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The results of an earlier paper are applied to magnetic resonance transitions in the ground state of K.
Formulas are obtained for the parameters characterizing single- and multiple-quantum transitions, and
the values of these parameters are calculated for a Zeeman field corresponding to ¥=0.21135.

N an earlier paper,! the author has calculated a
general expression for the resonance transition prob-
abilities in a rotating field which is applicable when the
widths of “allowed” lines are small compared to their
separation.? In the present paper, we shall evaluate the
parameters involved for AF=0 transitions in the
ground state of potassium, in order to facilitate com-
parison with the results of Kusch.?

1. MATRIX ELEMENTS OF I, AND F, IN THE
PRESENCE OF A CONSTANT MAGNETIC
FIELD, H,

We shall deal here with a system whose total angular

state, we may write for the perturbed Hamiltonian:
3e1=3Cot+ (£)[AW/ (i+3) 1- I+ (gruoH ./ B)F .

+ I:(gJ—gI)l‘OHz/h]]z’ (2)
where (4=)AW is the hyperfine separation (AW being
taken as positive). The symbol (&) will be used
throughout this paper to denote the sign of the hyperfine
separation.

The eigenstates of 3¢; may be found in a straight-
forward manner.* They are

J ('Yy 'L+1)’ m) am(x) ,71 1‘+27 m>
+(:l:)b (x) l'Y? 1’_77 m>)

momentum is given by . . 3)
F=1+7, (1) 1O i=3), my=—(£)bn(®) |7v, i+3, m)
where I?=1(i+1), J2=j(j+1), and for the moment where +an(®) |y, i—3,m),
we shall take j=3, and ¢ arbitrary. an=1
If we consider only perturbations involving the } for |m|=1i+3%, (4a)
various angular momentum substates of a given atomic bn=0
{[1+(:t)2mx/(i+%)+x2]*+[1+ (F)max/ (i+3)1)*
A=
2[1+ (£)2mx/ (i42) a2
[i G2/ G+ +T il @
- l[1+(:h)2’¢t90/(¢+%)+962]L (14 (£)ma/ (i4-3) ] }*
" 201+ () 2ma/ (i4-1)+7
and and
x=(gr—gr)ueH ./ AW. ©) AW
The corresponding energy values are Wi(v, i3, m)=Eot+ (i)—z‘{ _Zi-l-l
W i+, m= Bk ()| ;
y ¥, M)= -1
AR ’ 2 | 21 +(¢) mak (:l:)[ ] }
) 2gr (14 )mx)] gr—gr
&+ )——mx =+ 1
gr—gr i+3 for lml =i+3, (6b)

for |m|=i+3%, (6a)

1H. Salwen, Phys. Rev. 99, 1274 (1955), which is hereafter
referred to as I. When equations in I are quoted, the equation
number is preceded by a Roman numeral I [e.g., Eq. (1.25) refers
to Eq. (25) of I]. The notation of the present paper is in all cases
based on that of I except that the total angular momentum is
denoted by F=I+J rather than J=J;+4Jo+- -

2 The results of I are applicable when the constant C-field is
homogeneous and the rf amplitude may be considered to jump
discontinually from the value zero outside the hairpin to a
constant value inside the hairpin. Effects due to the continuous
build-up of the rf amplitude near the ends of the hairpin will be
considered in a later paper.

3 P. Kusch, following paper [Phys. Rev. 101, 627 (1956)7].

where, as mentioned before, the (&) in parentheses
refers to the sign of the hyperfine separation.

In calculating transition probabilities, we need the
quantities

bha(y, fym; v, f'ym’)
= (uoHo/1){(v,1), m| grlstgsTz| (v, 1), m')
= (:U'OHO/h)<('Y7f)) mlgIF=+ (gJ—"gI)JZI ('Y’f,)) m’)’
(1)

4 See Appendix. Also see Millman, Rabi, and Zacharias, Phys.
Rev. 53, 384 (1938).
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where H, is the amplitude of the rotating magnetic
field [see Eq. (I. 90)]. Thus, we need the matrix ele-
ments of J; and F in the representation given by the
states | (y,f),m). We may use various results of Condon
and Shortley® to obtain the matrix elements of J, and
F. for the representation in which F? is diagonal. In
this way, we find that the only nonzero matrix elements
of F, are [reference 5, Eq. 33(4)]

(7;f7mIFII'Y:f} m+1>= <7,f: m—+1 lFa:!'Y;fym>
=3[ (f—m)(f+m+1)]}, (8)
and the nonzero matrix elements of J, are [reference 5,
Eqgs. 9(11) and 103(2a,b)]]
(v, 1%, m| Ty, i£3, m+1)
=y, i3, m+1|J.|vy, i+3, m)
==+[37%/(2i+1) L(i=3—m) G£3+m+1) ],
(v, i£3, m|J.|y, iF3, m+1)
={y, iF%, m+1|T,|y, i+%, m)
==x[3%/(2+ 1)L G+5Fm) (i+3F (m+1)) ]
We may then combine Eqs. (8) and (9) with Eq. (3)
to get
(O, i), m| Fs| (v, i£3), m+1)
=((v, i}), m+1|Fa| (v, i£3), m)
=37{cn" (%)Cm1* (®)+ A (%) dmia™ ()},

©)

SALWEN

where
Cnt (%)= am[i+FEm],
At (x)=bn[i+3tm ]k
Because of the factor 2(2¢+1) in the denominator of

the matrix element of J,, it is convenient to define the
b of Eq. (7) by

(12)

(gr—gn)ueHo

5 ,
2(2i+1)2%

Il

(13)
so that
a(y, i3, m;y, i3, m+1)
=a(y, i3, m+1;y, i3, m)
=t[enF (£)dnE [omprt= (£)dmaT]
+LQ2i+1)g1/ (g7~ g1) em emprE+dnEdmia™ ),
aly, i3, m;y, iF3, m+1)
=a(y, iF3, m+1;v,i+t3, m)
==+ [Cm:F:F (:l: )dm:b][cﬂ&l;q: (:!: )dm&-l:t]
F(2)[(2i+1)g1/ (gr—er)]

X [Cm:der}-li_ dm:tcm-}-lqzj-
2. APPLICATION TO TRANSITION PROBABILITIES

In I, we have shown that when the widths of the
Am=1 lines are small compared to their separations,
the transition probability near any resonance may be
given by a formula similar to the ‘“Rabi flopping for-

(14)

. . (10)  mula.”® We shall summarize the results here.
(o, ?T%).’ :;r:n II)FZI_(:’I ﬁf%) (’ m?::lf) ) For two states

=\r,tTrz),m z| Y, 1=3), ™ _ —

=TF (£)3%{cnT @)dmnirE (@) — dnE®)cmps™ )}, |a)= | (Ya,fa), ma), and |b) | (vs, ), ".%%

d there will be resonance near the frequency v, given by”
o L (e )= L1 (Y o) =W foyme) . (15)
(o, zif)j mll Tl (v, i£3), m+ 11> The probability that an atom or molecule initially in

=((y, i=£3), m+1|J| (v, i%3), m) one of these states will undergo a transition after being

=37/ (2i+1) Hcn™ (@)F (£)dnt(x)} in the rf field for a time 7 will be [Eq. (1.85)]

X{emirt (@)= (F)dma™ (1)}, a1 bas?
((y,i3), m|Ta| (v, iF3), m+1) P=-— )
(Vab _V)2+bab

=((v, iF3), m+1|7.| (v, i3), m)

; Xsin*{m|ma—ms|[ (var*—v)*+ba’Jir}, (16)

= = [39/ (it 1) o™ () () () sin{r| o me| L =)+ B,

X{Cmp1T () F (£)dmt (%)}, where, for my=ma+k, Eq. (I. 104) gives
OVab= Vab™ — Vab '
la(n',a)|? la(n,a)|? a(n'; 8) |2 |a(n';5)]?
=F{/k)y X ——HF _— 2 —— —  (17)
m =ma—1 Vgn'—Vap W =ma+l Vep— Vgn' W =mb—1 Vppr—Vap m =ms+1 Vap— Vpn’
and Eq. (L. 105) gives
2(8/2m)a(a; b) for k=1
bap= - ale;n)al@ ;7)) - -a(n®D;b)
2/k) (b/27)* )3 — for £>1. (18)
mmekl  (Var— venr) (o= vomer) -+ - (Vab— Vonov

m!’ =mp+2

mE=D) =mqg+(k—1)

5 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1951).

¢I. I. Rabi, Phys. Rev. 51, 652 (1937).

? vab is the frequency of the rotating field and may be positive or negative.
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TasLE I. Eigenvalues and coefficients of the eigenstates (x=0.21135).
m=2 m=1 m=0 m=—1 m=—2
W (2,m)— E, 0.4806451AW 0.4353463AW 0.3860452AW 0.3314465AW 0.2693549AW
W (1,m)—E, —0.6853762AW —0.6360452AW —0.5814166AW
am(x) 1 0.9966377 0.9945821 0.9949101 1
bm(x) 0 0.0819345 0.1039542 0.1007659 0

In these equations, we have used notations of the sort,
]n,>= I (7,7f,) 7m,)7
(' =m0V s e = [ WA (Y, f ) = Wiy, fm"") ]
=[Wi(n)=Wi(n")],
Qp’;n’’ :—'a(’ylyflym,; 'Y">f”:m”)'

The a’s are defined by Egs. (7) and (13) above.
We are thus in a position to apply the results of Sec. 1
to a particular problem.

(19)

3. GROUND-STATE TRANSITIONS IN K3

Experiments on the ground state of K% give?
Jj=%
gJ/g1= —14 130,
(£)AW /h=-+4461.723 Mc/sec.
The possible substates (f,m) are then f=2, m=0, =1,
+2and f=1, m=0, &=1.
Equations (15), (17), and (18) now enable us to
write down expressions for vmiims, 0%fmsrm, and

bfmiym. In the case of the transition (2,2)«(2,0), for
example, these are

va,52,0= (1/2h) | W1(2,2) —W1(2,0) |,
]a(zyl; 272)12

y—3
=73

(20)

(1)

8y 2.2, 0= —%(b/2m)?

V2, 22,172,220

le(1,1;2,2)[*  |a(2,—1;2,0)[*
+ —
V2, 21,17 V2,2;2,0

V2,0;2,—17 V2,220

!0[(1,—1;2,0),2 [0&(2,1, 2’0)’2

V2,0;1,—17"72,2,2,0 72,220 V2,0;2,1

la(1,1;2,0)|2 :
V2,220 72,0;1,1 ’

a(2,2;1,1)a(2,1; 2,0)

(22)

be, %;2,0= (b/27)*

V2,2;2,07 V2,0;2,1

a(2,2; 1,1)a(1,1; 2,0)
4

. (23)

V2,922,0— V2,0;1,1

In order to facilitate a comparison with the results of
Kusch,? it is useful to evaluate the various parameters

8 P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).

at a field corresponding to x=0.21135. This is done in
Tables I and II.

Table I contains W,(f,m)— E,, ax(x), and b,,(x) for
#=0.21135. Table II contains vu;rms, a(fym; f'ym’),
0Vtmirmy and bymiprm. The quantities 6vpmme and
bym;s'm depend on the rf amplitude through the quantity
(b/2m)="[(gs—gr)meHo/2(2i+1)k] defined in Eq. (13)
above, where H) is the amplitude of the rotating field.
If H. is the amplitude of an applied oscillating field,
H,=H,/2.

4. DISCUSSION

The succeeding paper by P. Kusch? contains a com-
parison of the above results with experiment. It will be
seen from that paper that, while good agreement is
obtained for low rf amplitudes, there is a substantial
discrepancy at high rf amplitudes. We attribute this
disagreement to the failure of the theory to take into
account the continuous buildup of the r.f. amplitude at
the ends of the hairpin (see reference 2). Discussion of
effects resulting from the continuity of the oscillating
field is deferred to a later paper.

TasLE II. Parameters characterizing magnetic resonance transi-
tions in the ground state of K® at a field corresponding to
x2=0.21135. The quantities é» and b are given only for the AF=0
transitions. All frequencies are given in megacycles per second.

fom; f'im’)  vpmyprme a(fym; f7m)) Svpmifrme bym; frme
(2,25 2,1) 209155 1.708882  —2.796 (b/2m)? 3.418 (b/2r)
(2,15 2,0) 22,7635 2.276473 —1.009 (b/2m)? 4.553 (b/2x)
(2,05 2,1 25.2095  2.519920  0.540 (b/2m)? 5.040 (b/2w)
(2,-1;2,-2) 28.6691 2338321  1.819 (b/27)? 4.677 (b/27)
(2,2; 2,0) 21.8395 0 0.290 (b/2m)? 4.217 (b/2x)?
(2,152,-1) 23.9865 0 0.373 (b/2m)?  4.703 (b/2)?
(2,05 2,-2) 26.9393 0 0.358 (b/2m)? 3.275 (b/2)?
(2,2 2,—1) 22.9628 0 0.153 (b/2m)? 1.433 (b/2x)
(2,152,-2) 25.5474 0 0.171 (b/2m)? 1.043 (b/27)?
(2,2;2,-2) 24.3894 0 0.109 (b/2m)2  0.1553(b/2x)¢
(1,15 1,0) —22.7777 —1.328271  0.887 (b/2r)* 2.657 (b/2m)
(1,0;1,-1) —25.2233 —1.473360 —0.711 (b/2m)? 2.947 (b/2)
(1,151,-1) —24.0005 0 —0.161 (b/27)? 1.552 (b/27)?
(2,25 1,1) 538379  —3.616370

(2,15 1,0) 494.686  —2.809135

(2,0;1,-1) 446.699  —1.816832

(2,25 1,0) 257.801 0

(2,1;1,-1) 234.731 0

(2,2;1,-1) 163.459 (o

(1,15 2,0) —494.700 1.076541

(1,0;2,—-1)  —446.713 2.043529

(1,—1;2,-2) —392.821 3.244367

(1,152, —1; —234.745 0

(1,0;2,-2 —209.122 o

(1,1;2,-2) —146.941 0
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APPENDIX. EIGENVECTORS IN A CONSTANT 1 Pl N 1B (L
MAGNETIC FIELD. (i ARBITRARY, j=4)9 (v, id, ml oy, izkd, m)=gmb/ (i+3),

Taking the field in the z-direction, we may write

gJ,UOHz \ gI,U'OHz

= . 4
Fr=3c+AI-J P et @Y (o, i, mlses]y, i+3, m)
}fet F_=.I+1J. The eigenvalues of F? are f(f+1)%2 = ot (:{:)_A__VK[_ .1 +(:E)_2§’1__mx
where f=141. 2 2141 gr—gr

For H,=0, the eigenstates are |v,f,m) and the
energies are given by

Wl (Y:f’m) =E0 (7)
+ @/ (f+1)—iG+1)— G+ 1}A2 (25)

Then [letting (&) be the sign of energy difference] AW
we have — ot (i)_l _
(E)AW=W1(y, i+3, m)— Wiy, i—}, m) 2

= (i+3)4%, (26)
A= (£)[AW/ (+5)7*]. (27)

We may thus rewrite 3C; as

e =0Co+ () AW/ (43R TL-J
+ (gI#OHz/h)Fz+[(gJ_gI)MOHz/ﬁ:]]z- (28)

<'7) 'L_%: ml:}clh’, 7’_%: m>

and

AW
—<:t>—-{1+<i)
2

<7; 1+%; ml'jcll’ﬁ ._%’ m)
=<7; 7’_%7 ml""cll'y) 1‘+%; m>

where
We shall use the results of Condon and Shortley® [Egs. (o
93(11) and 10%(2,a,b)]. The only nonzero matrix ele- w= (g guolL/AW.
ments of J, are For |m|=1i+%1 we have only one state:

| (v, i+3), £G+D)= v, i+5, £(G+3)),

AW 1 2¢r max
Wiy, i3, m=a (i4-8)) = Eorb ()|~ () mx+(1+<4_r>*, )]
2 241 gr—g&r i+3

For |m|s£i+%, the matrix elements (29) cause the mixing of two states. The new eigenstates are
[ (v, i+3), m)=an |y, i+3, m)+ (£)bw |v, i—3, m),
| (v, i—3), my=—(£)bw |7, i+3, m)+an |7, i—3, m),
L1+ (E)2ma/ (i+3)+o" P+ L1+ (E)ma/ ((+3) ]|}
a'"zl 2[4+ (o) 2ma/ (i+3)+2 ] } ’
L1+ (£)2ma/ (i+3)+a? P —[1+ (E)ma/ (43) 1)}
1 21+ () 2me/ (i+3) 02T ] '

The corresponding energies (for |m|s<i+3) are

where

m

AW 2¢1 2mx 3
Wiy, i3, m)=Ey+ (:I:)——‘ ———F(k)——mxt (:l:)[1+ (&£)- —l—x2] }
2 i+1 gr—gr i+3
If we write

am=1, b,=0 for |m|=it+},

we may put (31a) in the same form as (31b).

- =+
21+1 gr—gr

m
i+

X
1

2

(v, i3, m| T.|y, iF%, m)=3{1—[m/ i+ T}

The nonzero matrix elements of 3C; are then

L

= @AW /2){1=[m/(i+3) P},

(29)

(30)

(31a)

(32a)

(31b)

(33b)

(32b)

(33a)

® This treatment is substantially the same as that given in the appendix to a paper by Millman, Rabi, and Zacharias [Phys. Rev.

53, 384 (1938)]. Those authors, however, do not bother to obtain the eigenstates.



