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Resonance Transitions in Molecular Beams Experiments. II. Averages
Over the Velocity Distribution
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General expressions are given for the average, over a e velocity distribution, of the transition probability
in a resonance line of an atomic or molecular beams experiment. Explicit expressions are given for multiple
quantum transitions which are similar to those of Torrey for "allowed" transitions. The case when the
complete velocity distribution is cut oft on either the high- or low-velocity side or both is discussed.

''N an earlier paper, ' we calculated the transition
~ ~ probabilities for an idealization of the usual atomic
or molecular beams experiment. The formulas obtained
in that paper were applicable to the case when the beam
consists of particles all of which have the same velocity.
In the present paper we generalize the expressions to
the case when the distribution in velocity of the par-
ticles is of the form:

drt ~ es exp( —mr'/2kT)dv, (1)

where the velocities may range from zero to infinity or
over a portion of that interval. Certain of the present
results have been obtained by Torrey. ' The expressions
which we obtain involve integrals of the following form:

E(P,xi,xs) = x' exp( —x') sin'(P/2x)dx, (2)

P= P Aqi sin'L(-,'b)(X—X')rj. (3)

The parameters ) and ) ' are eigenvalues of the effective
Harniltonian K' $Eq. (I.13)j in the rotating frame of
reference, and the coefficients A), ), depend only upon
the initial stage of the system and upon the eigenstates

( X) and
~

X'). Thus the only dependence of (3) upon the
particle velocity is through the transit time, 7..

In the particular case of resonance transition a~b
we obtained the explicit formula (1.85):

b 2

Under the above assumptions it was possible to obtain
LEq. (1.25)7 the following general form for the total
transition probability from a state of de6nite J, (where
J' is the total angular momentum):

which are not expressible in closed form in terms of
elementary functions. However, tables of this function
are now available. ' We here present methods for cal-
culating the theoretical shapes of resonance lines
observed in molecular beams experiments.

In the earlier paper, the transitions were assumed to
be produced by a rotating magnetic field (taken to be
in the x,y-plane) in the presence of a constant 6eld
perpendicular to the plane of rotation. The amplitude
of the rotating Geld was assumed to be diGerent from
zero for a finite "transit time, " during which time the
amplitude and angular velocity were tab.en to be
constant.

* Now at the University of Syracuse, Syracuse, New York.
'H. Salwen, Phys. Rev. 99, 1274 (1955). This paper shall be

referred to as I, and equations shall be noted as (I.24), etc.' H. C. Torrey, Phys. Rev. 59, 293 (1941).' A brief table of A(P, O, ~) has been given by Torrey. ' U. E.
Kruse and N. F. Ramsey D. Math. Phys. 30, 40 (1951)g give a
table of J'0"x3 exp (—x') cos(p/x)dx from which E(p,0, x ) can be
calculated. Extended tables of the functions X(p,0, ao ), X(p, 1, m ),
IC(p,0,1), and of certain other functions of p and If. which are
useful in calculating the shapes of resonance lines observed in
atomic and molecular beams experiments have been deposited as
Document No. 4716 with the American Documentation Institute
Auxiliary Publications Project, Photoduplication Service, Library
of Congress, Washington 25, D. C. A copy may be secured by
citing the Document number and by remitting $2.50 for photo-
prints or $1..75 for 35-mm microfilm. Advance payment is required.
Make checks or money orders payable to: Chief, Photoduplication
Service, Library of Congress. These latter tables are the ones we
cite below as reference 3.
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where
b,p ~

(
rotating 6eld amplitude) ~~ &~ (5)

and v,&* is the corrected resonance frequency. 4 The
parameters nz, and m& are the magnetic quantum
numbers of the initial and Gnal states. Aside from the
factor ~m, mb~ in —the argument of the sin', Eq. (4)
above is the same as Torrey's Eq. (4).'

If we assume that the velocity distribution of the
particles in the beam is given by Eq. (1), we may
average the transition probability over the velocity
distribution.

For the general case LEq. (3)j we obtain as the
average over the entire velocity distribution

P=2 g A),), EL(1/b)(X —X')L/tp), (6)

where
z(p) —=z(p, o, ~), (7)

t p
——(2ZT/m)'. (8)

The quantity mo is the most probable velocity of a
Maxwell distribution of particles of mass m at a tem-
perature T.

' r,s* and bo& are given by Eq. (I.104) and (I.105) respectively.
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x' exp (—x')dx.
&1

(12)

Equations (6) through (11) will then carry over to this
case.

In Table I, of reference 3, E(P) and (1/P')E'(P) are
given as functions of P. This table, with the help of
Eqs. (7) through (11),enables one to calculate the peak
intensity and the shape of a given line as a function of
rf amplitude.

For a resonance transition at a given rf amplitude,
the intensity varies with the frequency as (1/P')E(P).
The half-intensity point, therefore, occurs at P=Pf,
where P;(Pp) is deined by

(1/P. )'E(PI) =!(1/P.)'E(P.). (»)
Table II of reference 3 lists Pf and (Pfs—Pp')& as func-
tions of Pp.

Perhaps the easiest way of applying the table is to
make use of the relation

(Pf' Po')'/Po= l »——"p*l/b. p (14)

This ratio approaches unity only for quite large rf
amplitudes. For somewhat smaller amplitudes it oscil-
lates about the value 1, while for low rf amplitudes the
width is relatively independent of the power and is
governed by the uncertainty principle.

Table III of reference 3 gives E(P,0,1) and E(P,1,ro)
as functions of P. These functions are useful if the beam
is restricted entirely to particles with e ~& eo or to par-
ticles with v ~&eo.

In the particular case where Eq. (4) is applicable, the
average is

P=2(P"/P')E(P),
where

Pp 2p——rl m, m—pl b,bL/pp,

P=2prl m, —mls((v, b v)'+—b,p'5&L/np (10)
= {L(v.p*—v)'+b p')&/b. p)pp.

At the resonant frequency, v,&e, P is equal to Pp so that

P (v.p*)=2E(pp) (11)

gives the peak intensity for the transition.
In certain experiments, the geometry of the system

eliminates a whole range of velocities. In these cases
the results are similar to those given above except that
the integration must be limited to the velocities of those
particles which actually reach the detector.

If all particles of velocities less than e1 or greater
than vs have been eliminated, we must replace E(P) by
—,'E(P,xt,xs)/E, where

xi = pr/'vs, ' xs =np/pp,

Table IU of reference 3 is a table of (1/P')E(P, 0,1) and
(1/P4)E'(P, 0,1). It was calculated for application to a
system with j= 1 and a normal Zeeman effect. ' In this
case the problem is complicated by the superposition of
several transitions. In this case Eq. (6) becomes'.

+1-+ +-1w

b' b'
2—--

(v v—p)'+b' (v—vp) +b
b'

X sins{~L(v —vp)sybsj&r)+-
4 (v —vp)'+b'

where
Xsin'{2n-l (v—vp)'+b'j4. ),

vp= g gfj, pB,/h; b= gyral, pH, /h. (16)

The notation I' indicates the total probability for a
transition from the state with J,=nark to one of the
other two states.

The average of Eq. (15) over a velocity distribution
f10m $1 tO 82 1S

P1 =P2
= (1/&){2(Pp/P)'E(P xr xs) —(Pp/P)'E(P, xl,xs)

+4(Pp/2P)'E(2P, xr, xs) }, (17)
Pp (1/X){4(Pp/P——)'E(P,xi,xs) —4 (Pp/P)'

XE(P,xt,xs)+16(Pp/2P)'E(2P, x„xs)),

where X, xi, and xs are defined in Eq. (12) and the
parameters Pp and P are defined by equation (10) with
s o and b substituted for v ~* and b,~. Table IV may thus
be used in a simple manner to compute the line shape
for this case.

It should be noted that, though (1/P')E(P) is a mono-
tonically decreasing function of P, (1/P')E(P, 0,1) is not.
This means that in some cases (e.g. , for Ps=5.6) the
intensity will increase as we move away from the center
of the line. This makes it possible with such a velocity
distribution to observe a line with a dip in the middle
and peaks on either side. Such an eBect has, in fact, been
observed by Hughes et al. '

~Hughes, Tucker, Rhoderick, and Weinreich, Phys. Rev. 91,
828 (1953), Appendix 2.' This result is obtained by substituting (I.113) and (I:36) into
(I.41). vp and b as de6ned here diifer from u and b of Eq. (I.36) by
a factor of (1/2~).

Xsin'{2prL(v —vp)'+b')fr), (15)

b2

~o=4 &—
(v—vp)'+b' (v —vp)'+b'

b2

Xsins{7rl (v—vp)s+b'j&r)+
(v—vp)syb'


