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The Bethe-Weiss theory of ferromagnetism is extended and
applied to systems containing two nonequivalent sets of sites,
designated by 4 and B, for the magnetic atoms. Each B atom has
nq nearest A neighbors and each 4 atom has n; nearest B neighbors.
In the theoretical development, the following restrictions are
imposed: the spin per atom is 4 and only nearest neighbor A —B
interactions are considered (a=g=0, in Néel’s notation). The
A —B interaction J may be either positive or negative, however,
so that the sublattice magnetizations below the Curie temperature
may be either parallel or antiparallel, respectively. Expressions
are derived for the Curie temperature and for the susceptibility
above the Curie temperature. If the two sublattices are made
equivalent, our results for positive J reduce to Weiss’ equations
for the ferromagnetic case and our results for negative J reduce to
Li’s equations for the antiferromagnetic case.

A table of values of the ratio kT./|J| as computed by the Néel,
Ising-Bethe, and Bethe-Weiss theories is given for various values
of n, and 7. For a given magnitude of J, the Bethe-Weiss Curie
temperature for negative J is always greater than that for positive
J. An empirical formula which approximates the Bethe-Weiss
criterion for the existence of a ferrimagnetic transition is mamp
>5(na+n3)/2.

The Néel and Bethe-Weiss susceptibilities are calculated and
compared for a ferrimagnet with n,=4, n,=8. The two general
expressions for the susceptibility are found to agree quantitatively
at extremely high temperatures. It is shown that for a ferrimagnet
with J<0 the sublattice magnetizations in an external field
become antiparallel not at the Curie temperature but considerably
above.

I. INTRODUCTION

RYSTALS that become spontaneously magnetized
at low temperatures are usually divided into three
classes: ferromagnetic, antiferromagnetic, and ferri-
magnetic. At present, there are no universally accepted
criteria for defining these three classes; however, one
basis for classification is the division of the lattice of
magnetic atoms into interpenetrating sublattices sug-
gested by the chemical and crystallographic properties
of the material. The principal points to be noted about
this division are whether the sublattices are equivalent
or nonequivalent, and whether the spontaneous mag-
netizations of individual sublattices are parallel or anti-
parallel to each other. In Table I, these ideas are illus-
trated for a system containing two sublattices.

In this paper, we shall discuss some of the magnetic
properties of materials containing two nonequivalent
sublattices. It turns out to be natural and convenient to
carry out the calculations for parallel and antiparallel
magnetizations simultaneously. In order to avoid an
awkward terminology, we shall refer to systems with
two nonequivalent sublattices as ferrimagnetic, re-
gardless of the relative orientations of the sublattice
magnetizations. Thus we are using the term ferri-
magnetic in a sense which is more inclusive than the
usual one.

The principal theoretical treatment of ferrimagnetism
is Néel’s molecular field theory.! In his 1948 paper,
Néel deduced the various kinds of spontaneous mag-
netization-temperature curves that might occur and
showed that the reciprocal susceptibility-temperature
curve above the Curie temperature should have a
hyperbolic form. He also pointed out that the ferrite
compounds, which had been developed as commercial

* Present address: Office of Naval Research, Box 39, Navy 100,
Fleet Post Office, New York, New York.
1L. Néel, Ann. phys. 3, 137 (1948).

magnetic materials by Snoek? and his co-workers at
Eindhoven, were ferrimagnetic. The great amount of
research devoted to ferrimagnetism since that time has
been in part due to the intrinsic properties of such
materials and in part to the commercial importance of
the ferrites. In general, the Néel theory has been strik-
ingly successful in predicting the qualitative features of
the magnetic properties of the ferrites, especially con-
sidering the simplicity of the theory and the detailed
nature of its predictions.

It seems likely that future improvements in the
theory of ferrimagnetism will come from replacing the
molecular field theory by more exact methods, rather
than from refining Néel’s model. Kaplan® and Vonsovski
and Seidov* have used the spin-wave theory to treat the
low temperature properties of ferrimagnets. We propose
to discuss their high-temperature properties, partic-
ularly the location of the Curie temperature and the
susceptibility above the Curie temperature. The method
used is a generalization of the Weiss theory of ferro-
magnetism,® which is in turn an extension of Bethe’s

TasLE I. System with two sublattices.

Sublattices Sublattices
equivalent nonequivalent
Sublattice Ferro?
magnetizations Ferro Ferri?
parallel
Sublattice
magnetizations Antiferro Ferri
antiparallel

2J. L. Snoek, New Developments in Ferromagnetic Malerials
(Elsevier Publishing Company, Inc., New York, 1947).

3 H. Kaplan, Phys. Rev. 86, 121 (1952).

4S. V. Vonsovski and Iu. M. Seidov, Izvest. Akad. Nauk
S.S.S.R. Ser. Fiz. 3, 319 (1954).

5P, R. Weiss, Phys. Rev. 74, 1493 (1948).
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method of solving the problem of ordering in alloys.®
Li” has previously applied the Weiss method to anti-
ferromagnetism. Since the two kinds of ferrimagnetism
reduce to ferro- and antiferromagnetism when the
sublattices become equivalent, a useful check on our
results is that they should reduce to the Weiss-Li results
when the sublattices become equivalent.

In Part II of this paper, Weiss’ theory and its results
are reviewed; Part IIT shows how the theory can be
generalized to systems containing nonequivalent sub-
lattices. Appendix A gives, for comparison, some analo-
gous formulas and results obtained by applying the
Bethe method to the Ising model of a ferrimagnet. In
Parts IV and V, the generalized Weiss theory is used to
calculate Curie temperatures and susceptibilities of
specific ferrimagnetic systems. The results are com-
pared with the Néel theory predictions for the same
system.

II. WEISS THEORY

In this section we briefly review the Weiss theory® and
some of its principal results. The notation and develop-
ment have both been slightly changed, but we believe
that the changes simplify the discussion of problems
involving two or more sublattices.

In the Weiss theory, attention is focused on a partic-
ular cluster of atoms in the crystal.. This cluster consists
of a central atom (whose choice is arbitrary) and its
shell of # nearest neighbors. The Hamiltonian for the
cluster is assumed to have the form

=—2JS0-S1— gB8S0.Ho— gBS1.H:. 1)

Here J is the exchange interaction, So and S, are the
spin operators for the central atom and the combined
first shell, respectively. H, is the external applied field;
H, is an effective field which acts on the shell atoms and
includes the effect of the interaction with atoms outside
the cluster as well as the external field. Both Hy and H,
are taken to be in the z-direction. We have assumed that
there are no interactions within the first shell.

The eigenvalues of 3¢ depend on m, the magnetic
quantum number of the cluster; Sy, the total spin of the
first shell; and S, the total spin of the cluster. We shall
consider only cases where the spin per atom is §; thus S,
for given Sy, has only two possible values, Si==3. In the
following discussion, it will be convenient to designate
these two values by the symbols ==. The eigenvalues of
3¢ are then

W (%,S,m)=3J[1— 2mhyF[(251+1)2
—dm (h—ho)+ (—ho)*1t], (2)

where k1= gBH,.1/J. The occurrence of the square root
makes numerical calculations of the partition function
and thermodynamic functions very tedious. Conse-
quently, Weiss expresses the eigenvalues by a series ex-

¢ H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).
7Y.-Y. Li, Phys. Rev. 84, 721 (1951).
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pansion in terms of 4= %;— k. The use of this expansion
means that the theory is valid only in regions where
h<1,i.e., at the Curie temperature and higher tempera-
tures. We have :

W(:I:,Sl,m) =J[ ei-—mho"‘i wi(:bishm)hi]) (3)
=1 .

with e,=—S8;, e=S1+1. The first four w;(+,S1,m)
are:

wy=—m(1mR™Y), (4a)
wy="TF (1/4R) (1—4m?*R?), (4b)
wy=F (m/2R%) (1—4m?R~?), (4c)
wy= == (1/16R%) (1— 24m?R—2+80m*R—), (4d)

with R=285:+1.
The notation for the succeeding sections can be much
simplified if we define an operator 8, by

n/2
Snf(iyslsm)j) = Z w("”Sl) Z:I: gl
S1=0
S1+1%
Z f(:l: ,'WL,S1,].), (5)
m=—(S1+})

where j=J/kT and
n!
(Gn+S1)1(3n—2S1)!
n!
 Gr S DS 1)1

w(n,zn)=1.

w (1’1»,51) =

Then the partition function P(j,ko,%) may be written
P (j,ho,h) =8, exp[](mho—z 'w,;(:I: ,Sl,m)hi) ] (7)
=1

Since we are considering only the case where |/.1]| <1,
we may expand the exponential and keep only the first
few terms. Thus

pm (j,ho,h)—_— Sa lEl Pkl(m)wi)j)hokhla (83-)
where the summation is taken over all pairs (%,]) con-
sistent with £,/=0, 1, 2, --- and k+I=0, 2, 4, ---.
Terms which contain odd powers of # can be omitted
since they vanish in the summation over m. We give
below the functions pi; which are needed to compute
the Curie temperature, the susceptibility, and the
specific heat discontinuity at the Curie temperature.

poo=1, (9a)
p=3mf, (9b)
pu=—mwf, (9c)
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por= —waj+3wi’f?, (9d)
P13= —mws i+ mwws, P — Fmws, (%)
Pos= —wyj~+ (wiws+Fw?) 2 — jwilw, PwitY/24.  (9f)

Finally, we let
Supir(myws,j) =P (5), (10)

so that
P (f,ho,h) =2 Pia™ (f)ho*h". (8b)
)

Some formulas useful in calculations involving the
Py (4) are given in Appendix B.

We are now ready to discuss the thermodynamic
properties of the material. The average magnetic
moments per atom for the central site and for a shell site
are given by

d1nP d InP

mo= (g8/7)

5 = (gB/nj) (11a,b)

aho ahl
(In the future, the superscript (%) will be omitted except
when it is necessary to distinguish two functions.)
Combining Egs. (8) to (11) and keeping only terms of
first order in the fields, we find

Mo= gB(jPoo) L (P11—2Po2)h+ (2P30— Pu)ho],  (12a)
1= gB(1jPoo) [ 2Posh~+ P11 . (12b)

Since the central atom and any one of the shell atoms
are equivalent, we must have

’iﬁo—:mh

(13)

or
[ (P11—2Po2) — 2Pos Jh=[n(P11—2P2)+PriJho. (14)

This consistency condition also determines the internal
field % by giving a relation between 4, %o, and j.

A principal point of interest is whether or not there is
a Curie temperature, i.e., a temperature below which
k=0 when ho=0. By setting 4=0 in (14) we see that
there is a solution ~=0 for all temperatures but that %
need not vanish if

n(P11—2Po2)=2Ph,. (15)

This condition determines the Curie temperature, if any.

The susceptibility above the Curie temperature may
also be obtained by considering only terms linear in %
and % if we are not interested in saturation effects.
Perhaps the simplest expression for x is

Jx=NgB/ho= Ng?8*(njPoo)*(P11+2Posh/ho), (16)

where N is the number of atoms per unit volume. The
ratio &/ho is found from Eq. (14).
The energy is given by

E NdlnP N

J 2 &

> Pu(d),

2p &0 - an
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where the factor § corrects for counting interactions
twice. Here P/ (j) is defined by

Py ()= 8.L0px1/3j— exprr].

III. APPLICATION TO FERRIMAGNETISM

(18)

We now wish to extend the methods described in the
previous section to systems containing two nonequiva-
lent sublattices of magnetic atoms. For simplicity, we
consider the special case where all the magnetic atoms
are identical (with spin 3) but where there are two kinds
of crystallographic sites on which the atoms are located.
Let the kinds of sites be designated by 4 and B and let
a unit volume of material contain ANV A4 sites and uN B
sites (where A+u=1). For such a system we must con-
sider two types of clusters. One type consists of a central
A atom and its shell of #y B neighbors; the other type
consists of a central B atom and its shell of 7,4
neighbors. (Note that Any=pun, so that X and u are
determined when #, and #; are given.)

In Néel’s treatment of ferrimagnetism, he introduces
three phenomenonological interactions, Jb, Jae, and
Ju. In order to avoid complicating our problem with
interactions within the shells, we shall restrict ourselves
to the case where Joa=J=0 (a=B=0, in Néel’s
notation). This restriction does not eliminate any basic
ferrimagnetic properties of the model as long as A=y,
and it greatly simplifies the calculations involved. The
eigenvalues for the two types of clusters are then given
by (2) with J,»=J and with %, replaced by %:® and %2,
respectively. Also, there will be two summation
operators 8 and 8, and two partition functions P?(j,
ho,is) and P*(4,ho,ha). In each case the superscripts and
subscripts @ and b refer to the kinds of sites in the shell.

The average magnetic moments for central and shell
atoms in 4 and B sites are given by

0 InP?
mob= (g8/7) ) (192)
o
. _9lnpP
b= (g8/nv5) e (19b)
i ( /_)alnP“ 1
moe™= gB ) oo ) ( C)
_0InPe
M= (gB/n4j) . (19d)
oh,@

There are two consistency conditions corresponding to
(13), i.e., the average magnetic moments of all 4 atoms
must be the same and the average magnetic moments of
all B atoms must be the same.

3

ob____ mla,

oa — mlb‘

(20a)
(20Db)

3
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If only first powers in the /%’s are retained, the condi-
tions are

—2Po®Pos®hat1aPoo® (P11—2Posd) by

=[#.Poo*(P1>—2P2%)+Poo®Pr1® Jho,  (21a)
1 Po® (P11%— 2P3®) ho— 2Po®Po2’hs
= [sPoo®(P11%— 2P2%)+ Poo®P1® Jho.  (21b)

The Curie temperature is determined by the condition
that the determinant of the coefficients of %, and % in
(21) must vanish.

nanb(Pu“-- 2P02a) (Pub— 2P02b) = 4P02“P02b. (22)

In general, numerical methods must be used to find
the values of 7 which satisfy (22). The results of actual
calculations indicate that solutions will normally occur
in pairs. The members of a given pair have opposite
signs but approximately the same magnitudes. (If more
than one pair of solutions occur for a particular equation
the pair of lowest magnitude should be chosen, in order
to avoid the anti-Curie points mentioned by Anderson.?)
By resubstituting in (21) we find that 4. and %, have
the same sign when the solution j. is positive (i.e.,
J>0) and opposite signs when j. is negative. These
results, of course, merely confirm our intuitive ideas
that the spontaneous magnetizations of the sublattices
should be parallel or antiparallel according to whether
J is positive or negative. The result that the Curie
temperatures for parallel and antiparallel orientation
are not exactly equal is characteristic of the Bethe-
Weiss method.

If the sublattices are equivalent (#,=n3), the condi-
tion for the Curie temperature reduces to

n(P11—2Poy) = ==2Pq,. (23)

It can be readily shown that the plus and minus signs
give Weiss’ condition for the ferromagnetic Curie
temperature and Li’s condition for the antiferromag-
netic Curie temperature, respectively.

The susceptibility above the Curie temperature is
given by a formula analogous to (16).

(Ix/kC) =47 (nat+ns){ (P 00%) L P11%+2Po2%ha/ b0 ]
+ (P oob)—IEP 1ub42P ozbhb/ ho]} . (24)

Here C is the Curie constant, Ng?3?/4k. The ratios
ha/ho and hy/ho are obtained by solving Egs. (21).

In the same way, the energy is given by a straight-
forward generalization of (17). The formula is not given
explicitly since no use is made of it in this paper. We
note that the energy and susceptibility formulas are
valid for both positive and negative j, and that they
reduce to the corresponding Weiss-Li relations if the
sublattices are equivalent.

1V. CURIE TEMPERATURES

The first questions to be resolved in studying a
particular system are whether or not a transition occurs,

8 P. W. Anderson, Phys. Rev. 80, 922 (1950).
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and, if so, where the Curie temperature is located. As
might be expected, the Néel, Ising-Bethe, and Bethe-
Weiss methods give different criteria for the occurrence
of a ferrimagnetic transition. For the Néel theory, the
formal condition is simply #47,>0, and for the Ising-
Bethe theory, it is #.m:>n.+n (see Appendix A).
Because of the algebraic complexity of Eq. (22), we
have not been able to derive any comparable simple
condition for the Bethe-Weiss method. However, nu-
merical calculations have been carried out for various
values of 7, and n,; the results can be seen in Table II.
An empirical relationship which approximates the
Bethe-Weiss criterion for a transition is na2> (5/2)
(natn).

The numbers in Table II give the ratio 7./|J| as
determined by the three methods. The two principal
features of the table are that the ratio diminishes as we
go from the molecular field theory to the more exact
theories and that the Bethe-Weiss Curie temperature
for negative J is slightly greater than that for positive
J. These results are in agreement with and extend Li’s
comparison of the ferromagnetic and antiferromagnetic
cases.”

It should be kept in mind that the results obtained
here are valid only when there are no interactions within
the first shell. Thus, as an example, the figures quoted

TaBLE II. Values of 27T,/|J| for ferrimagnets. The four entries
in each position represent, respectively, the values obtained by the
Néel method, the Ising-Bethe method, the Bethe-Weiss method
with /<0, and the Bethe-Weiss method with J>0. Sy=4%. No

first shell interactions.

]

nb 2 4 6 8 10 12
2 1.00 1.41 1.73 2.00 2.23 245
.8 0.76 0.96 1.26 1.44 1.61
4 2.00 245 2.83 3.16 3.47
1.44 1.90 2.25 2.56 2.84
cen aee 1.65 2.08 2.39
1.59 191 2.19
6 3.00 3.47 3.87 4.25b
2.46 2.92 3.33 3.68
2.00 2.56 2.99 3.36
1.85 2.34 2.75 3.10
8 4.00 4.47 4.90
3.48 3.95 4.37
3.18 3.66 4.12
2.90 3.39 3.81
10 5.00 5.48
448 495
4.24 4.72
3.94 441
12 6.00
5.48
5.26
4.95

s Dashes mean no transition occurs.
b Results were obtained graphically, and values of £T¢/|J | >4 may be in
error as much as 1%.
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for n,=n3=12 do not properly apply to the face-
centered cubic lattice. Actually many, and perhaps
most, of the pairs (#,,n3) for which Curie temperatures
are given in Fig. 2 cannot be associated with any real
crystals. These extra values are given merely as an aid
in seeing how the Curie temperature depends on 7,
and 7.

V. SUSCEPTIBILITY ABOVE THE CURIE
TEMPERATURE

The Néel expression for the susceptibility is, in our
notation,

Jx ;1 Fnamy(nat-np) Y

—=]

kC

) (25)

1—3namj?

while the Bethe-Weiss expression was given in Eq. (24).
Of the two formulas, the Bethe-Weiss result is pre-
sumably more nearly correct. However, since both
theories are expected to become more reliable with
increasing temperature, it is of interest to compare Eq.
(25) with a high-temperature approximation of Eq.
(24). If the Bethe-Weiss expression is expanded about
the point 7=0 with the aid of Appendix B and only the

A
)~
4 1
1 1 A
F1c. 1. Schematic dia- : 5 -
gram of body-centered G : o
ferrimagnet.
Ah —+ — - — O
s/
/ A 7

lowest terms are kept, the exact Néel formula is ob-
tained. Thus, at very high temperatures, the two
theories are in quantitative, as well as qualitative,
agreement.

For lower temperatures, it is not easy to make an
analytical comparison of the two formulas, so we shall
instead show their results for a specific system. In
looking for a suitable system, the ferrites naturally
come to mind first. However, the numerical computa-
tions, which are lengthy in any case, are especially
tedious for the spinel structure because of the relatively
large number of nearest neighbors (#,=6, #;=12).
Consequently, we have preferred to discuss a simpler
structure which is based on the body-centered cubic
lattice. We begin with a body-centered cubic lattice,
divide it into the usual two sublattices, and then
remove half the atoms on one sublattice as shown in
Fig. 1. This structure, which will be called a “body-
centered ferrimagnet,” is characterized by n.=4,
ny=38. There are no actual materials known in which
the lattice of magnetic atoms has such an arrangement.
However, the properties of the body-centered ferri-
magnet are still of interest since it should exhibit all of
the distinguishing characteristics of ferrimagnetism and
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Fi6. 2. Reduced reciprocal susceptibility »s reduced temperature
for the body-centered ferrimagnet. J >0. The Néel curve is actually
a section of a hyperbola, (25), although the curvature is too small
to show on this scale.

since we can use it for a quantitative comparison of the
Néel and Bethe-Weiss predictions.

Figures 2 and 3 show the reduced reciprocal suscep-
tibility for the body-centered ferrimagnet for positive
and negative J. The curves marked Néel and B-W are
calculated from Egs. (25) and (24), respectively. The
approach of the two curves at high temperatures can be
clearly seen. On the other hand, there is still a difference
of several percent in magnitude at a temperature of
T=A4T..

In the temperature region where many of the experi-
mental measurements of susceptibility are made, i.e.,
at two or three times the Curie temperature, the slopes
of the B-W and Néel curves differ appreciably. Now
the Néel theory predicts that at high temperatures the
slope of the 1/x-T" curve should be 1/C; many of the

J<o0

kT/Z1d1

Fic. 3. Reduced reciprocal susceptibility »s reduced temperature
for the body-centered ferrimagnet. J<O0.
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F1c. 4. Sublattice magnetizations for the hody-centered ferri-
magnet in an external magnetic field (J/<0). Although the mag-
netizations are given in arbitrary units, their relative magnitudes
are significant.

experimental results on ferrimagnetic materials show
considerable deviation from this prediction. OQur com-
parison of the Néel and B-W theories suggests that the
1/C value for the slope should not be expected until
temperatures very high compared to T’ are attained and
that most experimental measurements reported have
been made at much lower temperatures. Moreover,
values of C determined from the slopes at lower tempera-
tures will be too high. It should be pointed out, how-
ever, that other factors may also contribute to the
discrepancy between the measured and theoretical
values of C. One is lack of knowledge of the actual
value C because of uncertainties about the orbital
contributions to the magnetic moment. Another possi-
bility is that J may vary with temperature.®

Figure 4 shows how the individual sublattice mag-
netizations of the body-centered ferrimagnet with J <0
vary with temperature when an external field is applied.
(They are, of course, zero for T'>T, when Hy=0.)
Though this behavior has a very simple interpretation,
it has apparently not been previously noted or ex-
plained. According to the Néel model, the explanation is
as follows. At very high temperatures, both M, and
M, are parallel to Ho. However, the molecular field
acting on each sublattice tends to turn it antiparallel
to Ho. As the temperature is decreased the molecular
field acting on the 4 sublattice becomes larger in
magnitude than H,. Then M, reverses direction and
remains antiparallel to Ho and M3 to and through the
Curie temperature. The Bethe-Weiss explanation gives
essentially the same physical picture but with em-
phasis on the short-range order. The change in sign of
M , apparently occurs near the knee of the 1/x-T curve.

This result was obtained for a specific ferrimagnetic
system. However, one can show by Néel theory calcula-

9L Néel, J. phys. radium 12, 238 (1951). »
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tions that it is quite general and that such an effect
should occur in any ferrimagnetic system with J<0.
There seems to be no reason to believe that calculations
based on the Bethe-Weiss theory, although tedious,
would not show the same thing. Thus, in a ferrimagnet
with negative 4-B interactions, the sublattice magneti-
zations in the presence of an external field become
antiparallel not at the Curie temperature but con-
siderably above.® This behavior is to be contrasted
with that of an antiferromagnet where the change from
parallel to antiparallel orientation occurs at the Curie
temperature.
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APPENDIX A. ISING-BETHE METHOD

For convenience we refer to the method described
herein as the Ising-Bethe Method, because it utilizes
the Ising Hamiltonian and the Bethe method of solu-
tion.! However, the principal contributions to the
magnetic problem were made by Peierls,® Firgau,®
Weiss,® and Ziman."

The Hamiltonian for a cluster is assumed to be

3= —2780.51.— g8S0.Ho— gBS1.H. (A1)

If we set

xo=exp(—3jh); m=exp(—3}jh); y=exp(3s). (A2)

the partition function can be shown to be®

1 x12+y2 n x12y2+1
ke e

P(x‘)axlry)=_
XYoL X1y

|- @

X1y

In the application to ferrimagnetism, we proceed as
in the Bethe-Weiss method by considering both types of
clusters, defining two partition functions, and com-
puting the average magnetic moments of center and
shell atoms. The consistency conditions analogous to
Eqgs. (21) are

[n“y4_ 2 (na— 2)y2+na:|ha+nb(1 —yd)hb

=2(149)ho, (A4)
1a(1—y)hat [y —2(my— 2)y*+ms Jo
=2(149*ho.
The Curie temperature is defined by
je=In{14+2[1+ (142, (AS)
where
2=1agMp— No— Np. (A6)

10 In the Néel theory, the ratio of the “reversal”’ temperature
to the Curie temperature is (15/74)}.

1. Syozi and H. Nakano, Progr. Theoret. Phys. (Japan) 13,
69 (1955), have given exact solutions for some two-dimensional
Ising ferrimagnets.

2R, Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).

137J. Firgau, Ann. Physik 40, 295 (1941).

1 J, M. Ziman, Proc. Phys. Soc. (London) 64, 1108 (1951).
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The Curie temperatures for parallel and antiparallel
orientation are the same.

The susceptibility above the Curie temperature is
given by

Ix/ke= j(natne) {n.(1— (14352 (na— (na—2)»*
+nay)ha/ ho)+ne(1— (1435 2(np— (15— 2)y*
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8’ (=m?) =% Re #1?[ (R?*+2) sinhx+3R coshx ], (BS)
8’ (m*) = Re~12[ 15R? sinhx
+ (3R4+20R*—8) coshx]/120, (B6)
8’ (m*) = Re~7?[ (3R*+20R?— 8) sinhx
+15R? coshx]/120, (B7)

where x=Rj/2. These formuals are especially useful in
computing numerical values of Py () for both
positive and negative values of j.

To obtain approximate expressions for the Py ()
which are valid in the region |j|<1, we need

+nby4)hb/ho)}- (A7)
APPENDIX B. SUMMATION FORMULAS
Let
S1+3%
8'fm)=2yre= 3 f(m). (B1)
m=—(S1t})
Then
8'(1)=2¢—7?[ sinhx+ R coshx], (B2)
8'(%=1)=2¢"/[ R sinhx}coshx ], (B3)
8’ (m*) =% Re~?[ 3R sinhx+ (R?+2) coshx], (B4
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ni2
> w(n,S1)R=2", (BS8)
S1=0
n/2
3 w(n,S)R= (3n+1)2". (B9)
S=0
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L X-Ray Energies of Np, Pu, and Am

GEORGE L. Rocosa* anp Wirriam F. PEED
Oak Ridge National Laboratory,t Oak Ridge, Tennessee

(Received September 19, 1955)

Five Np, eight Pu, and five Am L x-ray transitions have been observed in conventional x-ray fluorescence
from 200-mg amounts of Np?7, Pu?? and Am?" using a Cauchois type curved crystal transmission spec-
trometer. The energies of these transitions have been determined, with reference to K lines of the elements
from 3 Rb through Ag, to an accuracy of 3 to 8 ev. Disagreement with previous measurements by Barton,
Robinson, and Perlman; Jaffe, Passell, Browne, and Perlman; and Day has been found while excellent
agreement with the Pu measurements of Cauchois, Manescu, and Le Berquier was obtained.

I. INTRODUCTION

HE electromagnetic spectra (gamma rays and
x-rays) of transuranium nuclides have been
previously investigated using bent crystal spectrometers
of moderate resolution. In these studies, the x-rays
resulted from either internal conversion of gamma rays
which accompanied alpha decay or by fluorescence from
the gamma rays. Barton, Robinson, and Perlman,! in
this manner, first observed Np and Pu L x-rays. The
L x-rays of Np resulted from the radioactive decay of
Am?! and those of Pu from the decay of Cm?*2. Jaffe,
Passell, Browne, and Perlman? and Day? recently re-

* Permanent address: Department of Physics, Florida State
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3 Paul P. Day, Phys. Rev. 97, 689 (1955).

investigated the electromagnetic spectrum of Am*! and
recorded many L lines of Np and Am. In another study,
Cauchois, Manescu, and Le Berquier,® using con-
ventional x-ray fluorescence, have examined the radi-
ation from 10 mg of Pu with a curved crystal spec-
trometer of high resolution and have observed four
Pu L lines. _

We have recorded five Np L x-ray lines, eight Pu L
lines, and five Am L lines, all observed in conventional
x-ray fluorescence from approximately 200 mg of each
element. The energies of these transuranium x-rays
have been precisely determined and our results disagree
with those of Barton ef al., Jaffe ef al., and Day. How-
ever, our Pu results are in excellent agreement with
those of Cauchois ef al. We also find that the extra-
polated values of Hill, Church, and Mihelich® are in
better agreement with our measurements than the
previous determinations.

( 4 Cajuchois, Manescu, and Le Berquier, Compt. rend. 25, 1782
1954).
5 Hill, Church, and Mihelich, Rev. Sci. Instr. 23, 523 (1952).



