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Tensor Operator Methods and the Tensor Force
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Tensor operator methods are applied to 6nd the matrix elements of the two-nucleon tensor force betv een
states of two inequivalent nucleons in LS coupling. The results are used to obtain the direct and exchange
terms arising from a tensor-force interaction between states of a shell closed except for a single vacancy
and external inequivalent nucleon.

INTRODUCTION

HE subject matter of this paper originated in an
investigation into the ordering of energy levels

of the lowest excited state of 0" and the ground state
of the Na" nucleus, based on central and noncentral
forces. Using the harmonic oscillator model, we assumed
the former state to be a mixture of the configurations
(1s)'(2p)u(2s) and (1s)'(2p)"(3d), and the latter to
have the configuration (is)'(2p)" (2s)'(3d)'. In ap-
proaching the problem, there was an early appreciation
of the need for evaluating the energy of interaction
between a shell closed except for a single nucleon, and
a group of external nucleons —also with interconfigur-
ational mixing in this cas" and the matr'x elements
of the two-particle noncentral force operators between
states of two inequivalent nucleons.

As is well known, these results are particularly simple
in the case of a central force alone, a fact which led us
to enquire whether or not some similar simplification
occurred with noncentral forces. It was found that,
while a general expression for a two-particle matrix
element remained unwieldy, ' the tensor force interaction
energy between an almost closed shelP and single
external nucleon reduced to a relatively compact
expression. '

Ke here present a reasonably comprehensive deriva-
tion of a general expression for the two-nucleon matrix
elements and apply the result to a study of an almost
closed shell problem.

To this end we propose to use much of the algebra
of tensor operators introduced by Racah4 in the theory
of complex spectra together with an extension to the
tensor product of tensor operators discussed by several
authors. ' ' The notation employed is largely that of
Racah.

*Present address: Royal Military College of Science, Shriven-
ham, England.

' L. W. Longdon, Phys. Rev. 90, 1125 (1953).
2 The phrase "almost closed shell" used throughout this paper

implies a shell closed except for a single vacancy.
' J. Hope, Phys. Rev. 89, 884 (1953).
4 G. Racah, Phys. Rev. 62, 438 (1942). Hereinafter referred to

as I.
~ J. Schwinger, Nuclear Development Associates, Inc. , Report

NYO-3071, White Plains, New York, 1952 (unpublished).
~ I Tairni, Phys. . Rev. 89, 1065 (1953).

1. TENSOR OPERATOR THEORY

We begin by recalling the relevant aspects of the
algebra of tensor operators as developed in I.

In this paper an irreducible tensor operator T~ of
degree k is defined as a set of 2k+ 1 quantities
T,"( k&~g~&—k) which, under rotations in a three-
dimensional Euclidean space, transform like the 2k+1
components of a spherical harmonic of degree k. In
addition they satisfy the same commutation rules with
respect to the angular momentum vector componentsJ„J&iJ„,as these functions.

On representing the components T,~ in the scheme
o,jm, and writing these commutation rules in the form
of matrices, one is led to the result

(njul Ts"
l
a'j 'm')

1)'+"+"(~jllT"ll~'j') (kvj'~'I j~)(2j+1) ' (1)

This equation separates the physical properties of the
tensor, which are described by the amplitude matrix

(~jll T"ll~'j'),
from its geometrical properties as exhibited by the
Wigner coefficient.

It will be remembered that an irreducible tensor
operator T~ is said to be Hermitian [I, Eq. (25)j if its
components and those of the adjoint operator T~t are
connected by the relation

T k$ ( 1)qT s

As in vector algebra, one may define many kinds of
products of tensor operators. By analogy with the
vector addition law in quantum mechanics, the tensor
product of order t of two irreducible tensor operators
E.", S' may be defined by the equation:

T '= (R' 0 .' S') = (rpso.
l
Ir) R p

"S,',
in which we have used a dummy suKx notation, i.e.,
Greek letters occurring more than once imply summa-
tion over all of their allowed values. It may be verified
that T' is an irreducible tensor operator. In keeping
with the tradition of the theory of atomic spectra the
scalar product of two tensor operators of degree k is
given by the relation:

(R".S")= ( 1)I'R„"S „'=(—1)"—(2k+1) 'T,',
an example of which is the addition theorem for
spherical harmonics of degree k.
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The law of combination of irreducible tensor oper-
ators given above has very wide applications. T~ is a
tensor operator not only when R" and 5' operate on
diferent systems but also when they operate on
diferent parts of the same system; they are not even
required to commute.

To examine the Hermitian character of the tensor
product, consider the adjoint operator

T,'t= (rpso
~
tr)Rp"tS 't.

Upon assuming that E",S' are Hermitian and commute,
it follows at once from Eqs. (16'), (19), and (25) of I
that

tt —(Rr O t Ss) f —( 1)r+s t+r(Rr —~ t St)

Thus the tensor product is Hermitian or skew-Hermitian
as r+s t is ev—en or odd. It will, however, be recalled
that a tensor operator is necessarily Hermitian if it
possesses a real nonzero diagonal element.

2. MATRIX ELEMENTS OF TENSOR PRODUCTS

In order to discuss the matrix element of the tensor
product

T '= (rpso
~

t)rR"S '

when R", 5' operate on diferent quantum-mechanical
systems, let f(l,X), P(k, t() be orthonormal wave func-
tions describing these systems, and let 4'(n») be. a
wave function of the system consisting of both. Then
extending our summation convention to primed Greek
letters as well as unprimed, we have

(ct»
I
T '

I
ot'~'p') = (»ktt I ») ("p&tr I tr) (lV k t('

I
~')t')

X (~»] Rp" [n"&'l(') (~"k~]S,'( n'k'~').

Using (1), we may write the matrix elements occurring
on each side of this equation in terms of the amplitude
matrices of their corresponding tensors; multiplying
each side of the resulting equation by

( 1)'+'+'(«~'p—'I Jp)(2~+1) '

and summing over p, , p, ', one 6nds with the help of an
orthogonality relation of the Wigner coeS.cients, that

(n J~~ T
~)

jt()s= ( 1)~+~'+t+t+'+"+—'+~'(23+ 1)

X[(21+1)(2k+1) (2J+1)) *

x (~zllR ll~"z ) (~"klls ll~'k')

X (»k~ 1»)(rp~o
I «) (l'l 'k'~'I ~'p')

X (rplV ~») (~ok't('~ kt() (&r&'p'~»)

The summation over the six Wigner coeKcients occur-
ring in this expression is of some significance in a study
of the matrix elements of noncentral force operators
and various functions have been introduced in the
literature to represent it. ' ' We write

x(lkl'k'; JJ'; rs; t)

( 1)J+J'+t+v+tt+tt'+t+t+t{ [r).[~).[1)}-',

X{Lk) [G I &)}—'*(rp.o
I
1.) («J'p'I»)

X (»k~ ~ ») (rpJ'l('(») (A'k'~'( &'p') (~ok% ( k~), (2)

in which [r)= (2r+1), , etc. , so that the equation
giving the amplitude factor of the tensor product
becomes

(~~ll T'll~'~') = {[6}'{[r)N} '&((t'@'k', ~~'; r~; &')

X (aSIIR ll~"S') (~"klls ll~'k'). (3)

This is an extension of Eq. (38) of I to tensor products.
The y function will be recognized as a matrix element

in the orthogonal transformation between vector
coupled states of four nucleons; its symmetry properties
and orthogonality relations have been discussed by
Hope and Jahn. '

In what follows we shall be concerned with the
product of a scalar product of tensor operators with a
tensor product, in particular when the scalar product is
a product of spherical harmonics C~ of degree k, i.e.,
we consider:

(C'(» C"(s)) (R"(» (-),' S'(s)).

With the de6nitions already given this operator may
be written

(—1)"(rpso
~
tr)C„s(1)Rt,"(1)C „s(2)S,'(2),

where the bracketed numbers refer to the quantum-
mechanical systems upon which the respective operators
act: the unitarity of the Wigner coefficients permits
one to write:

C„'Rp'= Q„, (kprpiwm)L„",

C „"S:=Q„., „(k )tso iw'm')M-

Hence this tensor operator may be expressed in terms
of operators acting on the separate systems:

(—1)t'(rpso
~
tr) (kprp~ wet)

ur, io', na, m'

X (k —@so
~

w'm')L "(1)M "'(2).

With the aid of a standard result for the sum over a
product of three Wigner coeKcients, ~is. ,

(aotbP
~
c7) (cydb

~

so.) (bPdb
~

rp)
= {[c].[r)}'(at&.rp

~

so.)W(absd; cr), (4)

this last result becomes:

Q„,„(—1)"{[w] [w')}~W(wk&'s;rw') (L"(» Q, t M"'(s)).

Thus, in general, one may write

(C"(» C"(s))(R'(» O' S'(s)) =g„,„(—1)'{[w] [w']}1
XW(wkts; rw') (L"(» Ot M"'(s)).

It is then evident that by using Eq. (3) the amplitude
factor of this operator is given by

((s~ll (C"(» 'C"(s)) (R"(» O' S'(s)) Il(s ~ )
„.(—1)'{[t)}lx(lkl'k';JJ'; ww'; t)

XW(w»~; ~') (~illL-Il "t') (~"kllM"'ll~'k').

We conclude this section by establishing the analog
for the x function, or any of its variants, of Eq. (75)

t J. Hope and H. A. Jahn, Phys. Rev. 93, 318 (1954).
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of I. Since this function is a matrix element in the nucleon the components of the tensor operator of
transformation of states of four particles, it is evident degree 1 are the three orthonormal functions'
that

r~1' ——2—'*(mr, —ir„), r p' r,——
x(abed; ef; gh; k) = (—1)2e—r—"+ex(abdc; ef; (2P; k)

X)t(adcb; np; gh; k). (5a)

If we now consider the expansion obtained by multi-

plying each term of the summation in this relation by
(—1), and then putting a=d, it may be verified from
an orthogonality property of the functions and their
symmetry relations that:

( 1)" ~—"+~+ex(abac; ef; (2P) k)x(aacb&aP; gh; k)
= (—1) 'b(,h)b(f, g) (5b)

This relation has been found valuable in the consider-
ation of noncentral force interactions in low excited
states of closed shell nuclei, as well as in the noncentral
force almost closed shell problem.

3. STATIC TENSOR FORCE OPERATOR

Ke specify each of the quantum-mechanical systems
already mentioned to consist of two inequivalent
nucleons. The isotopic spin, intrinsic spin, and orbital
quantum numbers of the individual nucleons are vector-
coupled to form resultants T, S, and I, respectively
and the two-nucleon state is characterized by the
totally antisymmetric wave function

4'(gnat„r)pip, TSLMrMeMr),

where 7 is some additional quantum number or num-
bers. This wave function may be separated into mutu-
ally independent isotopic spin, intrinsic spin, and
orbital wave functions. %e specify the orbital wave
function to be of the form

p(y)2,l, )2plp, LMI) = 2((n1,,l,)e2(22plq)(l, )(lp)2lLMr)

X F1) (e),P)) I „"(02,( 2), (6)

where the u; are arbitrary, normalized, single-particle
radial wave functions of the argument r,/b; (r, is the
radius vector of the ith nucleon and b; is a parameter),
the I"s are spherical harmonics, and the indices denote
the particles to which they belong. The two-nucleon
static tensor force operator is:

(~1 r)2)((22 r12)
+12 T12J(r12) 2 ((21 (22)

in which the indices 1, 2 refer to the separate nucleons,
r12 is the relative position vector, J(r&2) is a function
describing the nucleon separation and T» may be any
one of the following isotopic spin operators:

Neutral: 1; Symmetric: (~1 ~2);

Charged: (r(»~r(2) g+ r(1)yr(2) o).

These may be expressed as tensor products of irre-
ducible tensor operators of degrees 0 and 1. For either

formed from the Cartesian components r, r„, 7-, of the
isotopic spin vector, and which transform according to
the representation D~'& of the three-dimensional rotation
group. One finds that these operators become:

Neutral: (r'(1) 8 p' r'(2)),

SymmetriC: —3'*(r'(1) Qp r (2)),

Charged: —2[3 ~(r'(1) Bo' r'(2&)+6 '(r'(1& So' r'(2))].

As is well known, the spin-orbital part of the tensor
force operator may be expressed as a scalar product of
an irreducible tensor S(@ operating in the combined
spin spaces of the two nucleons, and a tensor L&@ acting
in their combined orbital spaces.

The components of S(" are constructed from the
Cartesian components of the spin vectors (2), (k=1, 2)
by taking combinations of the orthonormal functions:

2 *(Wo.(2)~—2e(2)o), ~(2)~i (k=1& 2))

which transform according to the representation D(')
of the rotation group. It is not dificult by using Eq. (1)
and the properties of the Pauli spin matrices to show
that the amplitude matrix of this operator is nonzero
only for triplet spin states, i.e.,

(~ll~'"lls') =2xs:-b(s,s')b(s, 1).

One may construct in a similar manner the hve
components of the two nucleon orbital space tensor
operator L"'. Using the choice of phase factors in I and
the axis of s as axis of quantization one may form from
the Cartesian components I, Y, and Z of the unit
vector r12/l r12l three orthonormal functions which
transform accord. ing to the D"' representation:

2 '(wX —iF'), Z.

Combining these with themselves to form a set of
quantities transforming according to the representation.
D(", one obtains the five components of the tensor I.(2):

Lg22=2 '(X&iY)2 L 12=Z(WX—iY),
Io'= —6 *'(3Z'—1).

From the spherical polar coordinates (r2, 8(„opp) of
the kth nucleon (k=1, 2) one derives expressions for
the components of the vector r» which, after substitu-
tion in the components I.,") and rearrangement in
terms of spherical harmonics yields the result:

l
r» l'L»'= (2/3)'f (C'(1) o ' c'(2))"1'

+ (&'(1) O,' &'(2))r2') —2((-"'(1) C&,' C'(2))r&r2,

in which the sufFices of the spherical harmonic operators
refer to the separate nucleons.

The choice of phase factors is that of I.
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Thus, upon writing

J(mrs)/lr»l'= E (c'«) c'(s))Jb(rrfs),

one arrives at the following expression for the two
particle orbital tensor operator

J(rr )L"&=[(2/3)b((c'trl Ss Co~»)„rs

+ (C (rl S C (s))&s } 2(c (rl S C (s))res]

X P (C"(rl C"(s))Jb(rr, rs). (7)
k=0

The products of spherical harmonics are of a type
already discussed. and. may be written as

(C'(,l C'&,)) (c'lu S' C'(s))
= 5 ' P-(—1)*(L*]}'(k020

I
xo) (c*ol s' c"is)),

(C'tr& C'&») (C't» S' C'tn)
=5 & Q, (—1) ([x]}'(k020lxo)(c'(rl s' c.ls)),

(C (&) C (s))(c'(u S' C'(s))

=P.„(—1)'+ ([x] [y]}b(k010lxO)(k010lyO)
XW(11*y;2k) (C*tr& S' Cvis&).

These results enable the tensor force operator to be
written in terms of single nucleon operators: it is felt
that this is the most convenient form for dealing with
the almost closed shell problem.

Let us next examine the amplitude matrix of the
operator J(rrs). L&'& in the general two-nucleon states
(6). For convenience denote the integration over the
radial wave functions by

We do not present a detailed account of the manipu-
lation involved, but it is not too tedious to verify that
the amplitude matrix under consideration is given by

6 Q [6 '*fA rb Q, 0 (/, /b/, /g, LI.'; xk; k202)
k=0

+As' Q. 0(/. /b/, /g., LI.', kx; k022) }

where

—&b Q.„O(/ /b/. /~; LL', xy; k112)], (10)

~= (-1)'"+'"-'-"'-'2-'f5[/.] [/] [/.] [4]}',
and

0'(abed; ef; xy; krst)
= {[x][y]c(a,x,c)c(b,y,d)c(k, r,x)c(k,s,y)}&

XW(rsxy; tk)x, (abed; ef; xy; t).
To conclude this aspect of the development we

remind. the reader that (1) and. Eq. (38) of I may be
employed to furnish an expression for the matrix
element of the tensor force operator in the yTMz I.SJM'
scheme. Explicitly:

(yn /o, nb/b, TMr'LSJMlIIrsly n, /„nd/g', TMrL'SJM)
= (—1)'+r ~3(s,1)C (T)2XSb W(L1L,'1; J2)

X('yn /~ nb/b Lll J(F12)L"'ll'y'n. /, n~4; L'). (11)

Here 4 (T) is a factor whose value is determined by the
type of charge dependence assumed, and is tabulated:

Neutral Symmetric Charged

C (T) (3(T,O) (—33(T,O) (—23(T,O)

+b(T,1)) +3(T,1)) +23(T,1)b(Mr, o)). (12)

A r ——(n, l„nblb
l
Jb(r),rs)rP

l
n, /„ns/s),

As = (n l nblbl Jb(ry rr)rs
l
n 1 ng/g)

8"=(n.l,nblbl Jb(rr, rs)rrrsl .n. ,/gng/).

The calculation of this matrix element for special states
can be very tedious, especially if large values of the
quantum numbers l„.. . are involved. However, labor
may be saved in several cases by evaluating the relevant
functions from tables of Racah's S' function" and. the
Shortley and Fried coe%cients.

In the course of s, p, and d shell calculations em-

ploying (10), (11), and oscillator wave functions it was
found. , in company with Elliott, " that the separate
radial integrals contain a divergent part which is
proportional to (2k+ 1).This singularity disappeared on
taking the correct linear combination of these integrals.
In an appendix we demonstrate that if the integrals
Arb (i =1, 2), 8" are each equal to n(2k+1) where n
is a constant, then they do not occur in the evaluated
matrix element.

The special case of the result at (10) when all the
nucleons are equivalent is of some interest in problems
involving a group of equivalent nucleons. Reverting to
the radial integrals A b (s=1, 2), I3", it is easy to show

by interchanging coordinates, that when

e,=ey=e, =eg=e, l,=ly=l, =lg=l,

Upon substitutmg in (7) the expressions for the products
of the spherical harmonic operators and. applying (3),
it is apparent that the amplitude matrix of this operator
is readily written in terms of these radial integrals and
the single particle amplitude matrices of the relevant
spherical harmonic operators. The value of the latter
is obtained from the general result given in I, vis. ,

(jllc'll j') = (—1)' '[([j][j']c(j,q,j')}/2]'
(2g =j+V+j '), (g)

in which C(a,b, c) =0 if a+b+c is odd, and

when a+b+c=2g, where g is integral. Certain values
of these coeKcients have been tabulated by Shortley
and Fried. ' The explicit connection with the Wigner
coeKcients may be argued from paragraph 4 of I, and is

(cobol ao) = (—1)&t'+~' ' ([[a]c( ,acb)}/2]'. (9)
' G. H. Shortley and B. Fried, Phys. Rev. 54, 739 (1938).

@L. C. Biedenharn, Oak Ridge National Laboratory Report,
No. 1098, 1952 (unpublished); Biedenharn, Blatt, and Rose,
Revs. Modern Phys. 24, 249 (1952)."J.P. Elliott, Proc. Roy. Soc. (London) A218, 345 (1953).

2(a+b —c)!(b+c a)!(c+a—b)!g!'—
C(a,b,c) =

(a+b+c+1) (g a)'(g b) "—(g c)"— —
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P I (2/3)&{A P O(tll/ LL'; xk; k202)}
k=0

8' Q „—O(ll/E; LL'; xy; k112)j,
where hi ———5f(21+1)'/2.

Finally the expression at (10) may be adapted to
yield the direct and exchange terms of the tensor force
interaction between the two nucleon states (6). The
specialization which gives rise to the exchange term
requires multiplication by an exchange phase factor,

( 1)tc+td L'—
4. APPLICATION OF TENSOR OPERATOR METHODS

TO ALMOST CLOSED AND CLOSED SHELLS

In this section it is assumed that the quantum-
mechanical systems referred to earlier consist of a group
of equivalent nucleons forming an almost closed or
closed shell, and an isolated nucleon not of the same
shell. To discuss the tensor force interaction energy of
such a configuration we follow the method of I, para-
graph 6, for the atomic central force: that is, we write
down a general element in the energy matrix for a two
nucleon configuration, and then replace the amplitude
matrix element of a single nucleon tensor operator by
that appropriate to the group. Clearly the operator
whose amplitude matrix is to be replaced must act
entirely within a single shell.

We have seen that the amplitude matrix of the tensor
force may be written as a product of amplitude matrices
of tensor products in the isotopic spin, intrinsic spin
and orbital spaces, typical direct and exchange terms
of which are:

& =(i.jsjljl(&' B'5')llj jdj ) (13)

e;=( 1)t'+'d '(j j&j—ljl(~'B 5')llqdi.i ) (14)

An application of Eq. (3) to the direct term d; shows
that if either j,= j, or j&——j&, or both, then one or the
other of the tensor operators acts within a shell. This,
however, is not true of the exchange term e;, for on

applying Eq. (3)

ed=( —1)"'" "{La}'{I:rj.Ls3} '
xx U.i si di.;8;rs; t) (j.lj&'ll jd) (jslls'll j.) (»)

Now the exchange term arises from the antisym-
metric nature of the wave function characterizing the
two nucleon system, as may readily be seen by con-
structing thel relevant Slater determinant from the
single particle wave functions of the constituent nuclei.

we have A1 =32 =A . The connection between the
coefFicients of these radial integrals arises from the
symmetry property

x(LN; L,L'; xk; 2) = x, (lN; LL', kx; 2)

of the p function; consequently:

(( t)'LII~( )L")ll( t)'L')

The immediate aim is to show that the tensor
product whose amplitude matrix appears at (14) can
be replaced by one formed from single particle tensors
which operate in the same shell, when either of the
above specializations of quantum numbers is made.

From Eq. (5a) one may put

X(i.i' di.;8;rs; t) =(—1)"-"~'
XX(i.fsi.~d; jj; ~;t)XU.i.ides; t3;rs;t),

in which ot and P play the role of summation indices.
Upon introducing tensor operators u&, v& dehned by

the relations

U III'll j ) = (2P+1)', (jslle'lljd) = (2v+1)' (16)
for all p and q, one finds, after some algebraic manipu-
lation, that

e.—( 1)S7c St +td s+P{I—rJ.LSJ}
—s

X (j,llR"II jd) (jsllS'll j,)x(j,j,jdjs, (rP; rs; t)

x(j jsjll(~ B'e')llj.jdj ) (»)
Consequently the desired result will be obtained by
replacing

(gs B t Ss)
in Eq. (14) by

{Lrl LsJ} '(j II&"lljd)(jsllS'llj)( —1)" " ~'
Xx(j,jcjdj&, C(P;rS; t)(N (» B't) (»). (18)

To provide some measure of uniformity the operator
occurring in the direct term may be written in the form

{N Lsl} '(j.ll~'ll j ) (jslls'll jd)(N"(» B"(s)) (19)
With the interaction written in terms of operators of
this form, the method outlined at the beginning of the
section can be applied.

Some digression is indicated at this stage to make
trivial extensions of the atomic almost-closed-shell
theory of Racah to cover the nuclear case.

Following I, paragraph 5, we define a triple tensor of
degree (tsk) to be a quantity which behaves as an
irreducible tensor of degree t in isotopic spin space, an
irreducible tensor of degree s in intrinsic spin space, and
an irreducible tensor of degree k in orbital space.

Let 5("s)(9) be a triple tensor operator acting with
a group P. of e equivalent nucleons and defined as the
sum

C

5(tss) (P) P t(tsar)

of single-nucleon triple tensors. Also let 5(ts@(%) be a
triple tensor acting on the group% of (rtt —e) equivalent
nucleons which go to make up the closed shell. The
relation between the amplitude matrices of 5(""(R)
and the adjoint of 5("")(9)is the strict analogy of Eq.
(74) of l, i.e.,

( IITIISIILIIIIS( )((tRst)cll ITIStLl
—(—1)&+t+s+s(pttT' 5'tL'tjjS(t tc) (Q)t~j~tTtS L ) is (2())
's One of us (J.H. ) wishes to point out an error in his Ph. D.

(London) thesis. The footnote on page 49 is incorrect and the
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' C"(2)) Il«bL'),

(ii.LII(c'& ) o' c*())llii L'),

(ii&fi(c &
c)'c"( )llii L').

(24)(y'T'S'L'[IS("" (Q) I[y'T'S'L') = &bb,

~= (-:—:ill&(b'2)ll-:li),

(y'T'S'L'[[S(0' )b((R) [[y'T'S'L') = (r)2 —e) &b.

where

Hence the transition to the almost closed (rb, l) shell is
obtained by replacing the amplitude matrices at (23)
and (24) by the appropriate "normal" terms, there
being no other contribution owing to the presence of
the Kronecker delta symbol ()(1,0) in the intrinsic
spin "null" term. The factors

( 1)x+1 ( 1)b+1 ( 1)@+1

by which the amplitude matrices at (24) are respec-
tively modified in the transition may be easily evaluated
by recalling from Eqs. (3) and (8) that these amplitude
matrices give rise respectively to the Shortley and
Fried coefFicients:

then

The representation of the two nucleon tensor force
in terms of irreducible single nucleon tensor operators
enables one to introduce a triple tensor s("~& operating
in the combined isotopic spin, intrinsic spin and orbital
spaces of any one nucleon, whose amplitude matrix
satisfies the relation

(-'. i~i[i~'""'[I-,'l~i) = (ill "Ill)(ill 'll-:)(~i[IT"[i~i)

It will be noted that each of the single-particle operators
v', 0-', and T~ in respectively isotopic spin, intrinsic
spin, and orbital space possesses nonzero, real diagonal
elements, and is consequently Hermitian.

The result of replacing each single-nucleon amplitude
matrix in (21) by that appropriate to the almost
closed shell may, from (20), be written as

C(i,x,i), C(i,k, i), C(i,x,i)

Consequently both x and k are even, and the factors
are each equal to —1. Noticing that the "normal"
term at (22) may be written as

(—1)'+'(ill "ill) (—1)'+'(ill 'i[2) (—1)'+'(ill T"lli),

it is apparent that the transition to the almost closed
shell case induces a phase factor (—1)'+ in the
two-nucleon amplitude factors at (23). Thus, taking
into account the above result for the orbital part of the
tensor force operator, the matrix elements D &, D of
the m nucleon and two nucleon operators are connected
by:
D ~

——D for neutral isotopic spin,

D &= —D for symmetric and charged isotopic spin.

While the reduction of the almost closed shell ex-
change term requires considerably more manipulation,
the final result is surprisingly simple in contrast with
the corresponding two-nucleon term, as the following
analysis shows.

As before, apart from exchange phase factors, the
two-nucleon amplitude matrix consists of the product
of (23) with a linear combination of

(ii.L[i (C*&» o' C"&»)llibiL')

(ii.L[[(C":»S' C*(2))i[ibiL')~ (25)

(ii.LII (C*(» &-)
' C"(»)llibiL')

we accordingly restrict ourselves to the consideration
of a typical amplitude matrix:

(jj.&ll (&*(» &-)
* I'"(2))II jbP'). (26)

Successive applications of Eqs. (17) and (3) show that
this becomes:

(-;-'2~i[IS«) (m —1)[I-;—;~i)
—( 1))++s+b( Nil[ g(t b)[[ 11~i)

+~(22~ill"""Il-:2~i)~(i,o)a(s,o)a(k,o). (22)

For convenience in reference, the terms on the right-
hand side of this last equation are called the "normal"
and "null" terms respectively.

We now return to the main theme and apply these
extensions to find the direct and exchange terms for
the tensor force in quantum-mechanical systems
symbolized by the wave functions:

4 (y(nl)" ',rb.i.,TcVrLSJ—J&rl),

4(y'(rd) ',rbbib, T'Mr L'S'J'M'),

where r)b=4(2i+1).
It will be recalled that the tensor force operator is:

&»= (r"(~) O" r"(2))(~'()) &'~'(2)) 2 Jb(r~r2)
I&:=0

Xi (2/15)' P, (—1)'{Ixj}'(k020[xo)

X{r).'(C*o) O'C'(»)+r2'(C"(1) S C*(2))}

+2r)r2 p,„(—1)&{ix) I y$}'(k010 [xo)

x (k010[ yo) w(11xy: 2k) (c*(» $2 c&(2))].

From this form it is immediate that the two nucleon
direct term consists of the product of

(T[l(r (» o" r (»)l[T')(sll(~'(» o' '(2))[ls') (23)

and may be established by a similar argument. The with a linear combination of
result may still be said to be valid for a triple scalar
operator, except for a constant diagonal term, for if (ii.L[l(c (» o

content of Chapter II, paragraph 6 is therefore misleading. The
effect of this error on the numerical work of Chapter IX, paragraph
6 has not been complete1y explored, but it is felt that the genera1
trend of results will not be greatly changed.

(-1)&-'- (2+1)-:{3*3Ly) L 1 L~1}-:
X(jll&*lljb)(j.ill'"llj)x(jj.jjb;~J; &; s)

xx(jiibi. ; ~P; xy; s)(jll~ llj)(j.ll~ ll jb).
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For a reason already stated, the transition to the
almost closed shell case can only give rise to a "normal"
term which may be rearranged as

(—1) ' " ' ""{Ex]Lyj} '*(Jll&'llib)(i-III'"lli)
Xx(~q'.q'q', ; II;nP; s) (2s+1) y(q'qq'bq. ; ~P; xy; s).

Recalling that n and P play the role of dummy suffices
and applying the symmetry relation of the z function
given at (5b) one finds that this "normal" term may
be written as

(—1)'+"+" '(2s+1)'{Lxl Lyl} '
X Ull&*flub) U.II I'"llew) &(I,y) &(~',x)

This result may be repeatedly applied to the almost
closed shell amplitude matrices corresponding to those
listed 'at (23) and (25): using properties of the Pauli
spin matrices and Kqs. (9), (9a) one evaluates the
resulting single-nucleon amplitude matrices and thus
obtains expressions for those of the almost closed shell

case. After multiplying by appropriate exchange phase
factors and using Eqs. (1), it may be shown that the
exchange matrix element for the tensor force operator
in the almost closed shell case reduces to:

E i ——(—1)'+'—~+l '(+'»8(S, 1)h(S)S')8(J,I')

X&(Mr,Mr )(i(M,M') (2/+1)C'(T)

X{50,] [lbj C(l,/„L) C(l, lb,I.')}&

XW(L1L'1;I2) t {C( L, L', )2}' {3LL] LL'g} &

X{(2L'+1)EP+ (2L+1)Esi'}

—Q EbW(11L'L 2k)

X{5LL).I L').C(k, 1,L') C(k, 1,L) }&].

The radial integrals E~~, E2~', E~ are the exchange
counterparts of the integrals A~~, A2~', B~ already
introduced. The function C(T) is specified, by the
assumed isotopic spin dependence and takes on the
values:

Neutral Symmetric Charged

C (T) —28(T,O) —2Il(T, 1) —2{6(Mr, 1)
X~(T',0) X~(T',1) +~(M„—1)}

X3(T,1)3(T',1). (27)

Finally elements in the energy matrix of the intercon-
figurational mixing of the configurations (e,/) '(e, / );
(e,/)~ '(eb, /b) are given by D i—E

We conclude by recalling that the value of the
amplitude matrix of the two-nucleon spin operator 5'
implies the vanishing of tensor force interactions be-
tween a closed shell and external nucleon, also between
a closed shell and an almost closed shell.

This work was carried out under the supervision of
Professor H. A. Jahn. It is a pleasure to acknowledge
the advice and encouragement which he so generously
gave.

APPENDIX

YVe indicate how to show that

2 (2k+1)56 l Z~{0(/. /b/, /g, LL'; xk; k202)

+ 0(l /b/, /g, LL'; kx; k022) }
—P.y 0(/. /b/, /g, L,L', xy; k112))=0.

First we rewrite the above in terms of signer
coe%cients and Racah's 8' function by using the
definition of 0' and an expression for the y function' in
terms of three S' functions'. one chooses the latter so
that, in each case, only one of the 8' functions contains
the parameter k.

The summation over k 'is performed by replacing a
Wigner coefficient and 8' function by the sum over the
product of three Wigner coeKcients, e.g. , for the 6rst
term of the above by putting

(k0/sO
~
lb0) W (kxlby; 2ld)

= {5L/dj} '(kOxg~ 2$) (2' $~ lb0—) (xfy $~ ld0)—.

The summation over k then embraces two Wigner
coefficients and may be identified with an orthogonality
relation of these symbols.

An identical technique is successful for summing
over x and the summation parameter arising from the

y function for the first two terms, resulting in:

( ])i '(la+ib+lc+ld)+l—b+44{2P]}—',{3X5.L/ ).L/ ]}—-,

X (l OL'0
~
l,O) (l OLO

~
/,0) (20LO

~

I.'0).

Repeatedly summing over k, x, y and the parameter
occurring in the representation of x function as a
product of three W functions, shows that the last term
reduces to an expression identical to but of opposite
sign to that already quoted. The result follows,

'l H. A. Jahn and J. Hope, Phys. Rev. 93, 318 (1934).


