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a threshold of 10.1 Mev by neglecting the lower energy
points, and a nuclear temperature of 1.17 Mev. Strag-
gling due to the reduction in energy from 31 Mev to
10 Mev probably explains part of the diGerence.

The data in Table II were obtained from two separate
bombardments. The absolute energy of the protons
was not known for the first bombardment; so these
data were fit into that of the second bombardment by
matching threshold energies. The absolute amount of
bismuth was known only for a few plates of Run I; so
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many of the energies.
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The qualitative features of the deformation energy of a charged drop are discussed with special reference to
the fission process. It is shown that, under conditions more general than the model of an incompressible liquid
drop with a sharp surface, the threshold energy for fission should be proportional to L(Z'/A)e —(Z'/A))'
near the limit of stability (Z /A)o. Similarly, if instability against asymmetry sets in below (Z /A)„ the
degree of asymmetry of the asymmetric saddle-point shapes which appear should be proportional to
L(Z'/A), —(Zs/A))& and the difference between the symmetric and asymmetric thresholds should be pro-
portional to I (Z'/A), —(Z'/A))'. Some factors governing the stability against asymmetry of a strongly
deformed drop are discussed qualitatively.

A CCORDING to the liquid-drop model, the process
of 6ssion is the result of a competition between

the long-range electrostatic repulsion and the attractive
short-range nuclear forces, idealized in the model as a
surface tension. ' Of importance for the theory of fission
is the knowledge of the potential energy of such a
system as a function of deformation. The present series
of papers will be concerned with this problem. In the
first part, we shall consider the qualitative features of
the deformation energy.

A quantity of importance for the theory of fission is
the ratio of electrostatic to surface energy which, for a
nucleus, is approximately proportional to (Z'/A&) —:A&

=Z'/A. A charged drop for which this quantity is less
than a certain critical value [Z'/A ((Z'/A)sf is stable
against small deformations and the potential energy is
an increasing function of the deformation. I"or larger
distortions, a maximum will occur and the energy will

decrease thereafter. The least energy necessary to
divide the drop (corresponding to the height of the
barrier along a suitable deformation path) is of im-
portance in the discussion of 6ssion thresholds. The
shape of the drop when in the con6guration of unstable
equilibrium corresponding to the top of the barrier is
also of interest, especially in connection with a dis-
cussion of 6ssion asymmetry.

A general deformation of the drop may be specified
by a number of deformation coordinates (in general

'
¹ Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

infinite), which, in the case of an incompressible drop
with a sharp boundary, could be taken as the coeffi-
cients in the expansion of the surface in spherical
harmonics. Of special interest are configurations for
which the potential energy is stationary with respect
to all small distortions. It is convenient to restrict our
attention from the beginning to con6gurations for
which the energy is stationary with respect to all except
a limited number of deformation parameters. In the
case of axially symmetric configurations one may, for
example, eliminate in this way all but two coordinates,
one symmetric and one asymmetric, the latter specify-
ing deviations from reQection symmetry. The deforma-
tion energy is then explicitly a function of two co-
ordinates only and its properties can be discussed
conveniently with reference to a deformation energy
surface in three dimensions. The points where the
energy is stationary with respect to the remaining two
coordinates specify configurations for which the energy
is stationary with respect to all deformations. The
choice of the two coordinates is in principle arbitrary,
but in practice it is advantageous to choose them so
that they are capable of describing qualitatively the
division of the drop into two equal or unequal frag-
ments, the eliminated parameters being concerned with
relatively less important features of the con6guration.
In the case in which the deformation parameters are
the coefficients n„ in an expansion of the surface of the
drop in I.egendre polynomials, a convenient choice is
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Fio. 1. (a) Qualitative appearance of the function f(as), specify-
ing the deformation energy for symmetric distortions. The point
0,2 ——u specifies the symmetric critical shape. .', (b) Qualitative
appearance of the function g(am), specifying the stiffness against
an asymmetric distortion. At o.2=b, stability against the type of
asymmetry specified by 0.3 is lost.

n2 and a3, the symmetric and asymmetric distortions
against which the spherical shape erst becomes unstable
with increasing Z'/A Lat (Z'/A)o and (7/4)(Z'/A)s
respectively in the case of an incompressible dropj.

Consider the deformation energy of a drop as function
of two such coordinates, E=E(ns,ns). In what follows
we shall not restrict ourselves to the case of an incom-
pressible drop with a sharp surface, but for the sake of
dehniteness we are using the notation n2 and o.3 appro-
priate in that case. Most of the considerations which
follow would hold for more general but qualitatively

~ Oq q 4

similar coordinates 0.'symmetric and O.asymmetric-

For shapes whose deviation from reQection symmetry
is small, we may write

E(as,ns) =f(ns)+as'g(as)+higher powers of rrs' (1).
H terms beyond o.3' are neglected, the deformation
energy surface is specified by the two functions f and g
of the single variable ns. The function f(ns) gives the
energy of purely symmetrical distortions and its qualita-
tive behavior is shown in Fig. 1qa). The quantity
f(crs a), where a co——rresponds to the maximum in f, gives
the energy required to divide the drop under the restric-
tion of symmetric distortions. %e shall call it the
symmetric threshold energy and the shape specified by
n2 ——a the symmetric critical shape.

The function g(n&) specifies the stability against an
asymmetric distortion of a symmetric shape described
by e2. The asymmetric distortion contemplated is that
specified by o,3 with all other asymmetric coordinates

chosen so as to make the energy a minimum. For a
drop whose charge is below the critical value for
instability against n2, the initial shape F2=0 is stable
also against all asymmetric deformations, so that
g(crt=0) is a finite positive quantity. With increasing
symmetric deformation this stability may be lost.
(This is, for example, the case for a drop with a suK-
ciently low charge. See below. ) The qualitative appear-
ance of g is then as shown in Fig. 1(b). The point
0.2=b, where g changes sign, speci6es the configuration
in the sequence of symmetric shapes where stability
against the asymmetric distortion previously discussed
is erst lost.

The functions f and g, as well as the critical deforma-
tions a and b, are functions of Z'/A. For Z'/A = (Z'/A) s,

f has a point of inQection at as=0 and a((Z'/A)s) =0.
With decreasing Z'/A the threshold energy f(a) wiU

increase. Vile shall now show that the occurrence of a
point of inflection in f for x—= (Z'/A)/(Z'/A) s ——1 leads
to a (1—x)' dependence of the threshold on x for
(1—x)«1.

If, for 0.2((j., we write

f(~s) = sf"(0)~s'+ sf"'(0)~s',
then

f'(~s) =f"(o)~s+ sf"'(0)~s'

Using f'(a) =0, we may write the threshold f(a) as

f(~)= i'sf'"(0)~'.—

Expanding a(x) in powers of 1—x, Lu(1) =Oj, we find

f(~) = t'sf"'(0) L~'(I)1'(I-*)'
=c L(Z'/ )o—( '/ )j',

where c~ is a constant.
This is the well-known liquid-drop result derived

here in a more general way.
The critical deformation n2=a is an increasing func-

tion of (Zs/A)z —(Z'/A) and, for some sufficiently
small Z'/A = (Z'/A)„ it becomes equal to b and then
exceeds it. This follows from the fact that the sym-
metric critical shape for Z'/A =0—the configuration of
tangent spheres' —is unstable against asymmetry. For
Z-'/A=(Z'/A)„ the symmetric critical shape is just
unstable (or just stable) against asymmetry and for
Z'/A ((Z'/A), the instability occurs even before the
maximum in f(cts) has been reached. It is then possible,
by making use of asymmetric distortions, to accomplish
the division of the drop with an energy smaller than the
symmetric threshold energy. The situation is illustrated
in Fig. 2(c). The division of the drop is achieved with
least energy by going over one of the two asymmetric
saddle points which have become available. The posi-
tions of the saddle points in the o.2, e3 plane are found
by considering BE/Bert evaluated on the line ns=b.
This quantity, equal to f'(b)+assg'(b), is positive for
as ——0, but, since g (b) is negative, it will change sign
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at some e3 given by

(-.)..=~L-f (b)/g (bn».

This equation de6nes the positions of the saddle points.
The amount by which the asymmetric threshold

energy lies below the symmetric threshoM is f(a) —f(b),
which, for small u—b, is given by

f(~)—f(b) = —kf" (~) (~—b)' (6)

Similarly, the degree of asymmetry of the asymmetric
saddle points is given by

(~s)..p. =+D'"(~)/a'(~))'(~ —b)'- (7)

If we expand a(x) and b(x) around

x= x,= (Z'/A). /(Z'/A) p,

we 6nd that

a—b=
I a'(x,)—b'(x.))(x—x,), for x—x,«1.

Hence,

f( )-f(b) = —:f"( )Lb (*.)-"(')j (*.—.)
=csL(z'/A) —(z'/A)3' (g)

and

(b)

{c)

(~s)..p.=~U" (~)/g'(~) 3»I:b'(x.)—o'(x.)3»(x.—*)'
=+.,I (z/A), —(z/A)~», (9)

where c2 and c3 are positive constants.
Similarly, the maximum in the deformation energy

along a deformation path for which the degree of
asymmetry in the neighborhood of the maximum is
held fixed at some value ns (and which would be the
threshold energy for a division constrained to proceed
in this way) is found by expanding E E(rrs b) to- ——
second powers in a2—b and determining the maximum.
For the energy excess of such a threshold over the
asymmetric threshold E(b), expressed in units of the
maximum excess E(a)—E(b), we 6nd the expression

~E/LE(~) —E(b)j= (1—s')',

where s=ns/(mrs)s. p. is the prescribed degree of asyrn-
metry in units of the asymmetry associated with the
smaBest threshold.

It will be noted that the forms of Kqs. (4), (g), (9),
and (10) follow from the qualitative forms of f and g
(the presence of a point of inQection in f and a zero
in g) and have, therefore, more general validity than
the model of an incompressible drop with a sharp
surface. For example, the generalization to include a
nonuniform density distribution, or even the inclusion

FIG. 2. The qualitative appearance of the deformation energy
surface, considered as function of a symmetric coordinate 0.2 and
an asymmetric coordinate 0,3. A map of the surface and a relief
drawing is shown in each of the following three cases: (a) (Z'/A)){Z'/A), . The threshold energy is determined by the symmetric
saddle point, stable against asymmetry (b) (Z'/A. ) = (Zs/A), .
Stability of the symmetric critical shape is lost (c) (Z'/A).
({Z'/A), . Two asymmetric saddle points have appeared, with
energies below that of the symmetric critical shape.
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of additional forces varying smoothly with Z and A,
would acct only the numerical values of the constants
in the above equations.

The relation of the trends with Z'/A suggested by
Eqs. (4), (8), and (9) to experimental asymmetries and
thresholds has been considered by the author. " In
connection with the semiempirical formulas discussed
there, it may be remarked that the double-humped
function —(1—s')' of Eq. (10) [or even a function of
(1—s')'] does not provide a good representation of the
observed logarithmic fission yieM curves, the decrease
from the maximum on the asymmetric side being too
rapid compared with that on the side towards sym-
metry. The observed asymmetry reQects the anal result
of tendencies during the whole division process up to
the point of separation of the fragments, and the
characteristics with respect to asymmetry of configura-
tions other than those near the saddle-point shape will

play a role. For example, if asymmetry could result in
a sufficiently pronounced lowering of potential energy
in the later stages of fission, the final division might be
asymmetric even though the saddle-point shape was
symmetric. (See, for example, Hill and Wheeler. ')

The quantitative discussion of the stability against
asymmetry of a charged drop and the estimation of the
critical (Z'/A), will be undertaken in a later paper.
Here we shall confine ourselves to some qualitative
remarks about the factors which are at play in deter-
mining the stability or instability, especially in the
case of shapes for which the two fragments have be-
come discernible. (Configurations near the spherical
shape are stable against asymmetry and instability
would not occur in the early stages of the fission of a
charged drop. ) Such configurations will occur as the
critical shapes for low x values (less than about 0.6)
and, for higher x, in the later stages of fission after
passage over the top of the potential barrier.

For completely separated fragments of fractional
masses V and W (V+W=1), the potential energy is the
sum of the separate surface and electrostatic energies
and is proportional to V'I'+W'i'+2x(V'i'+W''). In
the same units the electrostatic interaction energy of
the two fragments at a distance d is (5/3)VWE/d,
where A=radius of the undivided drop. The sum of
these expressions p/us a correction for the neck con-
necting the two fragments represents the main features
of the potential energy of a strongly deformed drop.
Considering asymmetric distortions which change the
ratio V:8' without changing the eGective separation
between the fragments, the stability or instability
against asymmetry will be related to the sign of

' W. J. Swiatecki, Phys. Rev. 100, 936 (1955).
3 W. J. Swiatecki, Phys. Rev. 101, 97 (1956).

D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

O'E/8V' evaluated at V=-,'. Neglecting the effect of
the neck on the question of stability against asymmetry,
we find

where X is the distance d, measured now in units of
2'"E, the separation between the centers of two equal
tangent spheres. The first term (—1) represents the
tendency towards asymmetry associated with the fact
that a symmetric division creates the largest amount of
new surface energy; the second term (5x) comes from
the opposite tendency in the electrostatic energy of
separated fragments and the last term expresses the
modification of this caused by the interaction energy
which is greatest for equal fragments. According to
Eq. (11),a preference for asymmetry would be expected
in the first place for low x, but will persist also for higher
x values in configurations for which the interaction
energy between the fragments is suKciently large com-
pared to their self energies. The relation between x
and X obtained by equating to zero Eq. (11) suggests
that the critical value of x at which O'E/BV' changes
sign depends sensitively on the separation between the
fragments for X values around i.

It may be remarked that, except for shapes whose
energy is stationary with respect to all deformations,
it is always possible to find an asymmetric distortion
which decreases the energy Lessentially by choosing the
asymmetric distortion to contain a sufhcient amount
(in second order) of the deformation with respect to
which there is no equilibrium]. The discussion of the
stability against asymmetry of shapes other than equi-
librium shapes can, therefore, be made only with
reference to a more or less arbitrary restriction on the
type of asymmetric distortion considered. The dis-
cussion may still be useful qualitatively, but the results
are relative to the restriction imposed. In the example
previously discussed, this restriction was in the form
of the constancy of the effective separation d between
the fragments. If d is made a function of the fragment
ratio, the stability against asymmetry will depend on
this function. The example of touching spheres, dis-
cussed for instance by Frankel and Metropolis, ' defines
one such function through the geometrical requirement
of the tangency of the fragments, which implies that
the separation between their centers is greatest in the
symmetric configuration.

Further discussion in the light of quantitative esti-
mates is reserved for later.
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~ S. Frankel and ¹ Metropolis, Phys. Rev. 72, 914 (1947).


