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recombination of interstitial ions and vacancies is less
pronounced, leading to a concentration of interstitial
ions that increases rapidly with field.

3. Above a field of about 6X10s volts/cm, the posi-
tion of the activation barrier for interstitial ion forma-
tion moves discontinuously to a position near the origin
of the ion, and the Geld dependencies of the activation
energies for creation and recombination become more

nearly equal, so that the concentration of interstitial
ions becomes less dependent upon Geld.

4. The inQuence of an electric field on the activation
energy for ionic conductivity is twice as great at Gelds
below 6&(10s volts/cm as above, because at low fields
both the number of charge carriers and their mobility is
increasing with field, whereas above 6)&10' volts/cm it
is primarily their mobility that continues to increase.

PH YSICAL REVUE% VOLUM E 101, NUM B ER 2 JANUARY 15, 1956

Angular Dependence of the Characteristic Energy Loss of Electrons
Passing Through Metal Foils*

RICHARD A. FERRELL
Uneversety of Maryland, College Park, Maryland

(Received August 3, 1955l

The Bohm-Pines electron plasma theory is employed to give a theoretical interpretation of some experi-
mental results of Marton et al. on the scattering of 20-kev electrons by a thin gold foil. General criteria are
presented which can in principle select in any given case between the alternative mechanisms of collective
excitation or one-electron excitation. For the general case of collective excitation the scattering law is
derived and used in a numerical analysis of the experimental data. Agreement with the Bohm-Pines theory
is satisfactory.

I. INTRODUCTION

'HE Franck-Hertz phenomenon in gases has long
provided a tool, along with optical spectroscopy,

for investigating the electronic energy level structure in
gaseous atoms and molecules. The corresponding phe-
nomenon in solids, because of technical difhculties, has
been exploited more slowly. Rudberg' seems to be the
6rst to have noticed that electrons of a few hundred
volts, when rejected from solid samples of the noble
metals, preferentially lose amounts of energy charac-
teristic of the target metal. In each of these metals
Rudberg found two characteristic energy losses, which
we for short call "eigenlosses, " all less than ten volts.
Rudberg and Slater' interpreted these eigenlosses as
one-electron interband transitions in which electrons
occupying the filled d-band were excited to the top of
the s—p band, thereby absorbing energy from and
inelastically scattering the incident electrons. The dis-
creteness of the loss spectrum arises from the "double-
humped" character of the density of states curve for
the 6lled d-band. There can be little doubt of the
correctness of this interpretation, for it not only rests
on some quite basic features of the band theory, but is
also supported by the close correlation between the
eigenlosses of Rudberg and the optical absorption peaks
determined independently by Minor, and Meier. ' For
example, the absorption of gold in the blue, which

* Research supported by the Office of Naval Research.
' E. Rudberg, Phys. Rev. 50, 138 (1936).' E. Rudberg and J. C. Slater, Phys. Rev. 50, 150 (1936).
3 R. S. Minor, Ann. Physik 10, 581 (1903), and W. Meier, Ann.

Physik 31, 1017 (1910l.

causes its reddish color, has a maximum at 3700 A,
corresponding to a quantum energy of 3.36 ev. This
agrees well with Rudberg's 3-volt eigenloss. Since the
optical absorption is also due to the same mechanism
of excitation of the d-band electrons, this agreement is
necessary. In general, the hypothesis that a given
eigenloss is a one-electron interband transition can be
tested by examining the optical absorption data. If there
is no absorption for light of quantum energy equal to
the eigenloss, the interband hypothesis must be rejected
in the specific case at hand.

Unfortunately, the optical absorption data are not
very complete and it is not possible in practice to apply
this test in very many cases. As already mentioned,
Rudberg's low-energy eigenlosses for the noble metals
pass the test. On the other hand, many eigenlosses dis-
covered since Rudberg's early experiments do not
satisfy this criterion. For example, there are no optical
absorptions corresponding to the eigenlosses found by
Marton and Leder4 for the alkali metals. In such cases
the one-electron hypothesis must be abandoned in
favor of a collective excitation involving the totality
of the electrons in the metal. Collective phenomena lie
outside the scope of the usual one-electron theory of
metals, but are included from the start in the Bohm-
Pines' plasma theory of the free-electron gas. Modifi-
cations to take into account the interaction of the
conduction electrons with the more tightly bound

' L. Marton and Lewis B.Leder, Phys. Rev. 94, 203 (1954).' D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953),and David
Pines, Phys. Rev. 92, 626 (1953l.
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electrons and with the positive ion lattice have been
established by Wol6' and Hubbard. ~

Multiple scattering is an inherent complication in
the reAection-type inelastic scattering experiments of
Rudberg. Therefore transmission-type experiments are
preferable and easier to interpret theoretically, pro-
vided the incident electrons are fast enough and the
samples are thin enough that the relative intensity of
the singly scattered component of the emerging inelastic
beam is large compared to that of the multiply scattered
component. Using electrons of a few kev energy and
metal foils of a few hundred angstrom units thickness,
Ruthemann' discovered prominent eigenlosses in the
energy range of 10 to 30 volts for several metals. Since
Ruthemann's discovery, experimental data have been
rapidly accumulated by many investigators. ' Many of
the prominent (i.e., high intensity) eigenlosses of con-
siderable energy have been successfully interpreted by
the Bohm-Pines free-electron theory. The most familiar
cases are the 14.7-ev loss in aluminum and the 18.9-ev
loss in beryllium. Other cases seem to require the
effective-mass modi6cation of the Bohm-Pines theory
mentioned above. There has been considerable con-
troversy on the question of whether Bohm-Pines theory
or one-electron theory is the correct explanation of the
eigenlosses in metals. We advocate here the view that
in general in every metal there will be one collective
eigenloss of relatively large energy and intensity, and,
in addition, from none to several one-electron eigen-
losses of generally smaller energy and intensity. Thus,
both mechanisms can operate in the same metal.
Corresponding to the comparison of one-electron eigen-
losses with optical absorption peaks there is also a test
for the collective eigenlosses. They must agree with the
quantum energy of the cut-off radiation. . . , i.e., the
lowest frequency electromagnetic radiation transmitted
by the metal. This criterion is discussed more fully in
Sec. II.

Recently information has been obtained on the
angular dependence of the eigenlosses. Watanabe" has
investigated the dependence of the loss energy as a
function of scattering angle, and has found good
agreement in aluminum and beryllium with the Bohm-
Pines dispersion law for the plasma oscillations. ' Other
measurements by Leonhard" and by Marton, Simpson,
and McCraw" have been especially suited for a study
of the intensity of the eigenlosses in various metals.
The principal purpose of this paper is to give a theo-
retical interpretation of these latter experimental re-

' P. Wolff, Phys, Rev. 92, 18 (1953).' J. Hubbard, Proc. Phys. Soc. (London) A67, 1058 (1954).' G. Ruthemann, Ann. Physik 6, 2, 113 (1948).' See reference 4 and also the forthcoming review: Marton,
Leder, and Mendlowitz, Advances in E/ectronics and Electson
Physics (Academic Press, Inc. , New York, 1954), Vol. 6."H. Watanabe, J.Phys. Soc. Japan 10, 321 (1955), and private
communication."F.Leonhard, Z. Naturforsch. 9a, 727 (1954), and 9a, 1019
(1954).

's Marton. Simpson, and McCraw, Phys. Rev. 99, 495 (1955).

suits. Because of the completeness of the experimental
data for gold, we shall concentrate on the 24-ev eigenloss
in this metal. This latter eigenloss was already indicated
by the results of Rudberg' and shows up especially
clearly in the transmission experiments. Because of its
large energy, this eigenloss probably lies well above the
main electromagnetic absorptions, and therefore is un-
likely to be a result Of one-electron interband transi-
tions. This is, of course, by no means well established,
since the optical data do not extend below wavelengths
of 2000A, or above quantum energies of about six
electron volts. In any case, our present work rests on
the assumption that this eigenloss is not due to one-
electron jumps, but rather to a Bohm-Pines collective
excitation of the electron plasma, If this assumption is
incorrect, a detailed analysis of the band transitions
would have to be made, similar to the work of Rudberg
and Slater on the lower energy eigenlosses.

Since the angular dependences of the matrix elements
for collective excitation and interband one-electron
excitation happen to agree in first approximation, it is
likely that the intensity angular defendence predicted
on the basis of one-electron theory will not differ greatly
from that found here. " For this reason the intensity
angular dependence should not be relied upon to dis-
tinguish between the two alternative mechanisms. The
choice should be based on other criteria, such as the
optical absorption test and optical transmission test
discussed here and in Sec. II, the angular dependence
of the magnitude of the eigenloss energy mentioned
above, independent information on the band structure,
etc. In the present work, having made our choice, we
wish to show merely that the observed angular de-
pendence is not inconsistent with it (vis. , the hypothesis
of plasma excitation).

In Part II, as well as discussing a general criterion for
collective excitation, we derive, on the basis of Bohm-
Pines theory, the intensity angular dependence of the
inelastically scattered electrons. This is supplemented
by a study in Part III of the one-electron transitions
which occur for collision distances shorter than the
Bohm-Pines screening length. Unfortunately these con-
sequences of the Bohm-Pines theory cannot be com-
pared directly with experiment because of elastic
scattering by the positive-ion lattice. This complication
is treated in general in Part IV, where also the results
of numerical calculation are presented, and satisfactory
agreement with experiment is exhibited in Fig. 3.

II. BOHM-PINES THEORY

The original unmodified theory of Bohm and Pines'
applies only to a free electron gas. In a real metal it is
necessary to include not only the eBective mass cor-

"The author is greatly indebted to Dr. U. Pano for bringing
this fact to his attention, by pointing out that the statement of
the author /Phys. Rev. 99, 647 (A) (1955)g concerning the
difference between plasma excitation and atomic excitation is
incorrect.
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rection mentioned above, ' " but also to take into
account the virtual one-electron band transitions which
can take place. A quantum-mechanical treatment of
this problem has been given by Adams" but it will be
sufhcient to adopt here a semiclassical approach, de-
veloped by Mott. ""We represent the virtual transi-
tions by oscillators of natural frequency co; and strength
f, per atom. Let the displacement of the ith type
oscillators, averaged over a region large compared to
the interatomic spacing, be y, (x), where x locates the
region. Similarly, let the average electric field strength
in the neighborhood of x be E(x). Then the oscillator
displacements satisfy the equations of motion

d2$
+zoPy, = ——E.

dt' m

Similarly, the average displacement, y(x), of the con-
duction electrons satisfies the equation

(j7~2f
F

m*d)2

where e is the atomic density and s is the number of
conduction electrons per atom. Taking the divergence
of Eqs. (1) and (2) gives a set of simultaneous homo-
geneous linear equations in the unknowns V' E, V' y,
and V' y;. Elimination of the latter leads to an ordinary
homogeneous differential equation for V'. E alone, whose
solutions are harmonic oscillations in time, at the
frequencies co given by the roots of the equation

nze' 1 ne' f,+
nz* —zo' zn ' —zo'+zo ' =0.

Oscillator damping may be expected to so smear out
the singularities of the second term of the bracketed
expression in Eq. (4) that, instead of many roots, there
will be only one. This value of co we identify with the
single strong collective eigenloss identified unambigu-
ously in most metals. In case the co, are all small relative

'4 E. N. Adams, Phys. Rev. 98, 947 (1955).
"N. F. Mott, Proceedings of the Tenth Solvay Congress,

Brussels, Belgium (1954).
'6 We are much indebted to Professor David Pines for bringing

this approach to our attention. For more complete discussion of
the frequency of plasma oscillations in solids, see D. Pines,
Proceedings of the Tenth Solvay Congress, Brussels, Belgium
(1954) and a review article by D. Pines which is to appear in
Advancesin Solid State Physics (Academic Press, Inc, , New York,
1955), Vol. 1.

where 1/nz* is the reciprocal of the effective mass
averaged over the Fermi sea. Now it is easily seen that
the average charge density resulting from the displace-
ments of the oscillator and conduction electrons is
ne(zV' y+P; f,V y;), and Poisson's equation therefore
reads

4zrnzeV y+4zrneg; f~V y, =V R,

to zo, the sum rule reduces (4) to

4m''e'
=0)

or to zo= (4zrnz'e'/rn):, where z' is the total number of
electrons per atom. The quantity (4zrnz'e'/I)' is the
free electron plasma frequency calculated on the basis
of an electron density of es', and denoting it by or„', we
have co=co„. This result follows immediately in this
special case when one neglects the binding and treats
all the electrons as free. Actually, in gold all except the
6s and Sd electrons are tightly bound by several
Rydbergs or more, and only the eleven electrons per
atom in these two bands are available for participation
in the collective oscillations. Thus we can consider co„',
calculated with s'=11, as an upper limit for the value
of co. On the other hand, in case the ~; are all very
large relative to co, the second term in the bracket
of (4) may be neglected, yielding zo= (rn/zn*)'*&o„, where
zo„= (4zrnze'/zn)* is the free electron plasma frequency
calculated on the basis of the density of conduction
electrons alone. Consequently, the two limiting cases
give us the inequalities

(zo, '/zo„) ' = 11& (zo/zo, ) '& zn/rn*.

Now, taking the experimental data for gold, we find
(zo/zo„)'= 6.9. Since it is unlikely for nz/rn* to be this
large, the inequalities are satisfied. We conclude that
gold represents a case intermediate between the two
extreme cases discussed, and that in addition to being
modi6ed by interaction with the lattice, the plasma
frequency is "pushed up" to some extent by the optical
absorptions below it. This is an eGect which hh, s already
been discovered by Wolff' in his investigations on
shifts in the plasma frequency.

Although a quantitative solution of (4) is handi-
capped by insufficient theoretical and empirical knowl-
edge of the energy bands, and is not in general feasible,
there does exist an independent determination of the
root zo. The bracketed term in (4) is identical with the
polarizability of the metal, and the left-hand member
itself expresses the dielectric constant of the metal as a
function of frequency. '~ As ar is decreased from a very
large value, the dielectric constant eventually becomes
negative and the metal becomes perfectly rejecting.
Thus the root of Eq. (4) is simply the cut-o6 minimum
frequency for transmission of electromagnetic radiation
through the metal. This furnishes the test already men-
tioned above which the hypothesis of collective exci-
tation must satisfy: The eigenloss must correspond to
the independently determined electromagnetic cut-oG
frequency.

Unfortunately, the electromagnetic data are, also for
this test, too scarce for a systematic check of all the
supposed collective eigenlosses. Only for the alkali

"F. Seitz, The 3Eoderzz T/zeory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), Chap. XVII.
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Metal

Ll
Na
K
R6
Cs

Cutoff
wavelength

(in A)

1550
2100
3150
3400
3800

Cutoff
energy
(in ev)

8.02
5.91
3.94
3.65
3.27

Eigenloss
(in ev)

9.5w1.0
5.4+0.4
3.8&0.2

fiou3

(in ev)

8.13
5.95
4.38
3.97
3.55

TABLE I. Eigenlosses and cut-oG quantum energies
of the alkali metals.

into the long-range part,
Pk

H'=4me' P —e-'" *
x&a, k2

and the short-range part,

Pk—4~e2 P e—ik ~ x

k&k, k2

metals does a detailed comparison seem to be possible
at the present time. Table I has been constructed from
data of reference 4 and from page 641 of reference 17.
The Bohm-Pines free electron plasma energies, Ace„, are
included for comparison. Bearing in mind that the
influences both of the backing and of the oxide coatings
on the measurements of the alkali metal eigenlosses are
not completely determined, we may regard the agree-
ment between the cut-off energies and the eigenlosses,
where the latter have been measured, as satisfactory.
The cut-off frequency in aluminum evidently has never
been measured, but the metal is known to be perfectly
reQecting far into the ultraviolet. On the basis of the
sharp eigenloss at 14.7 ev, we can predict that aluminum
will show an-abrupt decrease in its reRectivity at 845 A.
The electromagnetic properties of the other metals
seem to be even less well known. If the absorptions
should extend up to the plasma frequency, as is prob-
ably the case in gold, the transition from imperfect
refIection to imperfect transmission can be expected to
occur more gradually, corresponding to the greater
breadth of the eigenloss. A verification of these features
in aluminum and gold, as well as in other metals,
would substantiate the hypothesis of collective excita-
tion in each case individually.

After these general remarks on the Bohm-Pines
theory, we now study the phenomenon of plasma
excitation by a fast incident electron. Our treatment
differs from that of Pines, " in that we use first-order
time-dependent perturbation theory. Taking the Hamil-
tonian for the metal plus incident electron as H+ p'/2'
+H;„&,, where H is the Hamiltonian for the metal alone
and p is the momentum of the incident electron, we

apply 6rst-order perturbation theory to the interaction
term H; t —ey(x). Here q(x) ——is the electrostatic
potential set up by the ions and electrons of the metal,
evaluated at the position of the incident electron. The
potential is determined from Poisson's equation, V2p(x)
=4rep(x), where —ep(x) is the charge density in the
metal. Expanding p (x) in the Pourier series p (x)
=P&, p&,e '"' gives

Pk
y(x) = —4s-e P —e "*.

k k2

This makes possible the separation of H;„& H'+H"——

'8 See reference 5, p. 633.

5k, is the Bohm-Pines cut-o8 momentum. We leave the
short-range part to the next section and concentrate for
the present on the long-range interaction. For k&k„
the electron density Fourier coefficients are, in terms of
the coordinates x; of the electrons participating in the
plasma oscillations, p&,

——V—'P, e'"'~=
p&,'"+ip&, '2&, where

pq~'&= V 'P, cos(k x;) p&,
~ &= V 'P, sin(k ~ x;), and V

is the volume of quantization. Here we are neglecting
the contributions to pk from the lattice vibrations.

Now, according to the discussion at the beginning of
this section, the pk oscillate harmonically, for small k.
Although this is rigorously true only in the limit of
infinitesimally small k, Bohm and Pines' have shown
for the free-electron gas that the harmonic behavior
exists approximately for all k (k, . We assume here that
this is true also in the more general case, and do not
expect any appreciable error to arise from this approxi-
mation. The harmonic oscillator matrix elements of
pk, which are needed for the perturbation calculation,
can be found most easily from those for pk(') and pk").
In general, the matrix element, between the ground
state and erst excited state, of a real variable which
oscillates harmonically is (hE/2E) l, where DE= h~,
the energy of excitation, or simply the eigenloss, and E
is the spring constant of the oscillator. The latter is
easily determined from the total electrostatic potential
energy in the metal, which is, aside from constant self-
energy terms,

q (x)r —ep(x))d'x

=-, 4se'P —
p&, ) e '" *p(x)d'x

k

1=-' 4n-e'V Q =-' See'V P —
(p&,o&'+p&, &'&').

k' t,)0 k2

Therefore the spring constant for the oscillators be-
longing to p&,

~'& and p&,
&2& is K= See'V/k', and the matrix

element for excitation of these oscillators out of their
ground states is k(AE/16&re'V)'*. Prom this result, it
readily follows that the square of the matrix element
of H' for the excitation of a plasma quantum of mo-
mentum hk, accompanied by recoil scattering of the
incident electron, is

~
H&,'( '= 27re'd E/Vk'
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In calculating the density of states, the kinetic energy
of the fast incident electron predominates and the
variation of the plasma energy with state may be
neglected. Thus one finds

p(E) = VmpdQ/k', (6)

where p is the momentum of the incident electron
and dQ is the diGerential solid angle into which it is
scattered. From (5) and (6), and first-order perturbation
theory, the rate of inelastic scattering is

2pr p dQ mhE—.(E) I1I.'I'=—
m 2irap (kk)'

(7)

Since the long-range scattering vanishes for 8)Ak, /p
=g,s»8~, the total inverse mean free path is 1/X
= (8@/ap) ln(8, &/8&). Hence the mean free path itself is

Qp 28pE

~e,sy M„)2Eq ~-

ei }n( )
aE ln

(gs) AE( m)

(9)

p= QpmE

~P-f k~= Vsm (s-ss)

Multiplication of Eq. (7) by the transit time for passage
through a foil of thickness t gives for the probability of
scattering into dQ the expression td(1/X), where d(1/X)
= (dQ/2~ap) fmAE/(kk)') is the differential inverse
mean free path. With the help of Fig. 1, which illus-
trates the restrictions imposed by energy-momentum
conservation for small angles of scattering, one Ands

(flak) 2 (gp) 2+p282 p2L (gp/p) 2+82j p2 (g 2+go)

where 8 is the angle of scattering and gs ——Ap/p
= AE/2E. Thus,

dQ q ge

(2xao) &ge'+8')

Equation (9) provides a check on our Eq. (8), and
agrees, for the free-electron case of DE= 5(4pree'/m)',
with Pines" equation (49), which was derived by an-
other method. Equation (9) extends Pines' formula to
cases more general than that of the free-electron gas.

III. ONE-ELECTRON THEORY

In addition to the long-range collective contribution
to the inelastic electron scattering, there is also a short-
range one-electron contribution. To avoid the complica-
tions of the band structure of real metals, we limit
ourselves to the idealized model of the free-electron gas.
Our purpose is (1) to give a qualitative treatment of
the short-wavelength cutoff, and (2) to demonstrate
that treating the long-range interaction also by one-
electron theory, instead of by Bohm-Pines theory,
gives erroneous results in disagreement with experiment.

The short-range interaction of E individual electrons
with the incident electron is described by

4xe' 1
P elk (x;—x)

V a&e, k2

is 3/4m times the volume of the shaded portion of the
unit sphere shown in Fig. 2, and kp is the Fermi wave
number. These 1Vv(k/ko) Slater determinants form an
orthonormal set and represent excited states of the
electron gas. Therefore the sum of the squared matrix
elements associated with an incident electron recoil of
—kk is

16e4kp'

i Hj,"
i

'= p(k/ko)
states 3Vk

16eVi'kp Ooz
v&8/gpE),

3Vp' 84

Now the operator P, e'"'*' converts the Slater de-
terminant representing the unperturbed Fermi sea into
1Vp(k/kp) Slater determinants, where

(kq 3k) k'
y

&kp) 4 ko & 12ko')

where we have substituted 1V/V=kp'/3~', and have
introduced the parameter gp~= kkp/p and the angle of
scattering 8= Ak/p. A calculation similar to that of the
preceding section yields for the short-range differential
inverse mean free path:

f' 1 ) 4 Rykp gpz' .(e/8..)dQ.
(X.., ) 3n-' E 84

(12)

FIG. j.. Energy-momentum conservation for inelastic electron
scattering from excitation of plasma quantum of momentum Ak
and energy AE.

It is interesting to compare this result with that of
Sec. II for the long-range collective interaction. For
8/gas& 1, p(glgoE)=4 (8/gps) Hence th.e short-range
scattering varies as the inverse cube, while the long-
range scattering varies only as the inverse square of the
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angle. Consequently the curves representing these two
scattering intensities as a function of angle will inter-
sect one another. At large angles the short-range curve
correctly determines the intensity of inelastic scattering,
while at small angles the intensity of scattering is
determined by the long-range curve. Therefore the
intersection of the two curves gives roughly the cutoG
in wave number which separates the collective from
the one-electron phenomena. To determine this cutoG,
we put 8=0,~, where

8,z/8ps =k,/kp= P,

and equate (12) to (8). Solving for P, we obtain

p = (4k pap/~) (Ry/aE).

Substituting the free-electron gas values of

(13)

kpup ——1 917/.r, and hE= (46 9/r, &) e.v,

where r, = (3V/4mlVap') &, we find

p= 0.706+r, . (14)

It is interesting to note that (14) gives a cut-off ratio
about twice that calculated by Pines, ' who determines p
by minimizing the expectation value of the total Hamil-
tonian. The apparent discrepancy here disappears when
it is realized that we have not strictly determined the
cutoff for collective oscillation, but rather an egectipe
cltog for Eq. (8). Even for wavelengths somewhat too
short for collective oscillations to be sustained there
may still be sufhcient correlation among the electrons
to yield (8). As still shorter wavelengths are considered,
these correlations should gradually fade out, the more-
or-less sharp eigenloss should become smeared out over
a wide energy interval, and finally the scattering should
be described correctly by the one-electron formula (12).
The exact nature of this transition remains a subject
for future investigation. For the time being, we satisfy
ourselves with the following admittedly crude approxi-
mation: (1) For 8&8,s, (12) holds without modification;
(2) for angles larger than 8,s, there is eo eigenloss
scattering. The actual value of the cutoG, as we shall
see, can be deduced from the experimental results.
In any case, our discussion of the angular dependence
will be independent of it, since we shall be dealing
mainly with angles smaller than the cut-oQ' angle.

To conclude this section, we wish to demonstrate
that treating the long-range interaction by one-electron
theory instead of by Bohm-Pines theory would result
in disagreement with experiment, in several respects.
Here we assume that our conclusions, based on the
free-electron gas, because of their qualitative nature,
will carry over to the case of a real metal.

First of all, the most obvious shortcoming of the one-
electron theory is that it does not yield the eigenlosses,
but instead a smeared-out distribution in energy be-
tween zero and (i''/2m) (k'+2kkp), for inelastic scatter-
ing at angle 8=hk/P. In addition to this difhculty is

FrG. 2. Fraction of the Fermi sea susceptible
to one-electron excitation.

the insuKciency in the amount of energy lost in the
scattering process. Even at the relatively large angle of
~80+ the maximum energy loss is only five-fourths the
Fermi energy, which is still generally smaller than the
eigenloss. At smaller angles, which account for the
bulk of the scattering, the energy loss predicted on the
one-electron theory is very much smaller than that
experimentally observed.

Aside from the magnitude of the energy loss, the
total intensity of inelastic scattering on the basis of
one-electron theory alone is an additional indication of
inadequacy of the latter theory. Integrating (12) over
all angles 8&8,z=P8ps, one easily finds for the total
inverse mean free path:

1 2kp Ry (1 P 1)
E LP 12 2j

This expression clearly diverges when the cuto8 is
allowed to pass to zero. This divergence can be directly
traced to a too-large expectation value of the operator
~pp~', resulting from appreciable probability in the
ground state for excessively large values of this operator.
Now it is just these large values which would unduly
raise the potential energy and which do not actually
occur in the true many-electron ground state of the
system. The long-range positional correlations which
prevent the electrons from assuming con6gurations
corresponding to large density Quctuations are ignored
by the free electron theory. By taking the correlations
into account, the Bohm-Pines theory more correctly
describes both the stationary states and the scattering
properties of the electron gas.

Since the divergence in the inelastic scattering in-
tensity predicted on the basis of the one-electron theory
arises from very strong scattering at very small angles
with very small loss in energy, it might be claimed that
the men, n free path is not measurable and that the
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stopping power is a more appropriate description of the
scattering. We therefore turn for the moment to the
calculation of the stopping power of a free electron gas
for fast electrons. In every collision in which an electron
of momentum Ak& is excited above the Fermi sea by
the transfer of momentum hk, the energy (A'/2m)
X(k'+2k kt) is absorbed from the incident electron.

By summing over all k&'s susceptible of excitation
(see Fig. 2) we find that the energy loss per unit path
length resulting from scattering into the solid angle dQ

is given simply by multiplying the short-range diGer-

ential inverse mean free path of Eq. (12) by the average
energy of excitation fi'k'/2ms(k/ks). Thus the differ-

. ential short-range stopping power is

AEO~ dQ
dS, ,, =

271 Gp sin 0
(15)

AE8~ (2 q
ln/

&8,s)
(16)

Adding this to the long-range contribution,

S, , =aE/X=
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FIG. 3. Plot of scattered intensity es angle for 20-kev electrons
passing through thin gold foil /single crystal, (002) direction).

where, in place of the approximation 5k= p8, we have
used the exact relation hk=p sin8, correct for large
angles as well as small. The expressions ks'/3s'=rI,
4rrh'rM'/rrs= (AE)', and AE/2E=8~ have also been

employed in arriving at (15). It is interesting to note
that dS, , exactly equals dSi, =d,Ed(1/lt) for angles

g)&8~. Because of this circumstance the total stopping
power of the Fermi gas is insensitive to the choice in the
value of the cutoG used for the calculation. Integrating
(15) over all 8,s(8~&a/2, we find for the total short-

range stopping power:

~ZO. I--t~ ~0
S, , = = ln(cot8, z/2)

ap ~ 8~@ sine cp

the total stopping power is

AE8E (8,s) Yr 2 )-S=S'+S'= l
I

)+1 I

a, & 8s) &8„i
AE8rr

t
2 ~

in[ —/.
(8,)

(17)

Since the arguments of the logarithms are both pro-
portional to gE, the long- and short-range contribu-
tions will be practically equal in all cases of relatively
high energy (compared to DE).

Now if we were to use only the one-electron theory
without the Bohm-Pines theory to supplement it, we
would be forced to allow 8,E to go to zero in (16), thus
obtaining an infinite stopping power —in manifest dis-
agreement with experiment. "Because of this and the
other reasons listed above, there seems to be no alter-
native to the Bohm-Pines theory for small-angle
intraband transitions. The foregoing discussion does
not, however, apply to interband transitions, and such
excitations undoubtedly account for many of the eigen-
losses observed in metals. We assume, however, that
for the 24-ev eigenloss in gold this is not the case and
proceed in the next section to compare Eq. (8) with
the angular distribution found by Marton, Simpson,
and McCraw.

IV. COMPARISON WITH EXPERIMENT

The experimental results of Marton, Simpson, and
McCraw are shown on Fig. 3. The heavy dashed line
represents one-tenth the intensity of the no-loss elastic
scattering, while the heavy solid line shows the angular
dependence of the 24-ev eigenloss inelastic scattering.
This latter angular dependence its an inverse square
curve (i.e., 8 '), for angles greater than about seven
milliradians. (The inverse square falloff extends to
about twelve milliradians, at which point the distribu-
tion is aGected by wide-angle screened-Coulomb atomic
scattering due to lattice impurities and irregularities.

By dealing mainly with smaller angles we are able to
ignore this additional complication in the present work. )
The inverse square behavior is predicted by Eq. (8)
and its appearance at the larger angles encourages one
to attempt to account for the course of the entire
eigenloss curve on the basis of this formula. The devia-
tion of the observed eigenloss distribution at smaller
angles can immediately be attributed to the spread in
the no-loss beam, in turn due to elastic scattering by the
lattice waves. Without further modification, Eq. (8)
describes only the case of a precisely collimated no-
loss beam.

To describe the physically more realistic case, let us
choose coordinates so that the front surface of the metal

'9 For other discussions of the stopping power of the conduc-
tivity electrons see: H. A. Kramers, Physica 13, 401 (1947};Aage
Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 24, 19
(1948};and David Pines, Phys. Rev. 92, 626 (1953}.
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foil, exposed to the normally incident fast electron
beam, lies in the x—y plane, with a=0. The back
surface is then specified by s= t, where t is the thickness.
(See Sec. II for notation. ) At any depth 0&z&f within
the metal, let I(B,z) and J(B,z) represent the no-loss
and eigenloss distributions, respectively, where 8 is a
two-dimensional vector lying in the x—y plane. Its
components, 8, and 8„, are the projections of the unit
propagation vector, and its magnitude is simply 0, the
angle of scattering. Making the further de6nitions,
A =net mean free path for all inelastic processes,
f(8)=d(1/X)/dQ, eigenloss scattering coefficient, and
g(8)=corresponding elastic scattering coefficient, we
can write the following equations":

dI (6,z) t. 1' = ~ d'8'g(8 —8')I(8',.)—I(8,.),

note that it is possible greatly to simplify (21) by
reducing the double convolution to a single convolution.
This can be seen by eliminating e" in terms of the
variable g= —8"+8+8'. Then

t t d'8"d'8'G(8 —8", z—z')f(8"—8')G(8', z')

d2qf(8 —q) t d28'G(g —8', z—z')G(8', z').

From the nature of the Green's function,

I d'8'G(g —8', z —z')G(8', z') =G(g,z).

Therefore, using (20), (21) reduces to

dJ(B,z)
d'8'g(8 —8')J(8',.) —-I (B,z)

J(B,z) =z d'8'f(8 —8')I(8',z). (22)

+ d'8'f(B 8')I(8—',z). (19)

Here we regard g(8) as having a negative Dirac delta
function-like behavior at 8=0, such that J'd'Bg(8) =0.
Introducing the Green's function G(8,z) as the solution
of Eq. (18) with the boundary condition

We now put s= t, represent the outcoming distributions
by simply I(0) and J(8), and substitute for f(8—8').
Taking advantage of the symmetry of the no-loss
distribution about 6'=0 in order carry out the integra-
tion around circles of radius 0', we obtain

0'I (0')d8'
(23)

L(012 g2+g 2)2+4g2g 2j&

we find
G(B,z) ),=0~»(8),

I(B,z) =I,G(8,z)

Z

I(B,z) =I;, dz' d 8"
0

(20)

Here K=t8z/ao, 8~ is such that for 8'&8~, I(8') is
essentially zero, and the equation holds only for
0&g,z—g~r. It should be noted that (23) predicts an
inverse square behavior, regardless of the particular
form of the no-loss curve, provided 0 is large compared
to 8~. In this case, the denominator can be replaced
by 0' and taken in front of the integral sign, resulting in

X d28'G(8 8", z—z')f(8"——8')G(8', z'), (21)
4

where

I,= I I(8,0)dB

is the total incident no-loss intensity. We have assumed
the incident beam to be precisely collimated, which
corresponds closely to the actual experimental setup.

Although Eqs. (20) and (21) give a complete de-
scription of the no-loss and eigenloss at every point in
the metal they can be compared with experiment only
at s= t, where the beams emerge from the back surface
of the foil and are subject to measurement. Before
specializing (20) and (21) to z=t, however, let us erst

~ In restricting our attention to the intensities, we neglect any
coherence of the lattice or plasma waves which could lead to
constructive or destructive interference between waves excited at
diferent points in the metal. Because of the shortness of the
phonon mean free path at room temperature and the smallness
of the plasma group velocity this can be expected to be a good
approximation.

J(8) =KIO/2zg' (24)

where Io= Jp~ 27rgI(0)dg is the total no-loss intensity
emerging from the foil.

Corresponding to (21), there is an equation for I(8)
itself in terms of the Green's function G(8,3). Although
in principle it is possible to calculate this Green's
function from the basic theory of lattice vibrations, wt.
do not do so here. Instead, we take I(8) as given by the
experimental data. Proceeding, therefore, to calculate
the eigenloss distribution from Eq. (23), we need to
know the value of the numerical parameter E, which
depends on the thickness of the target foil. The latter
can be estimated independently from the evaporation
method used to prepare the foil. It is diKcult in this
way, however, to obtain a value for the thickness which
can be relied upon to better than a factor of two.
Therefore, although the experimenters have assigned
the nominal thickness of 100 A to the gold foil upon
which the present analysis is based, we prefer here to
determine t by normalizing the total eigenloss intensity
calculated on the basis of J(8) so that it agrees with the
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total measured eigenloss intensity. More precisely,
we carry out the normalization for the quantity
Jx= Jo'"2~8J(8)ds, where 8~ is chosen small enough
that (23) remains valid, but sufficiently large com-
pared to 8~ that simplifying approximations can be
employed. Under these conditions it is easily estab-
lished that

E=
Io ln(8~/Ss)

In the experiment carried out by Marton and co-
workers, 20-kev electrons were employed. Therefore
sg= DE//2E=0. 6 milliradian. Concerning the choice of
8&, we are confronted by the fact that the value of 8,z
is not known. As long, however, as we remain in the
inverse square region we can be con6dent that we have
not violated the condition 8~&8,z—8~, which is essen-
tial to the validity of (23) and, hence, (24). The actual
value chosen was 8~= 11.64 milliradians, corresponding
to 1 n( 8~ /8E) =2.96. Numerical integration of the two
experimental curves separately then yields E=0.0911,
corresponding to a thickness of 80.2 A. Equation (23)
can now be numerically integrated for various values
of 8. The results are presented by the thin line in
Fig. 3.

Although the theoretical eigenloss curve of Fig. 3
successfully portrays the general trend of the experi-
mental curve as it drops smoothly from relatively high
values at small angles to a long weak tail at larger
angles, there are two signi6cant discrepancies between
the theoretical and experimental curves. First, the
theoretical intensity at small angles falls short by a
considerable amount of accounting for the observed
intensity. Second, the theoretical tail is somewhat
stronger than the observed. A natural explanation of
the erst discrepancy, which is perhaps the more striking
one, results when one realizes that it is just at these
small angles that the intensity of the no-loss beam is
very high. (See Fig. 3.) In this type of experiment it is
technically very di6icult to measure with extreme
precision both angle and energy simultaneously. To
achieve high angular resolution Marton and co-workers
were forced to sacridce energy resolution to the extent
that at angles less than 4 milliradians the eigenloss
beam was swamp'ed by the intense no-loss beam, and
could not be resolved. An examination of the cartograph
for the case "100A Au single crystal (002 direction)'"'
suggests that the no-loss beam may make as much as
a 10% "contamination" contribution to the "eigenloss"
intensity.

If this contamination eGect is accepted, it is no longer
possible to normalize J(8) to integrated intensity. The
value of E must be determined rather by comparing
the inverse square tails of the calculated and observed
eigenloss intensities at large angles, where I(8) vanishes
and there is no contamination. Fitting the two curves

~ Figure 2 of reference 12.

over the interval seven to twelve milliradians yields
K=0.0619, corresponding to a thickness of 54.5 A. The
theoretical intensity at zero angle on the basis of this
value of E is lowered to 440, compared to an experi-
mental value of 1000 for J{0)and 5400 for I{0)in the
same units. Therefore 560, or more than half of the
"eigenloss" intensity at zero angle, must come from
the no-loss beam. This corresponds to a "contamination
coeKcient" of 560/5400=0. 1034, or about ten percent.
Now using the same value of contamination coeKcient
for all angles, one adds 0.1034 I(8) to J(8), evaluated
from (23) with X=0.0619, and compares the sum with
the observed "eigenloss" intensity. The results are
shown in the form of several points plotted on Fig. 3.
The procedure is such as to give automatically exact
agreement between theoretical and experiment values
for very small and very large angles. Intermediate
angles do, however, provide a test, and the good agree-
ment in this range seems to substantiate this inter-
pretation of the data.

We conclude this section with a brief numerical
treatment of the short-wavelength cutoff, a discussion
of which has already been given in Sec. III. From that
discussion we should expect zero eigenloss intensity for
angles 8)8~'=s,s+8~. This fact should thus provide a
means of estimating 8,g. The actual value of 8,~ could
easily be obtained by integrating the eigenloss intensity,
obtaining numerically the quantity

JQ= ~ 2msJ(8)ds.

Since it is easily established that Jo ——(t/X)IO, one could
solve for

Cp

s~ ln(s, E/8E)

From this expression 8,+ would then be easily obtained
and from 8,~, in turn, the Bohm-Pines cut-oG param-
eters, k, and P.

Unfortunately, the experimental eigenloss curve does
not drop to zero for any value of 8, and the procedure
outlined above cannot be carried through. As mentioned
above, the inverse square falloff is appreciably aug-
mented, at angles greater than twelve milliradians, by
wide-angle atomic scattering. At still greater angles
another contributor is the one-electron short-range
scattering dealt with in Sec. III. Because of the finite
resolving power of the detector, this one-electron scat-
tering can contribute to the "eigenloss" intensity
despite its diffuseness in energy. This eBect could, in
principle, be eliminated by using a detector sharply
adjusted to the eigenloss. In practice, however, it may
be di6icult to obtain the necessary extreme energy
resolution. The one-electron scattering is no doubt the
principa1 contributor in the present case at angles well
above the inverse square region, and prevents a unique
determination of the cutoff from the present data. If we
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nevertheless arbitrarily set 0~'=2tII& and assume that
there is no long-range scattering at angles greater than
this, we find Jp/Ip=0. 214, where the contamination
from Io has been subtracted from Jo. With the previous
value for the thickness, )=54.5 A, this yields X=255 A,
or 8,E ——19.1 milliradians. Since 8,E ——t'skc/p by definition,
we lnd k,=0.733ao '. For the free electron gas it is
generally convenient to compare k, with the Fermi
momentum, ko. In the case of gold, however, the elec-
trons are far from free and the definition of ko is
ambiguous. If we take it as defined by kp ——1.917(r,ap) ',
where r, is determined by its free-electron formula
(see Sec. III), we find r, =3.05, and kp=0.629ap—',
assuming one electron per atom. Including the d-elec-
trons to give a total of eleven electrons per gold atom
yields r, = 1.371, kp ——1.398ap '. The ratios P= k,'/kp cal-
culated with these values of kp and P=1.165 and
P=0.525, in order of magnitude agreement with the
values P= 1.232 and P=0.826 calculated from Eq. (14)
of Sec. III. Because of the complications caused by the
short-range scattering and the eGects of binding, the
numerical results in this paragraph should not be
regarded seriously. They have been obtained only to
illustrate the method which can be followed in a more
ideal case.

V. SUMMARY

The above work shows that the experimental angular
dependence of the 24-ev characteristic energy loss in
gold is consistent with a simple Bohm-Pines approach,
provided that a correction is made for finite energy
resolution. It may be that the theory of band excitation
could yield similar agreement; however, this could be
established only on the basis of a detailed energy band
calculation. In any case, there are general criteria
based on optical data, which are able in principle to
decide, for any given characteristic energy loss, between
the two alternative mechanisms. Furthermore, there are
certain phenomena, such as the slowing down of elec-
trons, to which both mechanisms for the excitation of
the electrons of the metal contribute. In the analysis
of these phenomena a collective treatment is indis-
pensable.
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Infrared Absorption of Indium Antimonide*
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Infrared absorption in InSb near the absorption edge has been interpreted as the superposition of two in-
direct transitions requiring phonons of 100' and 30', the former transition involving the smaller electronic
energy gap. The Grst transition is consistent with a band scheme having electrons at the center of the zone
and holes either at the corner of the zone or about halfway along the $1,1,1$ line. The other transition may
indicate a second hole with an energy gap about 0.025 ev larger than that of the first.

~HE theory of indirect transitions between valence
and conduction bands proposed by Bardeen,

Blatt, and Hall' and applied to germanium and silicon
by Macfarlane and Roberts' and Fan, Shepard, and
Spitzer, ' has been applied to the infrared absorption of
indium antimonide. Measurements of the absorption
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coefficient of indium antimonide'' (shown in Fig. 1)
reveal that close to the absorption edge, the absorption
coefficient, E, conforms reasonably well to the following
formula:

E= [(Ace E,+k8) s+ set T
—(Aa) E —k8)'j (1—)e'l~ —1

where E, is the minimum separation between the va-
lence and conduction bands (not vertical) and k8 is the
energy of a phonon emitted or absorbed in the transition
(k is the Boltzmann constant). Analysis of the measure-
ments yields a value for 8 of approximately 100' and

4 A. Goldberg (private communication}.
e G. C. Macfarlane (private communication to S. W. Kurnick}.

We are indebted to Dr. Macfarlane for furnishing his unpublished
data.


