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state. In order to get an assignment J=S/2, odd parity,
for this state using the Austern-Butler-McManus
theory, it is necessary that l=0 or 4. l=0 is ruled out
because the angular distribution is clearly not peaked
forward, while the first lobe of j4(ka) with a reasonable
choice of nuclear radius, occurs at much too large an
angle.

If the restriction J„=5/2 is removed, then one can
make a parity and angular momentum assignment
consistent with that of Ribe and Seagrave by choosing
l= 2. This yields J„=s, s, 7/2, 9/2 odIE Parity.

It is clear that js(ka) will not fit the data as well as

jI(ka); however, it is not certain that the present
status of the theory allows one to make a clear
distinction.
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The formal methods for the quantum-mechanical treatment of Coulomb excitation discussed earlier are
here applied to obtain numerical results for the electric quadrupole case. Tables of the excitation function and
the directional correlation parameters are presented and discussed for a wide range of their arguments.

V

IlVTRODUCYION

'HE electric quadrupole (E2) transition is usually
the most strongly favored transition in the

Coulomb excitation process' and at present one of the
most interesting from an experimental point of view.

Analysis of the experimental data' calls for an accurate
treatment of the quadrupole excitation, for both the
total cross section and the directional correlation

parameters. The semiclassical approximation' does not
lead to suKciently accurate results over the entire ex-

perimental region. ' In this paper numerical results for
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the quantum-mechanical treatment of the electric
quadrupole excitation are presented. These results are
obtained through the application of the formalism and
mathematical techniques for the general multipole in
Coulomb excitation, discussed earlier by Biedenharn,
McHale, and Thaler. ' Subsequent work will treat other
pure multipoles as well as the cases of mixed transitions.

Results are given for the excitation function and the
correlation parameters a2 and a4 for values of the argu-
ments in the range 0.1 ~& g ~& 15, 1 ~&p ~&1.4, where
'/i= ZIZ2e'/k'vinttiaf and p kintttaf/kfinaI Th—i»ange covers
energy losses of up to 50% for all energies of experi-
mental interest. Numerical values for computing the
total cross section may be taken from Table I. Values
for the particle parameters a2 and a4 are presented in
Tables II and III. These values are plotted in various
ways in order to exhibit the general behavior in any re-
gion of interest. Such plots should prove helpful in
suggesting interpolation procedures.

The limitations of the present treatment have been
discussed in I. Of these, the neglect of center of mass
corrections is probably the most serious. The results
presented below are accordingly most accurate for
medium and heavy target nuclei. Neglect of retardation
is better justiIjed for quadrupole than other multipole

' Biedenharn, McHale, and Thaler, Phys. Rev. 100, 3/5 (1955).
This paper is 'referred to as I in the text.
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TABLE I. The excitation coefFicient co es p, g. The coefFicient ao is tabulated for representative values of its arguments. The entries are
presented as four-digit numbers followed by the powers of ten which multiply them.

1.01 1.02 1.03 1.04 1.05 1.075 1.2 1.3 1.4

0.1
0.5
1.0
1.5
2.0
3.0
5.0
8.0

10.0
15,0

9.675
5.170
2.487
1.342
8.125
3.806
1.401
5.422
3.425
1.422

—2-2—2—2-3—3—3—4—4—4

9.866
5.256
2.520
1.3S6
8.194
3.811
1.368
4.955
2.935
1.006

—2-2—2—2—3—3-3—4

—4

1.005
5.343
2.552
1.368
8.227
3.773
1.281
4.202
2.282
6.096

—1-2—2—2—3—3—3—4
4—5

1.025
5.430
2.581
1.376
8.210
3.686
1.183
3.379
1.659
3.362

—1—2-2—2
«3—3-3—4—4—5

1.043
5.514
2.605
1.377
8.134
3.555
1.058
2.607
1.148
1.744

—1-2—2—2—3—3
«3—4—4—5

1.092
5.723
2.652
1.365
7.795
3.122
7.387
1.215
4.006
2.868

—1-2
-2—2-3—3

—4-5—6

1,142
5.919
2.671
1.326
7.240
2.603
4.755
5.066
1.236
4.100

—1—2—2—2-3—3—4-5—5—7

1.350
6.524
2.509
1.014
4.374
9.278
5.318
9.111
6.440
9.421

—1—2—2—2—3—4—5—7-8
-11

1.566
6.807
2.105
6.578
2.151
2.538
4.288
1.135
2.293
1.455

—1—2—2—3-3—4-6—8-10—14

1.787
6.797
1.637
3.866
9.425
6.068
2.967
1.201
6.915

-2—2—3-4—5-7—10—13

TABLE II. The particle parameter e& ~s p, p. The parameter a2 is tabulated for representative values of its arguments. The entries are
presented as.four-digit numbers followed by the powers of ten which multiply them.

1.01 1,02 1.03 1.04 1.05

82

1.075 1.2 1.3 1.4

0.1 4.435 -1
0.5 2.279 —1
1.0 1.030 -1
1.5 5.309 —2
2.0 3.428 -2
3.0 3.074 —2
5.0 6.164 -2
8 0 1.283 —1

10,0 1.731 —1
15,0 2.783 —1

4.624 -1
2.596 —1
1.461 -1
1.074 —1
1.007 -1
1.232 —1
2.037 -1
3.267 —1
3.985 —1
5.423 -1

4.82S —1
2.927 —1
1.920 —1
1.654 —11/7121
2.170 —1
3.330 —1
4.800 —1
5.574 —1
6.984 —1

5.029
3.265
2.388
2.241
2.408
3.047
4.402
5.956
6.715
8,036

—1—1—1—1—1—1—1—1—1—1

5.238
3.608
2.857
2.815
3,073
3.843
5.306
6.854
7.575
8.765

-1—1—1—1-1—1—1-1
—1-1

5.757
4.453
3.980
4.142
4.550
5.487
6.987
8.377
8.976
9.933

—1—1—1—1—1—1—1—1—1-1

6.271
5.265
5.006
5.290
5.766
6.730
8.132
9.336
9.835
1.062

—1—1—1—1—1—1—1—1—1
0

8.183
8.002
8.090
8.431
8.844
9.561
1.046
1.116
1.143
1.184

—1—1—1—1-1—1
0
0
0
0

9.800
9.983
1.002
1.021
1.046
1.092
1.148
1.192
1.209
1 ~ 23$

—1—1
0
0
0
0
0
0
0
0

1.114 0
1.142 0
1.130 0
1.132 0
1.144 0
1.171 0
1.207 0
1.235 0
1.245 0

TABLE III. The particle parameter a4 vs p, g. The parameter a4 is tabulated for representative values of its arguments. The entries are
presented as four-digit numbers followed by the powers of ten which multiply them.

1.01 1.02 1.03 1.04 1.05 1.075 1.2 1.3 1.4

0.1 S.877
0.5 2.142
1.0 7.405
1.5 7.245
2.0 8.473
3.0 1.102
5.0 1.601
8.0 2.159

10.0 2.339
15.0 2,293

-2 6.569 —2—2 2.695 —2—3 1.354 —2—3 1.476 —2-3 1.716 —2-2 2.105 —2—2 2.515 —2-2 2.371 -2
-2 1.956 —2-2 4,382 —3

7.258
3.205
1.886
2.074
2.328
2.603
2.462
1.287
2.731-2.330

-2—2-2
—2—2—2—2—2—3-2

7.911 -2
3.641 —2
2.293 -2
2.470 —2
2.653 —2
2.655 —2
1.795 —2—2.638 —3—1.692 —2—4.870 -2

8.514 -2
3.988 —2
2.561 -2
2.668 —2
2.722 -2
2.374 -2
8.222 —3—1.923 -2—3.614 —2-7.110 -2

9.724
4.421
2.650
2.423
2,043
7.951—2.090—5.802—7.768-1.141

—2—2-2—2-2
—3—2-2—2-1

1.047
4.256
2.046
1.422
6.204—1.332—4.985—9.031—1.101—1.449

—1—2-2—2-3
-2
—2-2—1-1

9.117—7.227—3.961—5.372—6.899—9.729
10373—1.727—1.881—2.130

-2—3—2—2—2—2—1—1—1-1

2,812 —2—9.002 —2—1.141 —1—1.234 —1—1,360 —1—1.596 —1—1.913 —1—2.177 -1—2.288 —1—2.460 -1

—5.983—1.786-1.825—1.816—1.884—2.046
2%2 73—2.462—2.54o

—2—1—1—1-1-1—1-1—1

excitations, since the retardation corrections enter to
one higher order in (k„qr~„)'.

SUMMARY OF FORMULAS

The electric quadrupole excitation function in the
long-wavelength approximation is given by the fol-

lowing expression:

In this approximation the total cross section is

(k2) )2J~+I ) )SprZ~ZpMe'q '
p'p~ ~ =4g — ( p

I j) bp. (3)
&ki) & 2J;+I) E 5kgkpA'

The reduced radial matrix element in the long-
wavelength approximation is

l (l+1)(2l+1) 3 (l+2) (l+1)
bp Q —— IP(l l)+

(2l—1)(2l+3) 2 (2l+3) protons

where

~(&)=&p+&H pI'p+&&4I'4,

where u2 and a4 are particle parameters independent of
the nuclear transitions, the P„are Legendre polynomials,

The correlation of the emitted gamma ray with the
3l(l—1) incident particle is calculated from the formula6

)(I'(1+2, l)+ I'(l —2, l), (1)
2 (2l—1)

I(l, 1+m)= ' drr 'F((gg, kyar)I'~ (gp, k2r). (2)
0

6 L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25, 729
{iN3).
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where

as bs/——bP)

a4 b4/——bp,

(6)

(7)

3 (l—2) (l—1)(l)
b2=+ P(l 2, l)—

(2/ —1)'

l(l+ 1)(2l+ 1)(2/ —3)(2/+5)
P(l, l)

(2/ —1)'(2/+3)'

3 (l+1)(l+2) (l+3)
+ — P(l+2, l)

(2l+3)'

l(/ —1) (/+ 1)
6 cos(o l o l—2) I(l 2, l)I(l,l)—

(2/ —1)'

and the A, are the y —y correlation coeKcients' such
that' the y —p correlation is given by W(8)=P„A„F„.

The particle parameters are

METHOD OF CALCULATION

Since a reasonably accurate determination of the
coefficients a„requires consideration of a large number of
angular momenta, a direct calculation by numerical
integration over Coulomb wave functions of the many
integrals involved is clearly impractical. For this reason,
the analytic procedures development in I greatly facili-
tate the calculation. Three diferent methods were dis-
cussed in that paper: (a) use of the Appell Fs function
Lsee I, Eqs. (43), (44), and (101)], (b) use of the
Appell F2 function Lsee I, Eqs. (43)—(45)j, (c) use of
recursion relations t see l, Eqs. (65)—(67)j.

It did not prove feasible to employ the Appell F3
function method without modification, because the
double series involved does not converge suSciently
rapidly for large values of I. or p,. the convergence
criterion is (I.s+rfs)(p —1) &1. lt did, however, prove
possible to use the Appell Ii ~ function method. Since the
reduction of the integral I(/, l) =—(0,3; l} is not explicitly
given in I, the formula is given below:

9l(l 1)(l——2) (l—3)
P(l 2, l)—b4

16 l (2l+1) (2/ —1)'
P

L(/+1)'+n'j*'E(/+1)'+ p'g'j'(0 1 l+1)
l(l+1)'

36(2l+1)(l+2) (l+1)(l) (l—1)
P(l,l)

(2/+3)'(2/ —1)2

9(l+4) (l+3) (l+2) (l+1)
P(l+2, l)

(2l+1) (2/+3)2

(/+1)'+p'g' "
(1,1; /)

l(l+1) (2/+1) (l+1)

+pL(/+1)2+rfsgl( —1, 1; l+1) . (11)

l(l+1) (l+2) ks '(0,3; l)
6 cos( l oo l+2) I(l+2, l)I(/, l), (g)

(2l+3)' 2psrfs(2/+3)=—(1+p')+ (0,1; /)
2/ (l+1)'(2l+1)

up=—(ks t) 'bp. (10)

It is this dimensionless function uo rather than bo which
is tabulated below.

' S.P. Lloyd, Phys. Rev. 83, 716 (1951);D. L. Falkotf and G. E.
Uhlenheck, Phys. Rev. 79, 334 (1950).Additional references may
be found in reference 6.

(/+ 1)(/) (l—1)(l—2)—60 cos(o.l 2
—o.l) I(l,l)I(l—2, l)

(2l—1)'(2l+3)

(/+2) (/+1) (/) (/ —1)
+210 cos(o. l 2 0 4+2)

(2/ —1)(2/+1) (2l+3)

XI(l—2, l)I(l+2, l) —60 cos(o l
—o.l+2)

(/+3) (/+2) (/+ 1) (/)
X I(l,l)I(l+2, l) . (9)

(2/ —1)(2l+3)'

The particle parameters a2 and a4 are dimensionless
functions of the two variables p—=k;»t;, l/ks„, t and
rf=—ZtZ2es/Ao;„;„, t. The excitation function bp may be
expressed in terms of the dimensionless function

This reduction derives from the recursion relations I,
Eqs. (57)—(58}and obviates the necessity for the use of
the triple series for (0,3; l), since the function (0,1; l)
and (1,1; l) are double series, see l, Eq. (45). The em-

ployment of these double series in the F2 form proved
practical for the calculation of the a„ for energy losses
of less than about 20%. A serious disadvantage to this
procedure, however, is that it is exceedingly laborious.
Nevertheless, this method was useful for calculating a
few survey casess and for obtaining check values for
other calculational schemes.

The recursion relations could be used in conjunction
with the F2 method to decrease the labor somewhat, by
calculating with the F2 form for given values of l and
generating the function at intermediate values of / by
recursion. However, care must be taken not to place too
much reliance on the recursion procedure since the
diverging solutions to these relations unavoidably enter
and eventually dominate.

The method which was used in the present work has

' Goldstein, McHale, Thaler, and Biedenharn, Phys. Rev. 100,
43S (t955).
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not been given elsewhere andrepresents a Green's
function solution to the inhomogeneousrecurrencere-
lations given in I, Eqs. (65) and (67). The formula for
(2,3; l) is

(2,3; L) t—1 A (j)
(2 3; l) =f(I) = +

f(L) = fU+»
where

f(i)=p' I ~(I+ I+irt)/P(I+3 +iprt)[, (13)

I 0

I 0

(p&—1)$22

A (l)
4«+1) I I+2+iprl I I

I+3+iprt

X f [2p'1I'+p' (k+ 1 ) (2l+3)—l—1 j (0, 1; I+ 1)
2p[ I+ 1+irt[[E+1+iprt[(0,1; i)). (14)

It is readily seen that f(l) is a solution of the homo-
geneous recursionrelation,

I 0
a L0

I+1+irt
f(I+I)—p . f(I)

I+3+iprt
I I I I I I I I I I I I I

0.I 0,2 04 06 QS 1.0 2,0 40 6.0 80 100 I 5.0

and that Eq. (12) is a solution of the inhomogeneous
relation values of constant p.

where

+,(F;„G; F,G;+)—
GL(0, 3; I.+1)—GL+1(0,3;L)

p
(FLI 1GL FLGL+1)—

FL (0, 3 1 L+1)—FL+1(0,3; L)
G g

(FL+1GLFLGL+1)

F(I+1+iprt) 1
P —

p
E

F(i+1+iiI) l(l+1)(2l+1)

(l+ 1+irt) 1
G )——p I' (I+1+iprt) l(I+» (2l+ 1)

(18)

(19)

and

1f,= ——4'l(1+1)(2l+1)%24(1—p')'(0, 1; /), (20)

I+1+irt
(2, 3; I+I)—p(23 l)=A(l), (16)

l+3+iprt

where A (l) is defined by Eq. (14)
Similarly, the formula for (0,3; l) is

1 d G
(0,3; l)=F1

t= L+1 u; (F,+1G; F,G,+1)—

The use of this method merely requires the generation
of a few initial values of the functions (2,3; l) and (0,3; l)
and the calculation of the function (0,1; /) . Values for
(2,3; l) for low l were easily obtained using the F,
method. The function (0,1; /) is a reducible Appell
function and can

be�represented

asan
ordinary�hyper-

geometric function. '
lt is clear that this method has several important

advantages. First, the amount of labor required in the
computation is reduced more than a hundred fold. This
circumstance arises mainly from the fact that the Appell
functions are exceedinglydBFicult to calculate incon-
trast to the ordinary hypergeometric function. second,
this method makes it feasible to calculate over a much
greater range of the arguments p, q . With this method,
one may calculate for energy losses of up to 75'Po for a
very wide range of values of &. Moreover, the attendant
numerical error is considerably reduced in thispro-
cedure. Unlike the recursion relations from which these
formulas derive, the error does not accumulate with
increasing /. Rather, the error in the function (—2, 3; I)
diminishes as / is increased and even errors in the starting
values become increasingly less important, since the
sum dominates the initial values. On the other hand the
error in (2,3; l) increases with / since the sum tends
eventually to cancel the initial value. Fortunately, this
is of little consequence, since the contribution to thee„
of the (—2, 3; l) dominates that of the (2,3; l) before

(21)
' A. J.F. Sommerfeld, Atomba44 N44d Spektralltw er4 (Ungar, New'
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I.2

I.O

0.9

0.8
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0.5
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I I I I i I i I I I

= 1.2
= 1,15

p= I.I

p= 1.075
= 1.06
= '1,05
= 1.04.

= 1.025

p= 1.02

-" I.OI5

p= 1.01

p= I.O

I.O 2.0 4.0 IO.O l5.0
'9

RESULTS

Some of the numerical results are presented in the
accompanying tables. The coefficients ao, a2, and a4 are
given to four figures in Tables I, II, and III, respectively;
the arguments p, g in these tables have the ranges
1.01~&p~&1.4 and 0.1&&g~& 15. It is believed that these
numbers are accurate to within one or two units in the
last place. The region of greatest inaccuracy is for p, p
large. In the region of interest for analysis of the present
experiments, ' vis. , 2 ~& g ~& 8, 1.02(p &1.2, the results are
believed to be accurate to four figures as presented.
Examination of the error introduced term by term in the
present calculation provided confirmation of this accu-
racy. Typical values were also checked independently
by means of the F2 and F3 methods.

The tables are supplemented by the accompanying
graphs which display some of the qualitative features of

IO

Fzo. 2. The particle parameter u2 vs q on a semilog plot for constant
values of p.

=0
=.2

mme Q

2

~a 4

the error in the latter becomes significant. Similarly, the
(0,3; 1) contains a part in which the error decreases
with / and a part in which the error increases with I, but
again the contribution of the former dominates that of
the latter before the error in the latter becomes sig-
ni6cant.

Initial values for the recursion were generated by
means of the F3 method rather than by means of the Ii 2

method because the F3 representation has the same
form for the different integrals involved Lsee l, Eqs.
(43), (44), and (101)j whereas in the Iis method the

(0,3;1) must be treated differently from the (2,3;I)
Lsee Eq. (11) and I, Eqs. (43)—(45)j.

0.2

Io 4=.5 5

a.75 --™75

IO
Q umwi Q

$= 1.5 -- i.5

X IP 2,Q mme 2P

X10~&25 -25

4
IO I I I 1 I II I I I I I I II+ I

O.I 0,2 0.4 0.608 ID 20 40 6,080 IGO ISO
'9

Fn. 4. The quantity p'eo vs p on a log-log plot for constant values
of the classical variable g. The curves are given for p ~&1.4, g ~& 15.
The dashed lines on the right represent the asymptotic values' of
these curves in the limit g~ cc, and are labeled with the value of
&. The. lowest three curves are scaled by diferent factors of ten, as
indicated in the Ggnre. (Note The ordin.a—te is incorrectly labeled
and should run from 10 ' to 10 '.)

0.1.

-O.I

-0.2

-0.3 I I I I I l I I i

O. l 0.2 0.4 0.6 08 1.0 2.0 40 6.0 8.0 10.0 15.0

FJG. 3.The particle parameter a4 vs p on a semilog plot for constant
values of p.

these results. In Fig. 1 the dimensionless excitation
coeKcient uo is shown as a function of g on a log-log plot
for constant values of p. In Figs. 2 and 3 the particle
parameters u2, u4 are plotted against logy for constant
values of p.

The very rapid variation of ao as a function of p, as
exhibited in Fig. 1, shows that care must be taken in
interpolating in Table I. Clearly, interpolation in p is
best accomplished by interpolating log@0. The particle
parameters as, a4 (see Figs. 2, 3), on the other hand, do
not vary nearly so rapidly as functions of q and are
more easily interpolated. For values of p&2, the func-
tions a2 and a4 are best interpolated with respect to g,
whereas for smaller values of the argument, the func-
tions are best interpolated with respect to logy.

The function ao for constant values of g is likewise a
rapidly varying function of p for large values of p, so
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that interpolation in p for large values of p is best
accomplished by interpolating logao, for small values of
p, however, uo is slowly varying and is easily interpolated
directly. The particle parameters a2 and a4, for constant
values of z are, on the other hand, slowly varying
functions of p, so that interpolation in p presents no
diKculties. Because of space limitations, plots of the
a„~s p for constant q are not shown.

It is seen in Figs. 2 and 3 that the particle parameters
a2 and a4 are especially sensitive to small changes in p
near the zero-energy-loss limit (p=1) for large ri. The
curves for a4 cross in Fig. 3 since a4 has a maximum as a
function of p for constant g.

As p approaches inanity and p approaches unity, the
function q'ao and the particle parameters a~, a4 become
functions of the single classical variable $=—tl(p —1). In
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FlG. 6. The particle parameter u4 vs p on a semilog plot for
constant values of the classical variable (.The curves are given for
p ~&1.4, g ~&15.

the classical limits are not extreme, this type of plot is
useful for interpolation.

The apparently anomalous position of the /=0 curve
in Fig. 6 follows from the fact that a4 has a maximum as
a function of $ for fixed tl. At rl = 15 this maximum lies
between /=0. 1 and )=0.2; at r1=1 the maximum is
between (=0 and )=0.1.

DISCUSSION

The eGect of increasing q is to enhance the contribu-
tions to the functions b„of the higher angular momenta,
shifting the peak contribution to a higher value of t. On
the other hand, the eGect of increasing p is to diminish
the importance of the higher angular momenta. Thus,
keeping q(p —1) constant tends to keep the summed
contributions of the various angular momenta roughly

FIG. 5. The particle parameter ug vs g on a semilog plot for
constant values of the classical variable g. The curves are given' for
p~&1.4, g~&15.

Figs. 4-6 are shown curves of these functions (i.e.,
rpao, as, as) plotted against logrl for constant values of $.
These plots for constant t indicate the manner in which
these functions approach their classical limiting values
as tl increases. The smaller the value of $, the more
rapidly is the limit approached as a function of q since
the classical limit implies p—+1, as well as g~~. The
classical limits for g'ao obtained by Alder and Winther"
are shown in Fig. 4. Classical limits for a2 and a4 are not
available at present, although extrapolation of the
curves in Figs. 5 and 6 should give good estimates of
these limiting values. As expected, Figs. 4—6 show large
deviations from the classical results for small values of g
and large values of p. In regions where deviations from

I K. Alder and A. Winther, CERN/TKA-AW-1, October, 1954
(unpublished).

0
0 2 4 6 8 IO I 2 IO I6 I8 20

e
FxG. 7. Increment of the excitation function b0 vs angular

momentum /. These curves are normalized to unity at l=0. For
curve A, p= 1.4, g= 2; for curve 8, p = 1.05, q =2; for curve C,
p= 1.1,q=4; for curve D, p= 1.05, g= 8; for curve E, p= 1.4, y= 8,
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FIG. 8. Increment of the function 02 vs angular momentum /.
These curves are normalized to unity at l= 0. For curve A, p = 1.4,
g=2; for curve J3, p= 1,05, g=2; for curve C, p= 1.1, g=4; for
curve D, p= 1.05, g= 8; for curve E, p= 1.4, g=8.

Similarly, Case II illustrates this same eGect for large
q=8.

For p i, the maximum occurs at l q. Moreover, it
is seen that the positions of the maxima depend pri-
marily on p and in general are not particularly sensitive
to the value of p. Case III shows the eGect of variation
in q for small p. It is again seen that the position of the
peak occurs further out for large q than for small.
Similarly, Case IV illustrates this same efI'ect for large
p= 1.4.

Case V shows the eGect of changes in p, q for a fixed
value of the classical variable $= g(p —1)=0.4. It is seen
that curves C (p=1.1, g=4) peak at lower values of 1

and fall off more rapidly than curves D (p= 1.05, g= 8),
as expected from the discussion above. Despite the

2,8

constant. This provides some indication of the utility of
the classical variable $= g(p —1).

The fact that large q implies high angular momenta is
due to the simultaneous effects of the barrier and
degeneracy in angular momentum. The eGect of the
increased barrier due to larger q is to diminish the
importance of the lowest angular momenta such that all
angular momenta below the barrier contribute roughly
to the same order. Thus, increasing q will increase the
number of /'s which enter significantly. In addition,
degeneracy favors the contributions of the higher
angular momenta by a factor of the order of l.

Large p, i.e., large energy loss, implies large decelera-
tions and hence small impact parameters. Thus, as p
increases for constant g, the contributions of the higher
angular momenta are increasingly suppressed. These
qualitative conclusions are not altered by the action of
the barrier on the scattered particle, despite the fact
that this eGect is in the opposite direction.

The qualitative considerations discussed above are
shown in Figs. 7—9. In these figures the increment to b„
is plotted as a function of /. Five cases have been chosen
as illustrations: (I) q=2, with p=1.4 (curves A) and
p=1.05 (curves 8); (II) q=8, with p=1.4 (curves E)
and p=1.05 (curves D); (III) p=1.05, with q=2
(curves 8) and r1=8 (curves D); (IV) p=1.4, with e=2
(curves A) and g=8 (curves E); (V) )=0.4, with
p=1.1, g=4 (curves C) and p=1.05, q=8 (curves D).
These curves have been normalized such that the
contribution for /=0 is unity.

Case I shows the effect of extreme variation in p for
small g =2. It is seen that curves A tail off more rapidly
than curves 8, in accordance with the arguments above.
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FIG. 9. Increment of the function b4 vs angular momentum /.
These curves are normalized to unity at l =0. For curve A, p = 1.4,
q=2; for curve 8, p= 1.05, g=2; for curve C, p= 1.1, g=4; for
curve D, p= 1.05, g=8; for curve E, p= 1.4, g=8.

dissimilar behavior of these two examples as functions
of l, the final values of the quantities q'a(), a~, and a4 are
roughly equal, vis. , 0.017, 0.75,. and —0.03 for C as
compared with 0.017, 0.69, and —0.02 for D.

The oscillations about zero of the curves in Fig. 9
indicate why the particle parameter a4 is generally
small.
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