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Analysis of the First Short Period and Its Isoelectronic Setluences
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The con6gurations 2p", 2s2P" ', and 2s'2p" ~ are analyzed for all observed spectra of the respective
isoelectronic sequences. The semiempirical Slater method is amended to include the polarization correction
and, wherever possible, con6guration interaction. The polarization parameter A is found to be approximately
linear in the degree of ionization, q. The Slater parameters characteristic of the term separations of 2s 2P"
and of configuration interaction are found to be linear functions of m, e, and q, partly corresponding to the
Bacher-Goudsmit theory in second approximation. A comparison with self-consistent field calculations is
made. Other consequences of the analysis are discussed.

1. INTRODUCTION necessary parameters. A typical example is the problem
of classifying stellar spectra which cannot be produced
in the laboratory, as, for example, the emission lines of
the solar corona. The calculation of the associated
energy levels requires an extrapolation of the param-
eters (e.g. , along isoelectronic sequences) which in-
volves considerable uncertainty and arbitrariness.

HERE are two diferent levels on which the
energies of the electronic structure of atoms are

usually calculated. One is the completely theoretical
approach in which one tries to solve the many-body
problem by some suitable approximation, e.g. , the
Hartree self-consistent field approximation. There are
no arbitrary parameters to adjust and the accuracy
of the final result depends in principle only on the
precision with which a well-defined mathematical
problem can be solved.

The other level is a semiempirical one. Following
Slater's method of the central field approximation one
expresses the energies in terms of certain radial in-
tegrals, P~ and G~. The difficult mathematical problem
of finding the radial dependence of the wave functions
is now circumvented by treating these radial integrals
as adjustable parameters. They are determined by
fitting the theoretical energy levels to the observed
ones, usually by the methods of least squares. This
latter approach is much easier and quicker than, for
example, the Hartree calculation, and is actually the
only one that is practical for very complex atoms.

The accuracy of the semiempirical method can be
improved by going beyond first-order perturbation
theory (Slater method) and including configuration
interaction. Also, one is not restricted to Russell-
Saunders coupling, but can include spin-orbit as well as
spin-spin and spin-other-orbit interactions. All these
refinements introduce additional parameters, which, of
course, lead to an improved agreement between calcu-
lated and observed energies.

There are two difficulties with this method.

The various parameters are all functions of the con-
figuration and the net charge of the (ionized) atom (the
degree of ionization, q). If it were possible to show
certain regularities of the parameters as functions of
the configuration and q, both difficulties would be
alleviated appreciably. But such results cannot come
from the analysis of individual atoms, but must come
from a simultaneous, systematic analysis of all atoms
associated with certain configurations and degrees of
ionization. It is the purpose of this paper to advocate
such analyses, and to show in a relatively simple case,
that one is indeed led to regularities of the parameters
which are in fact much more striking than anticipated.

One cannot expect such regularities to appear unless
the method which one adopts permits the calculation
of the levels within quite high accuracy. It will be
necessary to include con6guration interaction as well
as a recently discovered interaction which describes
certain higher order processes eGectively in first order,
thereby improving considerably the agreement with

experiments that can be obtained by a "linear" theory.
Following Trees we shall refer to this interaction —for
lack of a better name —as the polarization egect. '

At this point one must recall a method proposed by
Bacher and Goudsmit' which enables one to calculate
the energies of an atom from those of its ions. The

~ ~

(a) The first is the ]ac)c of any check on the va]ues success of this method clearly indicates regularities of
of the parameters. On].y in the few cases where calcu the Slater I' and G integrals as functions of g. Re-
lations on the purely theoretical level have been made cently, a more detailed analysis of the Bacher-Goudsmit
can one compare with such results. A check on the 'D. Layzer, Ph. D. thesis, Harvard University, 1950 (un-in«»a& co»is«ncy « the semiempi»c» method is puhl'sh d) was the6 st tp pp' tput thati the aiysispfspect a
possible to a limited degree, when analyses of neigh- in-the iron group considerably improved agreement can be ob-

tained by a term proportional to 1(1.+1). This was confirmedboring elements are available and the corresPonding;ndependentiy hy R E Trees phys Rev 83 756 (1951)and84
parameters are "about the same. " 1089 (1951).A first step towards an understanding of the physical

(b) The second difficu]ty is in certain cases the ]ack. of effects underlying this correction term was made by G. Racah,
Phys. Rev. 85, 381 (1952).

sufficient experimental data to determine all the ' R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).
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TABLE I. Polarization energy EI of p".

2A
0—2++p

Qi (n, s) = 4 (n —n) (4/+4 —n —n).

For the configuration s"

(2.3)

The polarization energy in a state of definite orbital
angular momentum L and seniority e is therefore~

Z~(I-.L)=
t L(L+1)—nt(r+ 1)]yPQ, (n,.), (2.2)

where'

approach' showed in fact that a linear dependence of
certain Slater parameters on the number of equivalent
electrons in a configuration would be sufficient to
satisfy the basic assumptions of this method.

A linear dependence on the degree of ionization was
obtained by Catalan, Rohrlich, and Shenstone4 in an
analysis of the low con6gurations in the long periods.
But these results were relatively crude, since q ranged
from 0 to 5 only, and configuration interaction and the
polarization effect were completely ignored.

The 6rst period is ideally suited for the purpose of
this investigation. Spectra exceeding the tenth have
been observed' for many elements in this period, and
the configurations are simple enough to permit good
accuracy without calculations of forbidding complexity.

Following a discussion of the polarization effect
(Sec. 2) and configuration interaction (Sec. 3) in which
all necessary formulas are derived, we give in Secs. 4
and 5 the equations for the term values for the con-
figurations s P" from which the parameters are calcu-
lated. Section 6 deals with the polarization parameter
A. and Sec. 7 gives the results for the Slater parameters.
A comparison with the meager data available from
Hartree calculations is attempted in Sec. 8. The 6nal
section gives a summary of the results obtained by the
above outlined program.

2. POLARIZATION

As was shown by Racah, ' the effective first-order
interaction that accounts for the distortion of the wave
functions due to various higher order effects is given

by the operator
(2.1)P (2nl,"1,+Pq„)

for the configuration /". The operator q;; is defined by'

(I L~
~ &,, ~

i L~) = (2iyi)5(L, O).

3 R. K. Trees, J. Research Natl. Bur. Standards 53, 35 (1954).
The Bacher-Goudsmit method was extended by S. Meshkov and
C. W. Ufford, Phys. Rev. 94, 75 (1954).

4 Catalan, Rohrlich, and Shenstone, Proc. Roy. Soc. (London)
A221, 421 (1954), esp. Figs. 4, 5, and 6. In an earlier paper LF.
Rohrlich, Phys. Rev. 74, 1381 (1948), especially Fig. 4], this
author pointed out that deviations from a smooth variation
of term differences as a function of m in d" sp and d" 'p seems to
be an indication of wrong classification.' C. K. Moore, Atomic Energy Levels (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C. ,
1949), Vol. I. We have taken all the experimental material for
the present work from these tables.' G. Racah, Phys Rev. 63, 36.7 (1943), in the following quoted
as (RIII).

0 (n=1, isS state)

P (n=2, p'S state).
(2 4)

For the configuration P", we find easily the results
listed in Table I. The seniority numbers are omitted in
that table, because for each e and L there is only one
value of e.

We see from Table I that the EI of conjugate con-
6gurations differ by constants from each other, inde-
pendent of v and L:

&~(P') &~(P')—= 4~+0—
&~(P') &~(P)=— g~+2P—

3. CONFIGURATION INTERACTION /" —s'l" '

(2.5)

(2.6)

In this section, we want to derive the formula which
expresses the o6-diagonal matrix element of electrostatic
repulsion between the configurations 1" and s'/" ', in
terms of the associated radial integral G~(s, l). This
formula is

= (—1)'e5 (s,s')5 (n,n') $Qt (n, s)]lGt (s,l), (3.1)

where Q& is given by (2.3) and

~

n=21+2 and -', s odd
e= —i foi

I n =2l+3 and rs (s—1) odd,

e=+1 otherwise.

(3.2)

Here, v denotes the seniority number, defined in RIII,
and o. is any set of quantum numbers which is necessary
in addition to v, 5, and L, in order to specify the states.

To prove this relation, we first note that Eqs. (33c)
and (49') of RIII can be combined to give

e
1 crsSL Q —t" 's'n's'SL

i&2 r;; )

, 5(~,~')5(s )LQ~(n;)]'
(21+1)l

rx) p's —s' 's
[l r

Alternatively, lacking a deeper understanding of this inter-
action, Eq. {2.2) may be regarded as a definition based on semi-
empirical evidence,
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I'

i
ls'S —s''S i= (P 'SiPi(cosa&) is''S)R'(/l, ss)

TABLE II. Coeificient g&(s,p) for configuration
interaction P~—P" s'.

Term

= (P 'SiCti" Csi'its''S)R'(ls, sl)

(—1)'
G'(s, l).

(2l+1)l

2,6

3,5

01S

2P

1S
1D
3P

The result (3.1) follows from the last two equations if
we observe that

G'(s, l) = (2l+1)Gi(s, l). (3 3)
by de6nition.

Equation (3.1) is a generalization of Eq. (75) in RIII,
the latter being the case l= 2.

In the following, we shall be concerned with p-elec-
trons so that it will be useful to list the matrix elements
of the p"—p" 's' interaction explicitly. The coeKcient
gi (s,p) by which Gi(s,p) must be multiplied to give the
matrix element, is listed in Table II.

A. 2s2P and 2s2P'

4. ANALYSIS OF 2s2p"

The configurations 2s2p" are less disturbed by other
configurations than are 2p" and 2s'2p" '. Typical con-
figurations with which 2s2p" can interact are 2p"3s,
2s'2p" '3s, and 2s2p" '3p. These are all associated
with very high excitation, so that their effect on 2s2p"
can be assumed to be negligible.

and P of Sec. 2. Ke define

X =4u —p,

f=3Fs+2a,

A =Fs 3G, 5—f+)+—p,

and find for p's:

'5= A
7

'S=A+4Gi,
'D= A+3f+Gi,
'D= A+3f+3G„
'P=A+5 f+Gi 2X, —
'P=A+5 f+3G, 2X. —

(43)

(4.4)

(4.5)

(4.6)

It is important to note that these expressions involve
only the 4 parameters A, f, Gi, and X, even though we
have originally 5 parameters, Fe, Fs, Gi, tr and p. The
above coupling independent combinations become

These simple con6gurations contain only the two
terms 'P and 'P whose spacing is determined by the
parameter Gi—=Gi(2s, 2p). However, since spin-orbit
interaction may be appreciable in some cases, we chose
that particular combination of levels which is inde-
pendent of the coupling,

Gi ———'('Pi+'Pi —'Ps —'Po).

There is no polarization eGect and the Slater parameter
F2 does not appear.

B. 2s2P'

This configuration has the terms "5, ' 'P, and ' 'D.
In' order to eliminate any effects due to deviations from
Russell-Saunders coupling, we form the four coupling
independent combinations'

&=A+3f+Gi,
ii=A+5 f+Gi 2X, —
c=4A+11f+5Gi 2', —

=�4A+13f+9Gi
4X—

The solution of these equations is

Gi ———,
' (8+2—5—C),

X = s (2Gt+9a —b —2c),

b —8
f= = —,

' (Gt+3a+b —c),
2 (1—Xif)

A =c 3f Gi. — —

C. 2s2p' and 2s2p'

(4.7)

(4.3)

a='D387

b='Pp,
c=sD,+'D,+sPs+'Ss,

rI,= sD +'P +'P +'S

(4.2)

whose energies can easily be expressed in terms of the
Slater parameters and the polarization parameters o.

'K. U. Condon and G. W. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1951).

These configurations have the terms ~5, ' 4P, and 'D.
But in this case the spin-orbit interaction cannot be
eliminated in a simple way without losing the number
of equations necessary for the determination of the
remaining parameters. We must therefore be satisfied
with the center of each multiplet as a sufhciently good
approximation to the term value. As in the case of
2s2ps there occur in 2s2p' only four parameters,

A=J 0—5J 2
—26'—2~,
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B. 2P' and 2s'2Pf and h, as defined in Eqs. (4.4) and (4.3), and Gi. The
terms are

4P=A
7

'P= A+3Gi,
'D= A+2f+Gi,
'S=A+5f 3h+—Gi.

The solution of these equations is

A ='P
7

Gi ,'(sP 4——P—), —

s=('D P—)

P—= -', (2 4P+'P)

The 2s'2p configuration gives rise to only one term,
'P=A', which interacts via configuration interaction
with the 'P term of 2p'. The other terms of p', 'D, and
'S are thereby affected only via the spin-orbit interac-
tion terms. When these are taken into account too,
there results a 2)&2 matrix for J=—,', a 4)&4 matrix for
J=—,', and a single equation for 'D;, yielding 7 equations
in all. We have the 7 parameters A ', A, f, h, Gi, l (P'),
and f'(p's), so that these are uniquely determined.
However, since, the spin-orbit interaction parameters

l and |' are relatively small, and an exact solution in
terms of the 7 parameters is obviously quite compli-

(4.10) cated, we take again the multiplet centers and calculate
the terms only. For 2p', we have in our notation

h ('S 'Dy—
L'D —P j

For p's the same equations hold except that A must
be redefined according to the remarks at the end of
Sec. 2,

A =Fp—5Fs—2Gi —6n+P,
=Fp

—-', (5f+2h —P) —2Gi.
(4.11)

A. 2P' and Zs'

Here, as in 2s2p', we must be satisfied with the
multiplet centers and ignore the spin-orbit interaction.
The terms of p' are then given by

'P=A,
'D= A+2 f,
'S=A+5f 3h, —

(5 1)

whereas s' has only the one term '5= A '. The configura-
tion interaction —V3G& therefore affects only the '5
terms and yields a quadratic equation. We thus have
four terms and the five parameters A', A, f, h, and Gi.

We shall now assume that the polarization parameter
A= h/f of 2s2p' is the—same as that of 2p'. This seems
to be plausible from the derivation and interpretation of
the polarization interaction and will also be borne out
in the numerical results.

Thus, we are left with four equations for four param-
eters which can easily be solved. The solution need
not be given here,

S. ANALYSIS OF 2P" AND Zs'2P" '

In the analysis of these con6gurations, it is essential
that their mutual interaction be included, since they
are quite close in energy and even overlap for the
lowest elements of the isoelectronic sequence. The
matrix element of this configuration interaction is a
multiple of Gt(2s, 2p), as was derived in Sec. 3. This is

the only way in which G& sects the term separations
in these configurations.

4S=A,

'D=A+3f,
'P= A+5f 2h, —

(5 2)

A =Iio—15F2—60.

=Fp 5f+h+P—
(5.3)

Including the interaction 'P(p') —'P(ps') which is
—V2G& we have again 4 equations for the 4 parameters
A ', A, f, Gi, provided we take A from the 2s2p" analysis.

D. 2p' and 2s'2p'

As in the case of 2p' and 2s'2p, only the 'P terms
are aGected by configuration interaction. The procedure
is in every respect the same as in that case, p' and p
being conjugate to each other. Following Eq. (2.4),
A (2s'2p') is however different from A (2p'),

A(2s'2p')=F, 5f+h+p(ps)+p—(ss) (54)

and Fp now refers to 2s'2p'.

E. 2P' and 2s'2P4

The configuration 2p' is not observed, so that we
must be content with an analysis of 2s'2p' without

9 More precisely, the 'P term is known in 0 nz to Na vr, the 'D
term is known in 0 m and Na vr, and the 'S term is known in
0 ni only, and with some uncertainty (see reference 5)."R.H. Garstang, Monthly Notices Roy. Astron. Soc. 111,114
(1951),

C. 2p4 and 2s'2p'

Unfortunately, the configuration 2p lies so high
that there is no case in the whole isoelectronic sequence
of C I in which all its terms have been observed. ' If, in
first approximation we neglect the interaction of 2s'2p'
with 2p' and restrict ourselves to an analysis of 2s'2p',
we can refer to the work by Garstang" who analyzed
2s'2p' with great accuracy, including spin-orbit, spin-
other-orbit, and spin-spin interaction. We shall use
his results in the following.
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con6guration interaction. We can here again take over
the results of Garstang, "but the neglect of con6guration
interaction will make the over-all agreement relatively
worse than for the other configurations, especially for
large g.

R= 3.
2 (6.2)

The problem is that the experimental values of R
deviate appreciably from ~, the deviations being
towards larger values for R3 and R3', and towards
smaller values for R2 and R2'.

Examples of these discrepancies were given, e.g. , by
Condon and Shortley (reference 7, p. 198 ff.) and very
recently by Racah. "He was also the first to point out
that the deviations from 2 are almost independent of
the degree of ionization q, and. that the polarization
correction, A, could account for the difference, simply
because there is one more parameter available. '

In the theory given above, where in addition to the
polarization correction also con6guration interaction
plays an important role, this "explanation" cannot be
applied so simply, since R will in general depend on
both, A and G~. In those cases, however, where con-
figuration interaction is not important, i.e., in the sp"
configurations, R does indeed depend on A only, even
though G& occurs explicitly in the expression for the
term energies.

Consider first E2'. From Eq. (4.10), we see that

(6.3)

The polarization eBect alone is thus responsible for the
deviations from ~. Similarly, from Sec. 43 when spin-
orbit interaction is ignored, we find from Eq. (4.6) and
the definitions (4.3) and (4.4),

S=A+ ',Gi, -
D=A+ ,'Gi+3 f, -
P=A+ ,'Gi+5 f 2X, -—

"G. Racah, International Conference on Spectroscopy, Lund,
Summer, 1954 (unpublished}. I am grateful to Dr. Trees for
showing me a copy of this paper,

0. RATIO PROBLEM AND THE PARAMETER A.

Consider the following ratios of term differences:

E2 ('S 'D——)/('—D 'P) for—p' p' s'p' and s'p'

R,'= ('S 'D)/('D —P) [P=—-', (2'P+'P)]
for sp' and sp',

E = ('S 'D)/('D— 'P) for—p' and s'p'

It s'= (S D)/(D —P), $P=—~i (3 'P+'P),
D= ri(3 'D+'D), S= is (5 'S+3 'S)j, for sp'.

(6.1)

According to the Slater theory, all these ratios should be

and, therefore,
1

Ra'= 2.
1—A

(6.4)

R2' and R3' are thus seen to depend on A only and the
reason for the deviations in opposite directions is now
quite clear.

For R2 and R3 the situation is more complicated,
since they depend on A and G&. However, there is no
more problem regarding the agreement between theory
and experiment, since the terms are fitted exactly by as
many parameters as there are terms in the con6guration
(see Sec. 5).

At this point the reader may question the wisdom
of this "solution" of the ratio problem, since A is an
arbitrary parameter which can always be so chosen as
to reproduce the experimental value of R. Indeed,
nothing seems to be gained by finding a set of A's from
the observed ratios R.

It is the purpose of the remaining part of this section
to show that the A's are more fundamental than the
R's, and that they have a number of properties which
put them in one class with the Slater parameters J and G.

In general, to each configuration and to each degree
of ionization, g, there corresponds a different set of
Slater parameters and a diferent polarization param-
eter A. For example, for the configurations 2s 2p", A
will depend on m, e, and q. The experiments now
seem to show that, to a very good approximation, A is
indepertdertt of nz arid ri, and that it is a linear arid
slowly varyirtg flrtction of q.

We were able to verify this assertion only for the
configurations 2s2p", since the importance of spin-orbit
interaction together with configuration interaction
prevents a detailed calculation on 2p" and 2s'2p" '
without a prohibitive amount of labor. However,
reasonable results for f, which depend on A, were
obtained by assuming the same A for these configura-
tions as for 2s2p", though, unfortunately, these results
are not very sensitive to the value of A.

Consider now the configurations 2s2p", where con-
figuration interaction can be neglected, as was pointed
out in Sec. 4. jaut spin-orbit interaction, described by
the parameter i, can easily be eliminated for rt =3 only
(Sec. 48). (The cases ran=1 and 5 do not involve A.)
The values of A obtained from this configuration will
therefore be the most reliable. For v=2 and v=4, we
can take the "centers of gravity" of the multiplets as a
first approximation to term values. Since the Lande
interval rule is not very well satisfied, the resultant A
are not as reliable as those for n=3. The result of this
calculation is given in Table III and plotted in Fig. 1.

In this 6gure, a straight line was 6tted by least
squares to the most reliable points, i.e., A. (2s2p') for
q&3. The points for the first few values of q are very
poor, because configuration mixing is very large for
these stages of ionization. The situation improves
markedly with increasing q. The points for h(2s2p')
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TABLE III. The parameter A. . The results for 2s2p' are P-in-
dependent; for 2s2p2 and 2s2p4 the terms are approximated by
the multiplet centers, except in the last column (2$2P') where the
levels of highest J were used instead of the centers. The degree
of polarization, q, is the number of electrons missing from the
neutral atom.

0
1
2
3

5
6
7
8
9

10

2s2p2

—1.343—0.535—0.407—0.300—0.261—0.209—0.183—0.165—0.147—0.125—0.082

2$2ps

0.031—0.185—0.237—0.229—0.211—0.188—0.187—0.141—0.140—0.133

2s2p4

—0.301—0.260—0.232—0.206—0.180-0.154—0.129—0.093

2s2p4

—0.311—0.273—0.256—0.241—0.237—0.215—0.207—0.185

6=~0.0080. (6.6)

QI

-Ql

-Q2
+

7 +t +

are seen to be in very good agreement with the straight
line for large enough q. For A(2$2p'), the points lie
below the line even for large q. In order to see how
significant this deviation is, we recalculated A(2$2p')
using the levels of largest J instead of the centers of
these inverted multiplets. The points for larger q's now
lie above the straight line, indicating that the deviations
from the straight line are not significant. i2 Within this
approximation we conclude, therefore, that A(2$2p )
is independent of e and is a linear function of q. The
q-dependence is"

A(2$2p") =0.0170q—0.2777

which is obtained by a least square calculation of 7
points of 2$2p' and has a standard deviation of

2$2p:

2$2p'

2$2p':

2$2p4:

2$2p'.

q=2—5, 7—11,

q=2—4, 6—10,

q=2—9,

q=3—8,

q= 3—7)

Gi=6.575q-+11.864, 6=+0.160,

Gi ——6.636q+16.359, 5= &0.093,

Gi ——6.636q+21.275, 5= &0.074,

Gi ——6.628q+25.491, 6= +0.054,

Gi=6.685q+29.915, 6= &0.146.

(7.1)

Since the magnitude of Gi ranges from about 25 to
85 kK, these mean devjations correspond to a few
tenth of one percent. A surprising accuracy indeed.

The above mentioned point e=2, q=5 is now seen to
be the largest deviation from the straight line (for
q &2 or 3) it stems from the 2$2p' configuration in the
spectrum of Ne vt. This spectrum was observed by
Paul and Polster' who did not find any intersystem
combinations. They were therefore forced to estimate
the position of the quartet levels and gave a value of

2$2p' 4I' =99 3&0 5 icK (7.2)

'7. THE PARAMETERS GI AND f
The analysis of 2$2p" according to Sec. 4 leads not

only to A(2$2p") which we discussed in the previous
section, but also to G~(2$,2p) and f(2p, 2p). These
results are given in Tables IV and V, and are plotted in
Figs. 2, 3, and 4.

These figures show the linear variation of G~ with
q, for q not too small. As remarked previously, for small q
the configurations overlap so strongly that good results
cannot be expected from this simple analysis.

The linear dependence of G& on q for 6xed e is sur-
prisingly accurate for q&2. In fact, in a number of
cases relatively small deviations from linearity can be
traced back to uncertain experimental data, as is the
case for v=2 and q=5 (see below). It is therefore
justifmd to take the well established points for which
the overlap of configurations is not expected to be
important, and to fit straight lines to them with least
square methods. The results with their standard devia-
tions 6 are as follows:

-Q3

ahK) Q4

-0.5

h FOR 2s2p"

x 2s2p CENTERS

~ 2s2pe $-INDEPENDENT

~ UPPER: HIGHEST J
2s2p U7NER: CENTERS

0 I 2 3 4 5 6 7 8 J IQ
o

Since the calculation of Gi is based on the difference
between the 'I' and the 4I' term t see Eq. (4.10)] an
error in this estimate will affect the value of Gi. On the
other hand, our above analysis leads to a value of

2$2p' G =49 55&0 09 kK

From this result, one obtains with Eq. (4.10) a theo-
retical estimate

FIG. 1. The polarization parameter A. as a function of the degree
of ionization, g, calculated from the configurations 2s2p". The
straight line is the best fit to 2s2p'.

'2 These points actually give better agreement with 2s2p' than
do the points calculated from the centers. We have therefore
used the levels with highest J consistently for all inverted
multiplets.

'3 Since A is dimensionless the labeling "kE" of the ordinate
in Fig. 1 should be omitted.

2$2p' 4P = 101.22~0.19 icK. (7.3)

We believe that this is a more reliable estimate than
(7.2).

The straight lines (7.1) are also shown in Fig. 2.
It is clearly apparent that these lines are very nearly
parallel and very nearly equidistant. This implies that

'4 F. W. Paul and H. D. Polster Phys. Rev. 59, 429 (1941).
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TABLE IV. The parameter G&(2s 2p). All values are in units of kK = 10~K= 103 cm

a

0

2
3

5
6
7
8
9

10
11

2$2p

10.292
18.023
24.990
31.707
38.185
44.832

57.783
64.215
70.945
77.505
84.525

2s2p2

14.578
22.544
29.566
36.445
42.968

(50.180)
56.139
62.772
69.32
76.03
82.80

2$2p3

20.724
28,388
34.455
41.217
47.859
54.478
61.059
67.850
74.398
80.878

2s2p4

30.918
38.220
45.297
52.036
58.679
65.297
71.917
78.440

2s2p5

37.317
42.431
49.870
56.907
63.743
70.465
77.026

2s2 —2p2

26.12
33,54
39.59
45.96
51.46

64.19
71.35
78.01
85.99

2s22p —2p3

29.68
38.70
44.32
50.72

62.61
69.46
77.99
82.79

2$~2p3 —2p3

47.46
53.51
59.52

77.324

Gi(2s, 2p) as calculated from 2s2p" is in good approxi-
mation a linear function of q as well as n. Again, a
family of equidistant parallels can be fitted to the
calculated points by a least square computation and
one finds for the 36 points considered in (7.1) for 2s2p",

Gi ——6.6098q+4.7002ri+ 7.0533,

with a standard deviation of

(7.4)

S=a0.239. (7.5)

The parameter 61 does not enter into the formulas for
the term values of the configurations p" and s'p" ', but
enters only in the interaction between these con-
6gurations, '5 according to the results of Sec. 3. Though
configuration interaction occurs only between terms of
the same 5, I., and parity, other terms will also be
affected, because of the deviations from pure Russell-
Saunders coupling, which is appreciable in some cases.
It is therefore not a very good approximation to neglect
spin-orbit interaction. This is done here only to simplify
the otherwise rather complicated calculations. The
following results must therefore be judged accord-
ingly and are subject to improvement by a better
approximation.

With the aid of Secs. 3 and 5, we 6nd the values for
G1 shown in Table IV and in Fig. 3 where the 6ve
parallels from the 2s2p" analysis are plotted for com-
parison [see Eq. (7.4)j. We observe that the experi-
mental data are much more incomplete than in the

Gi = 6.61'+4.70m+ 9.40. (7.6)

90-

2s2p" case, which is understandable, since the 2p"
con6guration is never among the lowest configurations.
Specifically, neither the 2p' nor the 2p' configuration
was observed with all its terms for any atom or ion. '
However, even the relatively incomplete data show
the main characteristics observed previously for the
2s2p" configuration: Gi is a linear function of both,

q and n. The q dependence seems to have very nearly
the same slope as for the 2s2p" configuration. ignoring
the lower q values the line for Gi from the 2s' —2p' inter-
actions lies just about half-way between the parallels
for 2s2p' and 2s2p'. The distance between the parallels
which would fit the 2s' —2p' and the 2s'2p —2p' inter-
action is within our accuracy the same as the distance
between the 2s2p" ' and 2s2p" lines. Similarly, the
2s'2p' —2p' line is about twice that distance away from
the 2s'2p —2s'2p' line, the difference in the configura-
tions being two p-electrons. Using Eq. (7.4), we can
therefore give an approximate formula for Gi(2s, 2p)
when it occurs as configuration interaction between
2s'2p~ ' and 2p~

TABLE V. The parameter f(2p, 2p).
60-

0 2.235 5.762
1 4.684 7.166
2 7.104 9.043
3 9.595 11.156
4 11.816 13.360
5 14.766 15.661
6 16.61 7 1 7.716
7 18.878 20.569
8 21.20 22.75
9 2366 25.10

10 26.54

~ ~ ~

7.616
10.061
12.325
14.610
16.964
19.382
21.857
24.38

5.082
7.613

10.031
12.409
14.762
17.025
19.677
2).715
24.065
26.43

~ ~ e

11.40
13.95
15.86
18.05

7.899
10.350
12.755
15.271
17~ 703
20.061
22.385
25.085
26.66

~ ~ ~

1.718
4.225
6.644
8.866

11.355
~ ~ ~

15.93
18.10
20.51
22.64

q 2$2p& 2s2p3 2s2p4 2$22p2 2$22p3 2s22p4 2p3 2p3

~ ~ ~

2.814
5.425
7.965

10.196
~ ~ ~

14.955
17.09
19.24
21.42

G,
(kK) 4o—

50

sar
lO-

Gl (2S,2P)

CALCULATEQ FROM 2s2p"r.r'

I I I I I I I I I I

I 2 5 4 5 6 7 8 9 IO I I

4

' The interaction of the p-electrons with the closed subshell
2s' is not analyzed here. It would also involve G1, but it does not
contribute to the term separations.

Fto. 2. The Slater parameter G&(2s,2p) as a function of g,
calculated from 2s2p". The straight lines are the best 6t for each
value of n.
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80

coincide with those of sp"+'. It is then suggestive to
argue that the parameter Gi of the 2s'2p" configuration
(which we did not include explicitly in our energy
formulae, because it does not contribute to the term
separations) should be equal to the parameter Gi
which determines the con6guration interaction of
2s'2p" with 2p"+'. In that case, the above coincidences
lead to the approximate equality

Gi (2s'2 p~) =Gi (2s2 p"+'). (7.7)
RALLELS

3kK
GI FO

a+Q239 kK

When this equation is valid, Eq. (7.4) can be generalized
to the configuration 2s 2p",

I I I I I I I I I I I

0 I 2 3 4 5 6 7 8 9 10 I l

Gi ——6.6098q+4.7002K—2.3471,

(iV =2III+I).
(7.8)

Fio. 3. The Slater parameter G&(2s,2p) as a function of g,
calculated from the con6guration interaction of 2p" with 2s'2p" '.
The set of parallels is the best overall fit of G» for 2s2p" ' and is
drawn for the purpose of comparison.

We note that Gi for 2s'2p' —2p' with q= 8 (P rx) is the
only very large discrepancy with this formula. No
explanation is overed for this one case.

Since the calculations involve poorer approximations
than those for 2s2p", little weight should be put on the
absolute value of Gi in (7.6). In fact, if one computes
Gi for the 2s'2p' —2p' interaction using the centers
instead of the highest J levels in the inverted multiplets
(see footnote 11), the results fall on the 2s2p' line. This
indicates that a better calculation may well shift the
set. of parallels (7.6) towards lower values, decreasing
the constant 9.40 by perhaps as much as 2.35. In that
case the Gi values for the s'p" —p"+' interaction would

cP

q', N q~Sq~ w~

An experimental check on Eq. (7.7) can only be made
simultaneously with an analysis of the parameters
A of Secs. 4 and 5.

The results for the parameter f(2p, 2p) are given in
Table V. A plot (Fig. 4) shows that the configuration
2s2p" gives again a linear dependence on q,

2s2p': q=3, 4, 6—9, f=2.3 43 q+2. 51 OkK,
a= a0.055 kK,

2s2p': q=3—9, f= 2.340q+4.005 kK,
(7.9)6=&0.153 kK,

2s2p4: q=3—8, f=2.412q+4.985 kK,
6=~0.075 kK.

The standard deviations are of the same order as those
for Gi LEq. (7.1)],but since f ranges from about 10 to
25, this corresponds to a somewhat larger relative error,
about —', to 1 percent.

As in the case of Gi, the 2s2p' configuration of Ne vr
gives a poor result and was not included in the least
square analysis (7.9). Using Eq. (4.10), we find from
the above semiempirical value of f for the 'I' term of
2s2p' in Ne vr,

'I' = 100.91~0.17 kK, (7.10)

r I I I r l I
l 2 5 4 5 6 7 8 9 IO ll

in good agreement with Eq. (7.3).
The straight lines (7.7) are almost parallel and

equidistant, though a set of three such lines would not
give as good overall agreement as for G~. However,
when we add the f values calculated from 2p" and
2s'2p" ' to those for 2s2p" ', we notice that also these
data are well represented by parallels with the same
distances as those for 2s2p" '.

One of the most important results of Fig. 4 is the
fact that f(2s2p') and f(2s'2p') coincide. This means
that, if the parameter f for 2s 2p" and any q can be
approximated by

f=rrq+ PIII+ rS+ fi,

Fio. 4. The parameter f(2p, 2p) as a function of g, calculated
from the con6gurations 2s 2p". The set of parallel straight lines
constitutes the best over-all Qt to all the points with q&2.

the constants P and y satisfy the relation

P =2m (7.11)
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TABLE VI. Comparison of Slater parameters obtained semiempirically and by self-consistent Geld calculations for 2s22P".

—1
0
1
2
3

—1
0
1
2
3

G1

33.34S
35.255
37.164
39.074
40.983

P, (0)

2.862
3.169
3.470
3.767
4.059

Oxygen
G1(H)

30.800
34.275
37.523
39.798
42.3S8

p2(H)

2.441
2.901
3.368
3.718
4.152

2.545
0.980—0.359—0.724—1.375

0.421
0.268
0.102
0,049—0.093

G1

28.645
30.554

P, (0)

2.299
2,609

Nitrogen
G1(H)

25.532
29.666

p2 (H)

1.966
2.520

3.113
0.888

0.333
0.089

G1

25.854

p2(0)

2.049

Carbon
G, (H)

24.449

F2 (H)

2.039

1.405

0.010

6=~0.164 kK. (7.14)

8. COMPARISON W'ITH HARTREE CALCULATIONS

Unfortunately, there are only very few self-consistent
field calculations with exchange which involve the con-
figurations of interest here, and for which the two
Slater integrals Fs(2p, 2p) and Gi(2s, 2p) have been
calculated. Furthermore, practically all these calcula-
tions involve very low q for which our results cannot be
expected to be very good, so that the following com-
parison cannot be regarded as definitive in any sense.
Its main purpose is to show that the main relations
for f and Gi which we have obtained are within the
expected errors consistent with a calculation "on the
purely theoretical level. " At the same time, this com-
parison will give us a very rough estimate of the order
of magnitude of the parameter p.

There exists one example of a 2s2p" configuration.
That is the 2s2p Be 1 term system. " Since the one-
electron Hartree wave functions depend slightly on S
and I, the Slater parameters dier somewhat for
di8erent terms of each configurations. With few excep-
tions these variations are of the order of one percent.
We have taken the average of these values. There is also
a conversion factor from atomic units to kK, a factor
is for Hartree's Gi, and a factor 1/25 for Hartree's Fs,
to convert these parameters into G~ and Ii2 as defined

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
154, 588 (1936).

This is exactly the relation which for G& leads to Eq.
(7.7), but which could not be obtained from the experi-
mental evidence in that case. Also here, because of the
incomplete experimental data, this assertion cannot be
checked for all cases, but for the ones available it is
indeed very well satisfied. We can thus write

f=nq+yX+8, ($=2ns+n) (7.12)

and try to fit this family of parallels to the data of
Fig. 4. The results for the 50 best points is

f=2.3374'+ 1.4743$ 3.4470 kK—, (7.13)

with a standard deviation

here. We thus obtain the self-consistent field value

2s2p: Gi(2s, 2p) = 11.41 kK (g= 0). (8.1)
Our formula (7.4) yields the result

2s2p: Gi(2s, 2p) =11.75 kK (q=0). (8.2)

The agreement between Eqs. (8.1) and (8.2) must be
considered very good, since we are dealing here with
q=0 for which (7.4) is certainly not very accurate.

For the configurations 2s'2p", calculations for the
elements carbon'r (Cr), nitrogen" (N and Nr), and
oxygen" (0, 01, Or?, Orts, and Ozv) are available. The
best we can do here is to use the somewhat hypothetical
formula (7.8) for Gi. For Fs, we find from (4.3) and
(44)

p =p, (&) ip (8.3)

F,i»= ,'f(1 ,'A-)—- (8.4)
Thus, a direct comparison of Ii2 can only be made if we
know the parameter P. We shall therefore compare F,~')

with the Hartree values, hoping that a consistent
diGerence between the two quantities will give some
indications of the presence of p.

The comparison of G& and I"2&0) is conveniently
carried out by expressing first G and f in terms of q
and Z. The linear relation between the number of
equivalent 2s and 2p electrons, q, and Z is

Z=2+ns+n+q,
so that Eq. (7.8) becomes

(8 5)

2s 2p": Gi(2s, 2p) =1.910'
+4.700(Z+ns) —11.748, (8.6)

and Eq. (7.13) becomes

2s 2p: f(2p, 2p) =0.863'
+1.474(Z+ns) —6.396. (8.7)

These relations and Eqs. (8.3) and (8.4) permit the
construction of Table VI where our idealized semi-

ir A. Jucy, Proc. Roy. Soc. (London) 173, 59 (1939)."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
193, 299 (1948).

"Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1940).
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empirical values of G~ and F2 are compared with
those from the Hartree calculations. Since the latter
include negative ions, we have extrapolated our for-
mulas accordingly.

A study of Table VI reveals the following. First of
all, it con6rms qualitatively the increase of G& and F&

with q and with Z. The values of G& agree generally
within a few percent, except for the negative ions
(q= —1) where the Hartree values, Gi&~' are about 10
percent lower. This agreement is satisfactory, since the
table lists low q values. As can be seen from Figs. 1, 2,
and 4 the parameters approach their linear behavior
with increasing q, the deviation being all to one side.
On this basis, one would suspect that G~ should perhaps
be larger by about 1.5 to 2, so that AG is positive
throughout and approaches zero for q) 3. In that case,
Gi(2s'2p") would be closer to the configuration inter-
action values Gi(2s'2p" —2p"+'), Eq. (7.6), than to the
idealized Eq. (7.8). It is very unfortunate that Gi&~&

values for q)3 are not known.
In the case of F2 one might be inclined to detect a

linear behavior in hF, and conclude from (8.3) that P
varies like —0.9q+1.8. But the tendency of approaching
the linear behavior from one side, as for G&, may invali-
date such a conclusion. In fact, within the errors of
this comparison, P may actually be zero.

Finally, one should not take the Hartree values as
the perfect basis of comparison, because the self-
consistent field calculations do not give complete
agreement with experiment. In particular, the ratio
problem of Sec. 6 is not resolved within that approxi-
mation: An attempt to include configuration interaction
did not improve the situation. " In this respect our
semi-empirical analysis teaches us that it is primarily
the polarization parameter A which is responsible for
the deviations from R=—', . The versatility of the
semiempirical approach shows here definite superiority.

9. SUMMARY

As was stated in the introduction, the purpose of
this work is primarily to show by a relatively simple
example how a systematic analysis of certain con-
6gurations leads to a study of the dependence of the
semiempirical parameters on the number of. equivalent
electrons, the degree of ionization, etc. In particular, it
was found that the linear theory (Slater theory amended

by polarization terms) together with configuration
interaction leads to parameters Gi(2s, 2p) and f(2p, 2p)
which are in good approximation linear functions of
m, e, and q for the configurations 2s 2p" Lsee Eqs.
(7.8) and (7.13)j, and that the polarization parameter
A is linear in q and independent of nz and n. These
statements are valid for large enough q. The polariza-
tion parameter P is probably small, and there are some
indications that it decreases with increasing q.

The possiblity of an analysis of this type is of interest
in itself from a practical standpoint: It eliminates the

arbitrariness of the parameters associated with the
analysis of a single spectrum, and it allows extrapola-
tions to unknown cases in a far more satisfactory
manner than was hitherto possible. As an application
and illustration of this point we carried out an extrapola-
tion leading to the identi6cation of the famous yellow
coronal emission line X 5694. This work will be published
elsewhere.

However, an analysis of the above type also has
theoretical interest; it was for this purpose that the
first steps towards a similar analysis were carried out
by Trees' for the case of 4s and 3d electrons.

In order to discuss the theoretical aspects, let us
first observe that we could take the idealized linear
equations for A, Gi, and f, and compute the terms of
the various configurations in the isoelectronic sequences
of the first period. If we restrict ourselves to values of
q not less than 2 or 3, the over-all agreement will be
given by a standard deviation of the order of, or
slightly larger than, 6 in Eqs. (7.5) and (7.14). This
means a very good agreement indeed.

The most extensive previous analysis of configura-
tions in the first short period is that by Bacher and
Goudsmit. ' Their agreement is not as good as the
present one for several reasons. Their method was
mentioned in the introduction and seems to be very
different from the Slater method. However, Trees' was
able to show that the linear theory in which the param-
eters are allowed to vary linearly with es, n, and q
(strictly, the Slater theory requires the same F" and G~

for all m, e, and q) is essentially equivalent to the
Bacher-Goudsmit method in second approximation:
Trees' arguments for s and d electrons is valid for s and

p electrons with only trivial modifications. Higher
approximations of the methods by Bacher and Gouds-
mit correspond to higher powers of m, n, and q in the
expressions for the radial integrals. It follows that, had
we neglected configuration interaction, our agreement
with experiment should be about the same as obtained
by them. (They used their second approximation in their
numerical work. ) This is probably the case. A large
part of our improved agreement is due to the restriction
to spectra with q) 2 or 3. Bacher and Goudsmit at the
time did not have available the experimental material
of all the highly ionized elements. But at least a small
part of the improved agreement must be due to our
taking account of configuration interaction. The latter,
however, has little effect on f, as can be seen from Fig. 4
where 2s'2p' and 2s'2p' are calculated without con-
figuration interaction, whereas 2s'2p' and 2p" include it.
The self-consistent 6eld calculations bear this out too:
The Slater parameters change only very slightly when
con6guration interaction is included.

Our results, however, seem to show additional
features, not expected from a comparison of the linear
theory with the Bacher-Goudsmit theory. In particular,
we mention the following:

(a) The relation (7.11) which says that each s-elec-
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tron contributes to the parameters just twice as much
as each p-electron, arises naturally from a study of Fig.
4 for f It. is somewhat suggested for Gt too, but it has
no good experimental basis for that parameter.

(b) Gt(2s, 2p) calculated from the interaction of the
configurations 2P" and 2ss2P" s is not very different
from, and has the same n and q dependence as the
Gr(2s, 2p) expected from 2s'2p~ ' (though it does not
enter into the multiplet separations), provided Eq.
(7.8) is assumed. The latter can be regarded as con-
structed in analogy to Eq. (7.13) for f

(c) The linearity with q and the approximate inde-
pendence from m and e of the polarization parameter
A. is unexpected. A is negative, indicating an eGectively
attractive interaction.

These are some of the points that are raised by the
present investigation and which need to be understood
and clari6ed. To what extent some of these results are
of an accidental nature can perhaps be learned from
further analyses of this type, e.g., by a study of the
second short period. Also, the parameters A will have
to be investigated and their dependence on m, e, and j
will have to be checked. The more difIicult problem of
the long periods will probably be easier to attack, once
the problems of s and p electrons are resolved.
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Hfs Separations and Hfs Anomalies in the 'P; State of Ga", Ga", Tl'", and Tl'"f~
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(Received August 17, 1955)

By use of the method of atomic beam magnetic resonance, the ground-state hyperhne structure splittings
in the two common gallium and thallium isotopes have been measured. The measured values are: av(Ga+)
= (2677.9875+0.0010)X10' sec ' av(Ga") = (3402.6946&0.0013)X10' sec ' av(Tlw') = (21 105.447
&0.005) X10' sec ', and Av(T)so') = (21 310.835a0.005) X10' sec '. A comparison of the ratio of the dipole
coupling constants in the ground state of the two isotopes with the ratio of the nuclear gl factors yields the
hfs anomaly. Theoretical and experimental values of the anomaly are compared.

INTRODUCTION

ONSIDERABI E success has been achieved in~ explaining the hfs anomaly in atoms whose ground
states are in an S~ con6guration. Bohr and Weisskopf'
have explained the observed anomalies as a consequence
of the penetration of the external unpaired electron into
the nucleus. The theory of Bohr and Weisskopf predicts
an anomaly for a I'~ configuration which, however, is
considerably smaller than the anomaly for a S~ con-
figuration, since the amplitude of the unpaired electron
wave function at the nucleus is much less for I' than for
S states. Up to the present time no critical measure-
ments have been made of the hfs anomaly for atoms in a
I'~ state. In order to test the applicability of the theory
to such atoms, the hfs of the stable isotopes of gallium
and thallium has been measured. A comparison of the
ratio of the magnetic interaction constants as observed
for two isotopic atoms in the same state with the known
ratio of the nuclear gyromagnetic constants gives the

t This work was supported in part by the Office of Naval
Research.

* Submitted by A. Lurio in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy of pure science at
Columbia University.

f Present address is Department of Physics, Yale University,
New Haven, Connecticut.' A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).

hfs anomaly. Both gallium and thallium have two com-
monly occuring isotopes and are, therefore, suitable for
a measurement of the anomaly; for gallium the spin of
both isotopes is ~ and for thallium it is —,'.

In both gallium and thallium the atomic ground state
arises from a single I' electron outside of a closed (2s)s
subshell. This leads to a fine structure doublet of which
the I'~ is the lower-lying level. To an excellent approxi-
mation the energy levels of gallium and thallium in this
state in a magnetic field are given by the Breit-Rabi
formula. They are shown in Figs. 1 and 2. Small second-
order corrections have been given by Clendenin' who
has shown that the zero-field hfs splitting Av may be
written as follows:

where the (a"') term is the correction term arising from
the perturbation by the 'P~ state, separated from, the
'P~ state by 8.

This correction term is of interest here in that Av does
not arise solely from the magnetic dipole interaction
constant u" in the P~ state. From Clendenin's expres-
sion for the (a'") term it is found that a" is increased by
0.49 kc/sec and 0.79 kc/sec for Ga" and Gar' respec-

s W. W. Clendenin, Phys. Rev. 94, 1590 (1954).


