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there is no tendency for spin coupling, that for inter-
mediate ranges of distances (2.49 to 2.82 A) the coupling
is antiparallel and for the long distances (&2.96 A)
parallel spin coupling occurs. If a group of atoms occurs
in a spatial arrangement such that no physically. con-
sistent assignment of moments can be made, it seems
that no moment alignment among these atoms will

occur. Not only the antiferromagnetic structure of
e-Mn but the absence of a magnetic structure for
P-Mn are understandable on the basis of these state-
ments;

While it is not possible to specify exactly the mag-
nitude of the moments of the respective atoms in
n-Mn, it is established that they are well above the
value of 0.5 p, g that is given in the literature,

No signihcant deviation from the accepted crystal
structure descriptions of both cr- and P-Mn could be
detected in the neutron diffraction results.
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Conductivity, Hall eRect, and magnetoresistance in single crystals of pure and tin-doped bismuth have
been measured as functions of temperature between 80 and 300'K and as functions of magnetic field up to
2000 oersted. A simple many-valley model for the band structure of bismuth is proposed, and explicit ex-
pressions for the galvanomagnetic eRects are derived. Numerical values are obtained for the number
of conduction electrons and holes, their mobilities, and the overlap of valence and conduction bands.

I. INTRODUCTION

HE galvanomagnetic e8ects in single crystals of
bismuth have been studied extensively. ' ' An

attempt to explain the observed facts in terms of band
structure has been made by Jones. s This author cal-
culated the galvanomagnetic effects on the assumption
that the band structure of bismuth can be approximated
by a simple model. However, the model adopted by
Jones leads to results which are partially at variance
with experiment. For instance, the longitudinal m, ag-
netoresistance in the direction of any of the crystallo-
graphic axes is calculated to be zero, while experi-
mentally the longitudinal eGect is of the same order of
magnitude as the transverse e6ect. The theory is also
unable to explain the pronounced anisotropy of the
transverse sects at strong magnetic fields. In this paper
we will show that a somewhat different model leads to
much better agreement between calculated and experi-
mental values.

*Part of a dissertation submitted by B. Abeles to the Hebrew
University, Jerusalem, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

' P. Kapitza, Proc. Roy. Soc. (London) A119, 358 (1928).
s O. Steirstadt, Z. Physik 95, 355 (1935).' de Haas, Blom, and Schubnikov, Physica 2& 907 (1935).
4 A. N. Gerritzen and W. J. de Haas, Physica 8, 802 (1940).' Gerritzen, de Haas, and van der Star, Physica 9, 241 (1942).' Y.Tanabe, Science Repts. Insts. Tohoku Univ. A2, 341 (1950).
' H. Jones, Proc. Roy. Soc. (London) A155, 653 (1936).

Measurements of galvanomagnetic effects in diGerent
crystallographic directions in weak magnetic fields and
at temperatures between 80 and 300'K have been car-
ried out, as the data available in the literature were con-
sidered to be insufhcient for a satisfactory test of the
theory. We have also measured the galvanomagnetic
effects in tin-doped bismuth. Thomson'' has reported
that small additions of tin to bismuth act in many
ways analogously to the addition of acceptor elements
to semiconductors, and it should thus be possible to
obtain from these measurements more direct informa-
tion as to the relative contributions of the valence and
the conduction bands to the conductivity.

II. EXPERIMENTAL

Single crystals of bismuth were prepared from spec-
troscopically pure bismuth, supplied by Johnson and
Mathey, specified to be better than 99.996% pure. The
method used in growing the single crystals follows
closely one of the techniques described by Kapitza. "
The single crystals obtained had the shape of rods with
nearly circular cross section of diameter between 1 and
2 mm. Rods of any speci6ed crystallographic direction

s
¹ Thomson, Proc. Roy. Soc. (London) A155, 111 (1936).' N. Thomson, Proc. Roy. Soc. (London) A164, 24 (1938).

"An adaptation of the "plate furnace" method described in
reference 1 was used.
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FIG. 1. Hall Geld as a function of magnetic Geld strength at
80'K. The points indicate experimental values; the curves were
calculated from Kq. (12), using the values of the parameters given
in Table Il. The directions of the current I, the magnetic Geld H,
and the observed component of the electric Geld E are given in the
figure. (3) denotes the trigonal axis, (1) a binary axis and (2)
indicates the direction perpendicular to (1) and (3).

could be obtained by the use of seeds. ' The crystallo-
graphic directions of the rods were determined with the
he1.p of the principal cleavage plane. It was found that
the cleaving was done best while the crystal was im-
mersed in liquid nitrogen. At low temperatures the
crystal is brittle and cleaves without any deformation.

Crystals of three orientations were grown: with the
rod axis parallel to the trigonal axis, with the rod axis
parallel to a binary axis and with the rod axis perpen-
dicular to the trigonal axis and one of the binary axes.
Absence of twinning was checked by etching the rods
in a saturated aqueous solution of KI to which some
iodine was added.

By the same procedure, a number of bismuth rods
containing small additions of tin were prepared (up to
0.2 weight percent). The tin content was obtained by
spectroscopic analysis of the samples after completion
of the electrical measurements. This procedure was
necessary, because appreciable segregation of tin takes
place during crystallization.

Samples of about 8 mm length were cut from the
single crystal rods. Current leads were soldered to the
ends of the sample. Silver potential leads (of diameter
0.05 mm)' were welded to the sample by condensor
discharge. ' The dimensions of the rod and the distance
between the potential probes were determined with a
travelling microscope.

The resistance and Hall effect were measured on a
number of samples as functions of the magnetic field

up to about 2000 oersted, and as functions of tempera-
ture between liquid nitrogen temperature and room
temperature. An ac method similar to the one described
by Donoghue and Earthy" was used. It was found
advantageous to modify the apparatus described in
reference 11, by the addition of a phase detector. "

"J.J. Donoghue and W. P. Earthy, Rev. Sci. instr. 22, 513
(&95&).

"N. A. Schuster, Rev. Sci. Instr. 22, 254 (1951).
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FIG. 2. Magnetoresistance as a function of magnetic Geld
strength at 80'K. The curves have been calculated from Eq. (13).
Other details as for Fig. i.

"We will use the term magnetoresistance for the quantity
Q= (prr po)/po, where prr is the resista—nce of the sample in mag-
netic Geld II and p0 the resistance in zero magnetic Geld. The term
magnetoresistance coefficient will be used for the quantity
q=lim(Q/Ho) as H~O Similarly, we will denote by H. all field
the quantity R, which is related to the Hall coefIicient r by:
r=lim(R/H) as H—+0.

"D.Shoenberg, Proc. Cambridge Phil. Soc. 31, 265 (1935).
'o D. Shoenberg, Proc. Cambridge Phil. Soc. 31, 271 (1935).

This made it possible to dispense with the phase shifter
and filter used in the original method.

In Figs. 1, 2, and 3 results for the Hall field E. and the
magnetoresistance Q at 80'K are given as functions of
magnetic field. "The measurements were carried out on
a number of differently oriented crystals and for various
directions of the magnetic Geld. The direction of the
current I, the direction of the magnetic field H and the
direction of the measured component of the electric
field E are indicated in the figures. Similar curves for
300'K show no appreciable saturation at 2000 oersted.

In Table I are given the values for the speciGc con-
ductivity, the Hall coe%cient, and the magnetoresis-
tance coefficient at 80'K and 300'K. The coefficients
were obtained by graphical extrapolation of the meas-
ured values to zero magnetic Geld. In this table those
coeKcients which should be equal because of crystal
symmetry"" have been taken together. In fact, the
measured values for these coeS.cients coincided within
the experimental accuracy, and the values given in the
table are averages.

The samples containing additions of tin show a
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FIG. 3. Magnetoresistance as a function of magnetic field
strength at 80'K. The curves have been calculated from Eq. (13).
Other details as for Fig. 1.

III. THEORY

The physical properties of bismuth indicate that in
this metal there is a small overlap of the conductional

band and valence band' " and that electrical conduc-

peculiar dependence of resistance and galvanomagnetic
coefficients on temperature. Some of the measurements
are given in Figs. 4, 5, and 6. Similar results were ob-
tained by Thomson. "A discussion of this behavior will

be given in Sec. IV.B.

tivity is due to a small number of electrons at the
bottom of the conduction band and an equal number of
holes at the top of the valence band. The galvano-
magnetic eGects are thus determined by the detailed
structure of the bottom of the conduction band and of
the top of the valence band. In the absence of theoretical
calculations of the band structure of bismuth, the follow-

ing model will be assumed:

(1) The energy extrema of interest are nondegenerate.
We can then use the usual approximation for the energy
b as a function of crystal momentum P

h= +L(P&'/2mt)+ (Ps'/2m&)+ (Ps'/2m, )$. (1)

(2) According to assumption 1, the energy surfaces
near an extremum are sets of ellipsoids. A number of
these sets must be arranged in momentum space in
accordance with the rhombohedral symmetry of the
bismuth crystal. The two simplest cases which ful611

this requirement are:
(a) One set of ellipsoids of revolution with the axis of

revolution parallel to the trigonal axis of the crystal.
(b) Three sets of ellipsoids, each set having one of its

axes parallel to the trigonal axis and another axis
parallel to a binary axis. (One set transforms into
another by rotation of 120' about the trigonal axis. )
Case (a) will be adopted for the valence band and case

(b) for the conduction band.
(3) The relaxation time of the electrons and of the

holes is independent of energy. This assumption is a fair
approximation at low temperatures where the statistics
is nearly degenerate. It will also be used at higher
temperatures, because of lack of more specific informa-
tion on the dependence of relaxation time on P.

It appears that other reasonable assumptions for the
relaxation time will not change the essential results of

l0

&11, &22 X10 16

X33 X10 18

—rg1(2), rig(2), —r28(1), rg2(1) X1020—r12(3), r21(3) X1020
q»(1) q22(2) X10'
qll(2), q22(1) X108
q],1(3), q22(3) X108
q33(1), q33(2) X108

qgg(3) X108

300'K
calc.

0.76
0.68-1.7
0.19
0.89
1.3
0.36
1.1
0

300oK
exp.

0.75
0.60-1,5
0.05
0.78
1.3
0,27
1.3
0.1

80 K
calc.

2.7
2.4-9.2
0.66
280
400
90
320
0

80 K
exp.

2.5
2.4—93
0.3a
290
450
80
330
30

TABLE I. Comparison of measured and calculated conductivity
and weak magnetic Geld galvanomagnetic coefFicients. );J, denotes
the conductivity tensor, r;&(l) the Hall coefficient and q;&(l) the
magnetoresistance coefFicient. The index i indicates the observed
component of the electric 6eld, k the direction of the current and l
the direction of the magnetic 6eld. (3) denotes the trigonal axis,
(1) a binary axis, and (2) is perpendicular to (1) and (3). The
calculated values were obtained from Eqs. (14) for the values of
the parameters of Table II. All quantities in cgs units.
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a The sample was accidentally destroyed before this measurement could
be taken. The value quoted is taken from Thomsong and is for 90 K.

's H. Jones, Proc. Roy. Soc. (London) A147, 396 (1934).

Fz(".. 4. Measured specific resistance of tin-doped bismuth as a
function of temperature. The tin content in weight percent is
indicated in the figure. The solid lines give the resistance in the
direction of the trigonal axis, the dashed lines the resistance in a
direction perpendicular to the trigonal axis.
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(l) (5)

(3)a;i ——(e'zzr/zzz, )h;t. ——«tt, B;s,

where w is the relaxation time and 8;I, the Kronecker
symbol. p; can be regarded as the mobility of the charge
carrier in the i direction. Since these mobilities refer to
charge carriers belonging to one extremum, we will refer
to them as "partial mobilities. "

Solving Eq. (2) for i, one obtains

z;=ass, eEg,

where s;~ are the expressions

where E is the electric Geld, H the magnetic field, e the
charge of the electron (to be taken negative in the case
of electrons and positive in the case of holes), c the
velocity of light, e the number of carriers near the energy
extremum per unit volume of the crystal. The compo-
nents of the tensor o.,~, referred to the principal axes are
given by

'20 I

200
T (4K)

$11 GttlL1+ (ttsttsH1 /c ))q

$12=Gttltt2$(Hs/c)+ ( ttsP»2 /c )))
s,s(H) = ss, (—H),

G= «{1+$(pstts&P+tssts»s'
+t i z&s')/C')& '.

(5)

Fro. 5. Measured Hall coefBcient of tin-doped bismuth as a
function of temperature. The tin content in weight percent is
indicated in the 6gure. Current parallel to trigonal axis.

the theory. This can be understood from the fact that
the large galvanomagnetic eGects in bismuth are a
result of the presence of more than one carrier, while the
dependence of the relaxation time on P gives only a
minor contribution.

(4) In the relaxation processes only transitions be-
tween states belonging to the same extremum take
place. With this assumption, each extremum can be
treated independently, the total current being given as
the sum of the contributions from each extremum.

The only difference between the above model and the
one treated by Jones is the adoption of case (b) instead
of case (a) for the conduction band. It should be noted
that a model for the conduction band essentially equiva-
lent to case (b) has been assumed by Shoenberg'r in a
theoretical interpretation of the de Haas-van Alphen
eGect in bismuth.

The calculation of the galvanomagnetic eGects for the
above model can be carried out in a way similar to the
one given for germanium in a previous paper. "How-
ever, the assumption that the relaxation time is inde-
pendent of P allows considerable simplification. For this
case, the following equation can be derived for the
current density contribution i of one extremum":

i;=+so,e[E+ (1/«c)iXH)„, (2)
"D.Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).
's B. Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954)."See A. H. Wilson, The Theory ofMetals (Cambridge University

Press, Cambridge, 1953), second edition, p. 225. Substitution of
Eq. (8.551.1) into (8.551.4), followed by partial integration, gives
the desired result.
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FIG. 6. Measured transverse magnetoresistance coeKcient of
tin-doped bismuth as a function of temperature. Details as in
Fig. 5.

The other components of s;I, are obtained by cyclic
permutation of the indices. The set s;k can be inter-
preted as a tensor characterising the conductivity con-
tribution of one extremum. The expressions (5) are the
components of this tensor referred to a coordinate
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—1 &03 0
A"=-' Wv3 —1 0 .

0 0 2
(6)

This transformation expresses rotations of &120' about
the 3-axis. Calculating

system along the principal axes of the energy ellipsoids.
We next have to sum the current contributions of all
the extrema. In order to carry out this summation, we

6rst have to refer the tensors s,~ belonging to the difer-
ent extrema to a common coordinate system. %e shall

use a right-handed orthogonal coordinate system such

that the 1-axis is along a binary axis of the crystal and
the 3-axis along the trigonal axis. This coordinate
system is along the principal axes of the energy ellip-

soids describing the top of the valence band [case (a)7
and along the principal axis of one of the three sets of
ellipsoids describing the bottom of the conduction band
[case (b)]. For these extrema the components of $,3 are

given directly by Eq. (5). For the other two conduction
band extrema, we have to apply the following trans-
formation to s, I, .

where I is the total current density and 5;& is the sum
of the following terms: expression (5) for the holes
(with e positive), expression (5) for the electrons of one
of the conduction band minima (with e negative) and
expression (9), once with the upper and once with the
lower sign for the other two conduction band minima.

In the usual experimental arrangement for measuring
the galvanomagnetic effects, the current density I and
magnetic field H are given, and the component of E in a
speci6ed direction is measured. The galvanomagnetic
sects are thus not given directly by the coeKcients in

Eq. (10), but rather by the coeflicients in

Although the calculation of R,3(H) is straightforward,
the expressions obtained are rather cumbersome for the
general case. We will give here explicit equations only
for the cases where 8 is along either the 1-axis (binary
axis), the 2-axis, or the 3-axis (trigonal axis). In order to
differentiate between these cases, we will write R;3(t)
where l denotes the direction of the magnetic field. For
these cases we obtain

$,'3 ——QA A3 $,3,
i, k

and substituting in s,~

H, = —(1/2)H1 W (v3/2)H2 )

H2= + (v3/2)H1 —(1/2)H2,

Hg ——IIg,

we obtain

$1'1' g[Pl+3P2+ (4PlP2P3H1' /C )]y

$2'2'=g[3Pi+P2+ (4P1P2P3H2'!c )3~

» 3 =4g[P3+(P»»3H3'/C'))

$1'2' g[+V3 (Pl P2)+ (4PlP2H3'/c)

+ (4P1P2P3H1 H2 /c')],

(7) R,3(l) =r;p(1)H[1+a,3(t)H2][1+b,3(t)H2+c, 3(l)H4] ',

2Akll/2 (12)

Q,3 (l) —=X,2R,3 (l)—1= q, 3 (l)H2[1+dg, (l)H2)

X[1+;(l)H'+f; (t)H'] ', '=k. (13)

Equations (12) and (13) give the Hail field and mag-
netoresistance respectively. " Below are given the ex-
pressions for r;&(/) and q, &(l) for arbitary 1V and P.
(1V=323 is the total number of electrons and P the total
number of holes per unit volume. ) The expressions for
the other coeflicients in (12) and (13) are cumbersome
for the general case (A'AP) and we shall give them only
for %=I'.

liii ——(e/2) [Ã(pi+ p2)+2Pvi],

),33=e[1VP3+Pv3),

$2'.j' (gP3/c)[(3Jlll+P2)H1'~ v3 (Pl P2)H2'

+ (4P1P2H2~H3~/C)],
(9)

r»(3) = —r„(3)= (e/c~»') P'pl 2
—»i'),

r23(1)= —r32(1)= r31(2)= —r13(2)
= (e/2chiih 33)[1V(P1+P2)P3—2P v iv3],...= (gP./. )[("+3P.)H'~v3(P -P.)H'

+ (4p, ip2H3 Hi /c) ], qii(1) = (eiV/SC9, 11)p3 (pi —p 2)',

qii(2) = (eATP3/gc'~11~33) p 33(P1 P2)'

+2ePv3(pi+ p2+2v3)'),

g= (eri/4)(1+(1/4c')[p3(3pi+p2)Hi'

+P 3 (P1+3P2)H21 +4P 1P2H3'

a2%3P3(P1—P2)H1H2)) '.

Ke can now sum the current contributions of the
four extrema. The result has the form

qii(3) = (e 1V/4C All ) (&VP 1P2(P1 P2)—
+2Pvi[{pi+p2) ( ip2+»')+4p»2vi)),

q33(1)= (e'/2C'X11X33)1VPvl(Pl+P2) (P3+ v3)

(10) q33(3) =0,

(14)
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p3$plp3(pl+3p2) vlv3(3pl+p2))
a3i (2) =a, 3 (2) =

2c'Lps(pi+ p2) —2v,v,)
ni2(3)=pi 2/c',

p 3v3(pl+ p2+2 vi) &vi(3pi+ p2)+pi(pi+3p2) )
dit(2) =

"{p3(pi—p.)'+»L&»(pi+ p2+»)+3pt'+2pu 2+3p2'))
'

p lp 2v 1Lv 1(p i+p 2) +2p lp 2] (p 1+p 2+2 v i)
d»(3) =

c {p lp 2 (p 1
—p 2) +2 v 1I p lp 2 (p1+p 2) +4p lp 2v 1+v 1 (p 1+p 2)))

d33(2) plJll3(pi+3p2)/2c'(pi+p2),

b3i(2) =b»(2) =e»(1)=ell(2) = e33(2)= p3[p& (pi+3p2)+»(3p&+p2))/2c (pi+p2+2vl),

bi2(3) = eii(3) =
Lvi (pi+ p2)+2pip~)'/c'(pi+ p2+2vi)',

d»(1) = c;&(1)=f,&(l) =0;

the remaining coeKcients are obtained by interchanging
the indices 1 and 2.

In the above equations p, &, p2, and pa are the "partial
mobilities" of the electrons as defined in Eq. (3),
vi(= v2) and v3 are the mobilities of the holes, and lt, ~ is
the conductivity tensor.

It should be noted that in Eq. (12), limfR, &(l)/H)
= r;~(l) as H—+0, so that r;~(l) is in fact the Hall coefli-

cient. Similarly q, &(l) is the magnetoresistance coeffi-

cient.

IV. COMPARISON WITH EXPERIMENT

A. Pure Bismuth

Equations (12) and (13) express the galvanomagnetic
eGects as functions of H in terms of the "partial
mobilities" pi, p2, pa and vi (= v~), va and the number of
electrons and holes X=I'. We will consider these
quantities as temperature-dependent parameters. It is
reasonable to assume that the dependence of the
effective masses on temperature can be neglected. The
temperature dependence of the mobilities will then be
due entirely to the relaxation time LEq. (3)) and the
ratios pt. p~. p3 and vi(= v2): v~ will be independent of
temperature. The parameters subject to this restriction
have been determined at 80'K and 300'K, so as to ob-

tain the best fit of the experimental LTable I) and
theoretical LEqs. (14)) values of the conductivities and

the weak magnetic field coefficients. The values of the
parameters so obtained are given in Table II. From a
comparison of the calculated and the experimental
values in Table I, it will be seen that a reasonable fit
can be obtained.

The same values of the parameters have been used to
calculate the dependence of the galvanomagnetic sects
on the magnetic field strength $Eqs. (12) and (13)).
Comparison between calculated and experimental
values are given in Figs. 1, 2, and 3.

It should be noted that the determination of the
parameters from the weak magnetic field coeKcients,
as described above, leaves the possibility of interchange

of the values of p, & and p2. This is seen immediately from
Eqs. (14), which are symmetrical in pi and p2. A
positive assignment can however be made from the
strong Geld results. In Figs. 1, 2, and 3 interchange of
directions 1 and 2 leads to interchange of the theoretical
curves and to disagreement between theory and experi-
ment.

N,PX10 "
PIX10 6

p2X10 '
p3X10—'

vI, vgX10 '
v3X10 '

300oK

2.2
95
0.24
5.7
2.3
0,62

80'K

0.46
167
4.2
100
37
10

B. Tin-Doped Bismuth

Some of the results for tin-doped bismuth crystals are
given in Figs. 4, 5, and 6. The main features of these
curves follow naturally from the proposed model, if we
make the additional assumption that the tin impurities
introduce acceptor levels near the top of the valence
band. Consideration of such an energy scheme will
show that at intermediate temperatures (kT of order of
magnitude of the band overlap) the introduction of
acceptor levels will cause a reduction in the number of
electrons and an increase in the number of holes. At
low temperatures and at high temperatures the eR'ect

of the acceptor levels is small.
In the proposed model the mobility of the electrons in

the direction of the trigonal axis (pg) is much larger than
the mobility of the holes (v3), (see Table II). Accord-

ingly the resistivity in this direction is very sensitive to
the number of conduction electrons. This explains the
pronounced maxima in the curves of Fig. 4. On the
other hand, in the direction perpendicular to the trigonal

TABLE II. Values of the parameters used in the calculations.
N=P is the number of electrons or holes per unit volume; pI, p~,
pa the electron mobilitiea and vz(= v2), vq the hole mohilities in di-
rections corresponding to the principal axes Gf the energy ellipsoids
All quantities in cgs units.
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FIG. 7. Calculated overlap of conduction and valence bands in
bismuth as a function of assumed ratio P of densities of states of
electrons and holes. The curve is symmetrical about the ordinate
p= 1.

axis, the electron mobility (p&+ps)/2 and the hole
mobility (v&) are of the same magnitude and a pro-
nounced maximum cannot be expected. It will be seen
that this agrees with the observed facts. The fact that in
the intermediate temperature range the number of
electrons is decreased by the addition of tin, while the
number of holes is increased, also gives a qualitative
explanation of the change in sign of the Hall effect as
illustrated in Fig. 5, and of the inAection in the magneto-
resistance curves, given in Fig. 6. The behavior of the
curves at the lower temperature is of course also deter-
mined by impurity scattering.

Ke have not succeeded in placing the above qualita-
tive arguments on a quantitative basis. In order to
carry through such an analysis, measurements are re-
quired on two differently oriented samples for each
impurity content. In practice it has proved impractical
to obtain two samples with nearly equal impurity con-
centrations, the allowed variation being very small be-
cause of the high sensitivity of the effects to changes in
impurity concentration.

V. DISCUSSION

A quantity of interest is the amount of overlap (6) of
the valence and conduction bands. Although the above
analysis gives a value for the number of electrons and
holes (1V=I'), calculation of 6 would also require
knowledge of the density of states, i.e., absolute values
for the effective masses. Alternatively, it can be shown

that, if the temperature dependence of the overlap is
neglected, knowledge of Ã at two different tempera-
tures and of the ratio (p) of the density of states in the
conduction band and the valence band suSces to deter-
mine A. Using tables of the Fermi-Dirac functions ' and
the values of E=P given in Table II, we have calculated
6 for different assumed values of P. The results are
given in Fig. 7. It will be seen from, this figure that 6 is

20 J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
287, 67 (1939).

rather insensitive for variations of P, and even though
the actual value of p is not known, an estimate of 6
=0.0l2 ev seems reasonable.

The most convincing evidence as to the validity of
the proposed model is the ability of the theory to
predict the dependence of the galvanomagnetic effects
on magnetic field correctly, see Figs. 1, 2, and 3. It
should be emphasized that the values of all six param-
eters used in calculating the theoretical curves have
been obtained from the weak magnetic field coefficients
only the assignment of pr, and ps being left open (see
Sec. IV.A).

At very strong magnetic fields the theory as given
here is no longer satisfactory. This theory predicts for
the case S=P' a Hall effect proportional to H and a
transverse magnetoresistance proportional to II2 as
II +~ Lin —Eqs. (12) and (13), c,&(l) =f,z(l) =0 if
%=I' j On the other hand, the theory predicts longi-
tudinal magnetoresistance which does saturate Lin
Eq. (13), d;&(t) =f,&(l) =0). Measurements of Kapitza
up to 300 kilo-oersteds show that the longitudinal
magnetoresistance saturates, and in fact the above
theory reproduces the curves given by Kapitza' and
those by Stierstadt' quite well. On the other hand
the transverse effects are found to increase linearly with
H at high magnetic fields' in contrast with the theory.
This behavior, which seems to be typical for other
metals as well, ' remains unexplained. Measurements of
the Hall effect at strong magnetic fields and low
temperatures4' show a complicated and irreproducible
behavior, and no definite conclusions can be drawn from
them.

From an interpretation of the de Haas-van Alphen
effect in bismuth, Shoenberg' has arrived at a model for
the conduction band similar to the one proposed here.
Shoenberg does not take the contribution of the valence
band into account. The ratios of the effective masses of
the conduction band ellipsoids calculated by Shoenberg
are 0.063:106:1while we obtain 0.60:24:1.

The model proposed here is the simplest one giving
reasonable agreement with experiment. A model in
which the valence band is described by three ellipsoids
and the conduction band by one ellipsoid is incapable of
explaining the observed facts. Obviously more com-
plicated models involving more parameters, such as a
three-ellipsoid model both for the valence and con-
duction band or a three-ellipsoid model in which the
ellipsoids are rotated about the binary axis, are possible.
At this stage it does not seem fruitful to speculate about
such refinements.
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