth t, instead of
N(0, f).


