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Theory of Multiple-Quantum Transitions in the Ground State of K"
HAROLD SALON

Departme»t of Physics aid S'atsoN Sc&e&st&f&c Co»&p»t&&g Laboratory, Cotlmbta U»&erssty, Peto York, Ne&o Fork

(Received August 12, 1955)

The results of an earlier paper are applied to magnetic resonance transitions in the ground state of K3~.

Formulas are obtained for the parameters characterizing single- and multiple-quantum transitions, and
the values of these parameters are calculated for a Zeeman 6eld corresponding to @=0.21135.

''N an earlier paper, ' the author has calculated a
~ ~ general expression for the resonance transition prob-
abilities in a rotating field which is applicable when the
widths of "allowed" lines are small compared to their
separation. ' In the present paper, we shall evaluate the
parameters involved for AF=0 transitions in the
ground state of potassium, in order to facilitate com-
parison with the results of Kusch. '

1. MATRIX ELEMENTS OF I AND E, IN THE
PRESENCE OF A CONSTANT MAGNETIC

FIELD, H,

We shall deal here with a system whose total angular
momentum is given by

F=I+J, (1)
where Is=i(i+1), J'= j(j+1), and for the moment
we shall take j=-'„andi arbitrary.

If we consider only perturbations involving the
various angular momentum substates of a given atomic 6 =0

for (m) =i+a, (4a)

state, we may write for the perturbed Hamiltonian:

Kt ——5L's+ (a)[t5,W/(i+-,')fl J+ (grtssP, /h)P,
+P(gJ' gr)po& /K&*, (2)

where (&)&5,W is the hyperfine separation (tItW being
taken as positive). The symbol (+) will be used
throughout, this paper to denote the sign of the hyperfine
separation.

The eigenstates of KI may be found in a straight-
forward manner. 4 They are

~ (y, i+-,'), m) =a (x) j y, i+-,', m)

+(a)b„(x)(y, i '„m—)-,

j (y, i ,'), —m)—=—(a)b (x) ( y, i+-', , m)

+a„(x)( y, i——,', m),
where

L1+(a)2 m/x(i+-', )+ gx&s+ L1+(a) m/x(i+-', )j &
'

2L1+ (&)2mx/(i+ -,')+*'jl
& for )m)Wi+

Pi+ (&)2mx/(i+ a)+x'jl —$1/ (&)mx/(i+ ,'))-
2)1+(&)2mx/(i+ -,')+x'jl

(4b)

and
x= (gs gr)tspH, /AW. —

The corresponding energy values are

68' 1
Wt(y, i+-,', m) =Es+(&)

2 2i+1

2i+1

2gr
+(~)

2mx
mxa(a) 1+(a) +x'

l

6$'
W, (~, i~ ,', m) =S-.+(~)

2

for (m) Wi+-,', (6b)
gs gr ~ i+a

(6a) where, as mentioned before, the (&) in parentheses

$s lwen Ph s R ev 99 12 I74 (1955) h,h h It refers to the sign of the hyper fine separation.
referred to as I. When equations in I are quoted, the equation In calculating transition probabilities, we need the
number is preceded by a Roman numeral I Le.g., Eq. (I.25) refers qus, ntities
to Eq. (25) of Ij.The notation of the present paper is in all cases
based on that of I except that the total angular momentum is bhcr(& fm ~

& f' m')
denoted by F=I+J rather than J=J1+J2+ ~

s The results of I are applicable when the constant C iield is = (tso%/h)((y&f)& m~ grl*+gs~»~ (y&f )& m )
homogeneous and the rf amplitude may be considered to jump ( ~ /h)(( f) m~ P +( )g

~ ( f&) m&)
discontinually from the value zero outside the hairpin to a
constant value inside the hairpin. Effects due to the continuous (&)
build-up of the rf amplitude near the ends of the hairpin @rill be
considered in a later paper. See Appendix. Also see Millman, Rabi, and Zacharias, Phys.' P. Kusch, following paper (Phys. Rev. 101, 627 (19M)j. Rev. 53, 3$4 (1938).
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where Po is the amplitude of the rotating magnetic
leld [see Eq. (I. 90)]. Thus, we need the matrix ele-
ments of J, and F in the representation given by the
states

I (y,f),m). We may use various results of Condon
and Shortley' to obtain the matrix elements of J, and
Ii, for the representation in which F is diagonal. In
this way, we Gnd that the only nonzero matrix elements
of F are [reference 5, Eq. 3'(4)]

(y,f,m
I F.I yg, m+1&= (y,f, m+1 I F.I y,f,m&

=-,'A[(f—m) (f+m+1)]i, (8)

and the nonzero matrix elements of J, are [reference 5,
Eqs. 9s(11) and 10s(2a,b)]

(~, s~ '„m-IZ.
I ~, s~ '„m-+1)

=(y, iars, m+11~, ly, bars, m)
=&[-',A/(2i+1)][(i+-,'—m)( %s', + -m+1)] ,i

(y, ia-'„mlJ, l y, iW '„m+1& (9)

= (y, sW ', , my 1 I J.ly-, iw '„m&-
=~[l&/(2'+1)][('+l~ )('+l~( +1))]'.

where
c +(x)=u„[i+-',am]i,
d„+(x)=b [s+-,'am]b. (12)

(gJ gI)Issue
b=—

2 (2i+1)k
(13)

so that

n(y, ia-'„m;y, ia-,', m+ 1)

=a[c +w(+)d +][c~~+a(a)d~r+]
+L(»+ 1)g./(g~ gr)]—Lc-'c-+ '+d-'d

n(y, i+ ,', m-; y, iW-', , m+1)
=n(y, iW ', , m+-1;y, ia ', , m)-

=~[c-'~ (~)d-'][c-+r'~ (~)d~r']
~ (+)L(»+1)gr/(g~ —gr)]

X[c +d~P —d„+c„+r+].

(14)

Because of the factor 2(2i+1) in the denominator of
the matrix element of J„it is convenient to de6ne the
b of Eq. (7) by

We may then combine Eqs. (8) and (9) with Eq. (3)
to get

((~, s~-', ), mIF. I (~, s~-', ), m+1&
=((~, s~ ,'), m+-1 I F.I (~, s~-', ), m)
=-,'A{c +(x)c~r+(x)+d„+(x)d~r+(x)),

(h s~s) mIF. I (v, s~s), m+1&
(10)

=((y, iW ', ), m+-1IF.
I (y, sa ', ), m)-

= W (~)-',h{c +(x)d~r+(x) —d +(x)c~r+(x)),

2. APPLICATION TO TRANSITION PROBABILITIES

In I, we have shown that when the widths of the
Am=1 lines are small compared to their separations,
the transition probability near any resonance may be
given by a formula similar to the "Rabi Qopping for-
mula. "' We shall summarize the results here.

For two states

Iu)= I(y„f,), m, &, and Ib)=
I (yb, fb), mb&,

there will be resonance near the frequency v b given by'

(m, mb)kv, —b=[Wr(y„f„m,)—Wr(pb fbmb)] ~ (15)

The probability that an atom or molecule initially in
one of these states will undergo a transition after being
in the rf field for a time r will be [Eq. (I.85)]

and

((q, ia-', ), ml J, l (q, i~ ,'), m+-1)
= ((y, ia-,'), m+1

I J, I (y, iw ,'), m)-
= ~[2P/(»+1)]{c-'(*)~(~)d-'(x) }

X{c~r+(x)~ (~)d~P (x)),
((y, iw ', ), mIJ,-I (y, iw ', ), m+1-)

= &(~, s~-', ), m+1 l~, l (&, '~sr), m&

=a[-,'h/(2i+1)]{c„+(x)W(a)d +(x))
X {c~r+ (x)w (a)d~r+(x)),

2

( ) p
(vab v) +bob

Xsin'{s.
I m.—mb I [(v.b*—v)sgb, b']br), (16)

where, for mb ——m,&k, Eq. (I. 104) gives

~ Va.b Vab —Vab

A 1Z)C In(n', u) I' ln(n'; b) I'
=~(1/k) I 2 +

~Ma —1 Vair Vab ))s =))ta+1 Vgb V~)sr ))s =~b 1 Vb)s& Vgb ~ =~b+1 V~b Vb~

In(N'; b) I'

and Eq. (I. 105) gives

'2(b/2s)n(u; b) for k=1

n(u; n') (—n'r; brb") . . n(~'~"; b)

Vb I V,b Vb - . - Veb —Vb~fk-»

bee='
for k)1.(2/k!) (b/2s. )b

m' =ma+1
m" =mb+2

m&~-» =m. +(0—1)
' E.U. Condon and G. H. Shortie, The Theory ofAtonsee Spsdro (Cambridge University Press, London, 1951}.' I. I. Rabi, Phys. Rev. Sl, 652 193'/).' v, & is the frequency of the rotating Qelf and may be positive or negative.

(17)

(18)
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TAnLz I. Eigenvalues and coeificients of the eigenstates (g=0.21135).

W(2 so)—Eo
W(1,so)—Eo

o (*)
b (s)

m ~2

0.4806451'W 0.4353463'W—0.68537626W
0.9966377
0.0819345

0.3860452'W—0.63604525,W
0.9945821
0.1039542

0.3314465'W-0.5814166'W
0.9949101
0.1007659

m~ —2

0.269354M, W

In these equations, we have used notations of the sort,

j
~') =

j
(~',f'),m'),

(m' m"—)hv„',„-= [W, (y', f',m') W—i(y",f",m")7
=—[Wi(II') —Wi(II")7, (19)

The n's are defined by Eqs. (7) and (13) above.
We are thus in a position to apply the results of Sec. 1

to a particular problem.

3. GROUND-STATE TRANSITIONS IN K3s

Experiments on the ground state of K" give'

27 2 2»
3 ' 1

gg/gr = —14 130, (20)

(&)AW'/h=+461. 723 Mc/sec.

The possible substates (f,m) are then f 2, m=0, &1,
&2 and f=1, m=0, &1.

Equations (15), (17), and (18) now enable us to
write down expressions for vf ,

.f, 8vf,.f, and
IJlf f . In the case of the transition (2,2)~(2,0), for
example, these are

vs, 2; 2, p (I/2h) j Wi(2, 2)—Wi(2 0) j,

at a 6eld corresponding to @=0.21135. This is done in
Tables I and II.

Table I contains Wi(f, m) —Ep, u (x), and b (x) for
x=0.21135. Table II contains v~ .,f, co(f,m; f',m'),
0vf f, and b~ ,.f . The quantities 8vf ,.f ~ and
bf f ~ depend on the rf amplitude through the quantity
(b/2or) = [(gz gr)II pIIp—/2(2i+1)h7 defined in Eq. (13)
above, where Hp is the amplitude of the rotating field.
If B, is the amplitude of an applied oscillating field,
IIp ——II,/2.

4. DISCUSSION

The succeeding paper by P. Kusch' contains a com-
parison of the above results with experiment. It will be
seen from that paper that, while good agreement is
obtained for low rf amplitudes, there is a substantial
discrepancy at high rf amplitudes. We attribute this
disagreement to the failure of the theory to take into
account the continuous buildup of the r.f. amplitude at
the ends of the hairpin (see reference 2). Discussion of
eGects resulting from the continuity of the oscillating
6eld is deferred to a later paper.

TAar. E D. Parameters characterizing magnetic resonance transi-
tions in the ground state of K~ at a 6eld corresponding to
@=0.21135.The quantities Bv and b are given only for the dF =0
transitions. A11 frequencies are given in megacycles per second.

its(2, 1;2,2) i'
&vs, s;s, p= s(b/2or)

(f,m; f',m') &jm j~m& a(f,m; f',m') BVjm j~m~ bjm; j'ms

V2, 2; 2, 1 V2, 2; 2, 0

jn(1,1; 2,2) j' jn(2, —1; 2,0) i'

V2, 2;1, 1 V2, 2 2 0 V2 0 2 1 V2 2;2, 0

jn(1,—1; 2,0) i' jn(2, 1; 2,0) i'

V2, P;1,—1 V2, 2;2, 0 V2, 2;2, 0 V2, 0;2, 1

(2,2; 2,1)
(2,1; 2,0)
(2,0; 2, —1)
(2, —1; 2, —2)

(2,2; 2,0)
(2,1; 2, -1)
(2,0; 2, —2)

(2.2' 2 —1)
(2,1; 2, —2)

(2,2; 2, —2)

20.9155
22.7635
25.2095
28.6691

21.8395
23.9865
26.9393

22.9628
25.5474

24.3894

1.708882
2.276473
2.519920
2.338321

—2.796—1.009
0.540
1.819

0.290
0.373
0.358

0.153
0.171

(b/2~)»
{b/2x)»
(b/2~)»
(b/2m)»

(b/2m)»
(b/27r)»

(b/2 )»
(b/2x)»

3.418 (b/2Ã)
4.ss3 (b/2 )
5.040 (b/27I-)
4.677 (b/27T}

4.217 (b/2~}»
4.703 (b/2m)»
3.275 (b/27I-)»

1.433 (b/2m)g
1.043 (b/27r) 3

0.109 (b/2m. )» 0.1553{b/27r}4

in(1, 1; 2,0) i'
(22)

V2, 2; 2, 0 V2, 0; 1, 1

ct(2,2; l, l)n(2, 1; 2,0)
ba s;g, p= (b/2m')

V2, 2;2, 0
—

V2, 0;2, 1

n(2, 2; 1,1)n(1,1; 2,0)
(23)

V2, 2; 2, 0 V2, 0; 1, 1

In order to facilitate a comparison with the results of
Kusch, ' it is useful to evaluate the various parameters

' P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).

(1,1; 1,0)
(1,0; 1,—1)

(1,1; 1,-1)
(2,2; 1,1)
(2,1; 1,0)
(2,0; 1,—1)

{2,2; ),0)
(2,1; 1,—1)

(2,2; 1,—1)

(1,1; 2,0)
(1,0; 2, -1)
(1,-1;2, —2)

(1,1; 2, —1)
{1,0; 2, —2)

{11'2, —2)

22 4 777 7—25.2233

—24.0005

538.379
494.686
446.699

257.801
234.731

163.459

-494.700—446.713
-392.821

—234.745—209.122

—146.941

—1.328271—1.473360

—3.616370—2.809135-1.816832

1.076541
2.043529
3.244367

0.887—0.711

—0.161

(b/2~)»
(b/2~)»

(b/2~)»

2.657 (b/27r)
2.947 {b/27!-)

i.ss2 (b/2~)»
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(y, iW '„m-(j'.(y, i+ '„m&-=a-',mfi/(i+-', ),

(p, i~,', m)j, ~p, i~ '„-m&=;a-{1 —fm/(i+ ,')-]'}'* .

The nonzero matrix elements of 3C~ are then

APPENDIX. EIGENVECTORS IN A CONSTANT
MAGNETIC FIELD. (i ARBITRARY, j=))'

gJppHz glpoHz
Kt=~p+AI J+ J',+ I,. (24)

(y, i+'„-m)Xt)y, i+ ', , m-)

Taking the Geld in the s-direction, we may write

Let F=I+J. The eigenvalues of F' are f(f+1)h',
where f i&-', .

For 8',=0, the eigenstates are ~y,f, m& and the
energies are given by

W)(y, f,m) =Ep(y)
+(A/2){f(f+1) i(—i+1)—j(j+1)}As. (25)

Then Detting (&) be the sign of energy difference]
we have

(a)AW=—Wr(y, i+-', , m) —Wr(y, i ,', —m)—

= (i+-,')Ah' (26)
and

(2&)

We may thus rewrite KI as

Kr ——Kp+(a)LAW/(i+-', )h']I J
y(g,I,II,p)F,+p(g, g,)I pe,p]j,—. (2s)

We shall use the results of Condon and Shortley' (Eqs.
9'(11) and 10'(2,a,b)]. The only nonzero matrix ele-
ments of J, are

DS' 2gI=Ep+ (a) — —+ (a) mx
2 2s+ 1 gg —gr

+(~) 1+(~).
s+ s

aS=&p+ (~)
2

2gI
+(~)

2i+1 gz —gl

(y, i+ ,', m(-3'. r(y, i——,', m&

1+(~)
s+ s

=(y, i '„m—j3-.'r(y, i+ '„&m-
= (xA W/2) {1—Pm/(iy-, ')]'}l,

where
x= (gI gr)IJ,pP./d, W. —

For
~
m~ =i+ s we have only one state:

(29)

(30)

3,S' 2gr t' mx )
W,(v, i+s, m=~(i+s))=&p+(~) — — +(+) mx+I 1+(~)

2 2i+1 gz gr & — i+
For

~
m~ Wi+-„the matrix elements (29) cause the mixing of two states. The new eigenstates are

) (y, i+-', ), m&=a„(y,i+ '„&+m(-a)b„)y,i——,', m&,

[ (y, i ,'), m&= —(a)b (y,—i+—-'„m&+a (y, i ,', m&,——
where

$1+(a)2mx/(i+-, ')+x']1+$1+(a)mx/(i+-', )] '

2/1+ (a)2mx/(i+-', )+x']1

L1+(&)2mx/(i+-, ')+x']i—$11(&)mx/(i+-,')] i
b—

2L1+ (~)2mx/(i+-, ')+x ]:
The corresponding energies (for (mj Ni+ s) are-

(31a)

(32a)

(31b)

(33b)

If we write

aS'
Wt(y, i&-'„m)=Ep+ (a)

2

1 2gI 2mx
+(~) mxW(+) 1+(+) +x'

2s+ 1 gr gr —i+
(32b)

c„=1,b„=0 for )m( =i+ (33a)

we may put (31a) in the same form as (31b):
This treatment is substantially the same as that given in the appendix to a paper by Millman, Rabi, and Zacharias )Phys. Rev.

SB, 384 (1938)g. Those authors, however, do not bother to obtain the eigenstates.


