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The total phase-space integrals, occurring in the Fermi statistical theory of meson production, for 2-, 3-,
4-, and 5-body final states are reduced to forms suitable for numerical evaluation by hand computation.
In addition, the momentum spectrum of any one particle, as derived from the statistical factor, is evaluated.
For the 3- and 4-body systems, the Q distribution for any two of the particles (e6'ective mass minus the
rest masses of the 2-particle subsystem) is derived. Numerical results are presented for nucleon-nucleon
collisions at 0.8-, 1.5-, and 2.7-Bev bombarding kinetic energies.

A PPLICATION of Fermi's statistical theory' ' of
meson production to Cosmotron and Bevatron

energies requires an exact relativistic evaluation of the
phase-space integral for the 6nal multiparticle state.
Because of the complexity of the integrations, various
approximations' ' have been employed, but none has
yielded suKciently accurate solutions in this inter-
mediate energy region. In this note, we present for-
mulas for general 2-, 3-, 4-, and 5-body systems, from
which one can obtain accurate numerical results for the
following: (a) total volume in momentum space per
unit energy; (b) differential momentum spectrum for
any one of the particles; (c) distribution in the Q value
between any two particles, i and j, of the system

{Q =L(~+&)'—(y+y )'j'—(m+m)& '
The fundamental integral to be evaluated for an

e-body system is p„, the volume in momentum space
per unit energy, given by

where E is the total energy of the system, and p; is the
momentum of the ith particle, of mass ns.; and total
energy E;. In writing (1), we have utilized momentum
conservation to eliminate one particle. All integrals
will be evaluated in the center-of-mass system defined

by P;=t" y, =0. The momentum spectrum of particle 1

is given by
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II. THREE-BODY SYSTEM

The solution of (2) for the 3-body system was found"
to be
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The total momentum space volume is given by the
integration of (4) over pr between the limits

I. TWO-BODY SYSTEM

The integration of (1) is well known for the two-body
system, yielding

s—1
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where ps= ~pt~, and the 4sr comes from the angular
integration over pt. The distribution in Q;; will be
obtained in II and III for the 3- and 4-body s s' Unless the rest mass of one of the particles is zero, this
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where
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Thus, combining (4), (5), and (6), we obtain
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If we defjne the "effective mass" BR to be [(E2+E2)2
—(p2+p2)')&, then BR=Q22+m2+m2, and thus the
distribution in BK is essentially the distribution in Q.
We note however that from energy and momentum con-
servation, E2+E2 E ——El—, and p2+p2 ———pl. There-
fore, BR=[E'+ml' 2E—(Pj'+mj')&)&, and it is clear
that the distribution in pl will specify the Q distribution.
Novv,
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We obtain the total phase space by integrating (8)
over BK between the limits 5R =E—m~ —m2 and
BRm j~=m2+m4

The momentum spectrum of particle T can be shown'
to be
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III. FOUR-BODY SYSTEM

For the 4-body system, (1) and (2) are simple con-
ceptually, but become extremely complicated because
of the manifold integrations. The results' are given in
two forms, in terms of the momentum spectrum of
particle T, and in terms of the distribution of the
effective mass 5K of particles 3 and 4. The latter dis-
tribution is given by

where we have restricted ourselves to the case that
m3=m4=m. The function G is dehned as
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of particle 3, whose mass, however, can be different
from ns and M. The momentum spectrum can be shown'
to be given by

(dpB/dpB)dpB 32~——'pB
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FIG. 1, The fraction of final states containing 0-, 1-, and 2-meson
production for P-P and n-P collisions, as a function of the labora-
tory kinetic energy of the bombarding nucleon.
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To obtain the total phase space, (10) is integrated

over pi between the limits.
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IV. FIVE-BODY SYSTEM

where G is defined in (11).

8
' N+ N ~H+N+ w

Q(N, N)
~B(H.wl

(14)

Because of the extreme complexity of the 5-body
system, we restrict ourselves to the ease of mi=m2= M,
m4 ——m&= ns, and only evaluate the momentum spectrum
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Fto. 3. Q distributions in single pion production, between the
pion and either nucleon, and the two nucleons, at 0.8 Bev. The
curves are 'normalized to unit area.

rH, 0.8 BEV

/
~1.5BEV

1.5 BEV7, Q 'w 2.7BEV

2.7BEV

The integration limits over 5" are given by
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FIG. 2. The momentum spectra for nucleons and the pion in a
3-body final state (single pion production) at laboratory kinetic
energies of 0.8, 1.5, and 2.7 Bev. The curves are normalized to
unit area.
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V. APPLICATION OF THE FERMI THEORY TO
NUCLEON-NUCLEON COLLISIONS

In the preceding sections, we have developed formulas
suitable for hand computation of p„, the exact rela-
tivistic phase space factor for n=2-, 3-, 4- and 5-body
systems. Using these results, we now obtain detailed
numerical applications of the Fermi statistical theory
of meson production for the case of nucleon-nucleon
collisions. Following Fermi, " the probability for the
production of s mesons in a anal state containing e
particles (n= s+2) is proportional to 0" 'p„f„/
(2s h)'(" '&, where 0 is the spatial volume in which sta-
tistical equilibrium is supposed to take place. We choose
0 to be (4/3)mr'(2M/E), where M is the nucleon rest
mass, E is the total center-of-mass energy and r is
taken as the Compton wavelength of the pion, 1.2
X10 "cm. The factor 2M/E reflects the Lorentz con-
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FIG. 5. Q distributions for single and double pion production at
2.7 Sev. The curves are normalized to unit area.
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FIG. 4. Q distributions for single and double pion production at
1.5 Bev. The curves are normalized to unit area.

traction of the sphere. The term f„arises from the
assumption of charge independence and is proportional
to number of Anal independent isotopic spin states
that can be formed. If we denote R, as the probability
of producing s=e—2 mesons, then

R, 0 p„ f
(2ml(, )' p g f

(17)

Using Milburn's4 results on charge independence and
neglecting triple and higher-order meson emission (very
small at Cosmotron energies), the relative multiplicities
were computed from (17), using (3) and numerically in-
tegrating (4) and (8) for 0-, 1-, and 2-meson production
at laboratory bombardirig kinetic energies up to 3 Bev.
The results are shown in Fig. 1 for p-p and n pcol--
lisions. The reason for the differing predictions for n-p

and p-p collisions is that the former are mixtures of
isotopic spin states 0 and 1, whereas the latter are in a
pure isotopic-spin-1 state.

Since experiments on p-p scattering are currently in
progress at the Brookhaven Cosmotron at kinetic
energies of 0.8, 1.5, and 2.7 Bev, we have evaluated
momentum and Q distributions for these particular
bombarding energies. The momentum spectra for the
Anal state pion and either of the two nucleons, for the
case of single meson production, have been calculated
from (4) at the above beam energies and are presented
in Fig. 2. The Q distributions between the two nucleons,
and the pion and any one of the nucleons have been
computed from (7) for the 0.8-Bev case and are plotted
in Fig. 3. Figure 4 shows similar results for 1.5-8ev
bombarding energy; in addition, the Q distribution
between the two nucleons in a collision producing 2

mesons, calculated from (8), is shown for comparison.
At 2.7 Bev, all possible Q combinations have been
evaluated for both 1- and 2-meson production and
these distributions compiled from (7) and (8) are shown
in Fig. 5. It should perhaps be noted that both the
momentum and Q distributions do not involve any
knowledge of the parameter r, the radius of the sphere
in which Fermi envisualized the statistical equilibrium
taking place, and thus perhaps are simpler to compare
directly with experiment than the predictions on multi-
plicity, whose results depend rather strongly on the
radius.
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