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The deformation potential theory has been re-examined for electrons in Ge to take into account the
ellipsoidal nature of the energy surfaces, and the eBect of shear wave scattering. The coupling between
shears and the conduction band energy minima is calculated from Smith's piezoresistance data under the
assumption that any changes in mobility due to strain may be neglected. The scattering by shears, which
is the dominant mechanism, is strongly anisotropic and cannot be described by a simple relaxation time.
We have shown that the distribution function for electrical conductivity has a tensor dependence on the
orientation of the electric field. The mobility is calculated assuming several values of Ej„ the shift of the
conduction band edge with dilation. The calculated values of the mobility are approximately 3)&10'T '~'

cm'/v sec. Methods of accounting for discrepancies between the experimental and theoretical values of the
mobility and its temperature dependence are discussed.

INTRODUCTION

'HE lattice scattering mobility of carriers in
nonpolar semiconductors was treated in the

deformation potential theory of Bardeen and Shockley. '
In this theory, scattering by long-wavelength acoustical
modes is considered. The electron phonon coupling is
the shift in the allowed energy bands due to the com-
pressions and dilations produced by the longitudinal
modes. The transverse modes cause no scattering since
they produce no dilation.

It is now apparent, from the elastoresistance measure-
ments of Smith, ' that shifts in the conduction band
minima or valleys in m-type Ge are caused by shears as
well as by dilation. We should expect, therefore, that
scattering of electrons will occur that is due to shears
produced in the crystal by both longitudinal and
transverse waves. In this paper, we wish to recalculate
the mobility of electrons in Ge using the deformation
potential theory and taking into account the eGect of
shear wave scattering.

It has been shown by Wannier, 3 and restated by
Slater, that in a periodic lattice, with a perturbing
potential which varies slowly with position compared
to the periodic potential, an electron may be treated

f Submitted in partial fulfillment of the requirements for the
Ph.D. degree.*This research was performed in part at the Chicago Midway
Laboratories which are supported by the United States Air Force
through the OfEce of Scientific Research of the Air Research and
Development Command.' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).' C. Smith, Phys. Rev. 94, 42 (1954).' G. H. Wannier, Phys. Rev. 52, 191 (1937).' J. C. Sister, Phys. Rev, 76, 1592 (1949).

essentially as a perturbed free particle with an appro-
priate effective mass. In the strained coordinate system
of the crystal, the deformation potential due to long-
wavelength acoustical modes is just such a slowly
varying potential. We may therefore use the eGective-
mass theory to calculate the probability of transitions
between momentum states. In such a treatment, any
strain-induced changes in the eGective mass will be of
the order of the strain. Since the electrons are classically
distributed, and are close to the conduction band
bottom, changes in the effective mass may be ignored.

In principle, the deformation potential theory makes
it possible to determine exactly the mobility of carriers
in a semiconductor if one knows precisely how the edges
of the allowed energy bands shift with strain. In reality,
the shift with dilation of the individual band edges is
not known; only the sum of shifts of the valence and
conduction bands with dilatation has been determined.
On the other hand, from the elastoresistance data on
Ge, one can calculate uniquely' the shift with shear of
the conduction band's energy minima. As we shall
show, in e-type Ge the scattering due to shears is the
dominant mechanism, so that one may calculate the
mobility to within a small indeterminancy and compare
it with the experimental values.

BAND STRUCTURE AND ELASTORESISTANCE
IN n-TYPE Ge

Bardeen and Shockley assumed in their theory that
the surfaces of constant energy in the Brillouin zone

~ Actually there is a very weak dependence upon the dilation
effect,
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were spherical. We now know from recent cyclotron
resonance experiments" that the conduction band of
Ge has eight degenerate minima or valleys oriented
along the (1,1,1) directions in the first Brillouin zone.
Near each of these minima, the surfaces of constant
energy are elongated ellipsoids, the major axes of which
are in the (1,1,1) directions.

It will be convenient to associate with each valley a
coordinate system, the s axis of which will be identical
with the major axis of the family of ellipsoids corre-
sponding to that valley. According to the data of
Dexter, Zeiger, and Lax, the effective mass of electrons,
expressed in the coordinate system of a valley is

r
mJ

m*= 0.0

0 0
mg 0
0 mg.

where m~=0.08m and m2 ——1.3m, m being the free-
electron mass.

The elastoresistance experiments on Ge' have given
evidence that another scattering mechanism exists for
electrons in Ge, namely shears produced by both longi-
tudinal and transverse waves. Smith found that a shear
with respect to the (1,0,0) set of crystal axes in e-type
Ge results in a considerable anisotropy of the conduc-
tivity. If such an effect were due to a change in the
mobility of the electrons, or to the reorientation of the
valleys in momentum space, one would expect it to be
of the same order of magnitude as the shear, but actu-
ally it is about 90 times larger. The explanation of this
eGect is as follows. ' "Ordinarily the total conductivity
of Ge, resulting from the highly anisotropic conductivity
contributions of the eight symmetrically placed and
equally populated valleys, is isotropic. This must be
true because of the cubic symmetry of Ge. The de-
generate states in the conduction band occur far from
one another in the first Brillouin zone and have wave
functions which are considerably diferent. The de-
generacy is destroyed when the cubic symmetry is
removed by a shear, and some states go up in energy,
and others down. There is a net transfer of electrons
from the valleys whose energy has been raised to those
which have been lowered. As a result, the conductivity
contributions of the more highly populated valleys
predominate over the others, and the total conductivity
is no longer isotropic. In this way, a large anisotropy in
the conductivity may be produced by a relatively small
shear.

We will now calculate the shift of the [1,1,1]oriented
valley for a simple shear'. This result will be needed in

' Dexter, Zeiger, and Lax, Phys. Rev. 95, 557 (1954).
'I Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
8 E.N. Adams, Chicago Midway Laboratories Technical Report

CML- TN-P8.
s C. Herring, Bell System Tech. J. 34, 237 (1955). A detaiied

discussion of the various ways in which strain can eftect the con-
ductivity of a many valley semiconductor appears in this paper.
Also, in an appendix a general expression for the elements of the
elastoresistance tensor is derived, using a notation that differs
considerably from that used in the present paper.

DE= E3e,y, (3)

where E3 is to be determined. For a more general shear,
the shift of the [1,1,1] valley is

AE= ', Es Q; „,e;;. - (3a)

The sum over all the oB-diagonal strain components
occurs, because each o8-diagonal component of the
strain will cause the same shift in energy of the valley
as will any other oG-diagonal component of equal
magnitude, due to the symmetry of the [1,1,1]direction
with respect to the (1,0,0) crystal axes.

For the simple shear we are considering, four valleys
are shifted up a small amount in energy and four down.
The number of excess electrons in the ith valley above
the number m; that were there before the shear is simply

Ae;= (r)fs/riE)d E;= I;(AE,/kT), —(4)

where fs is the Boltzmann distribution at equilibrium.
Since P; Dn;=0, the Fermi level of the distribution has
remained constant. The excess conductivity contribu-
tion of the ith valley is

do.;= —(AE,/kT)o;,

where 0-; is a tensor which may be written in the coor-
dinate system of the valley as

0-;= 0
.0

0 0
O.

g 0
0 o.2.

If now we transform the excess conductivity contribu-
tions of the eight valleys to the coordinate system of the
(1,0,0) crystal axes and sum, we find

(7)

order to determine the mobility of electrons in Ge.
Smith found that the shear dependence of the aniso-
tropic part of the conductivity could be expressed in
the (1,0,0) crystal axes as

(2)

where a,„and e,„are elements of the conductivity and
strain tensors respectively, and m44 is an experimentally
determined quantity. Let us now put a pure shear on
the crystal and calculate the resulting off diagonal con-
ductivity. Let this shear be

0 e,y 0
e=~ e~„0 0 ).0 0 0.

and imagine that the [1,1,1]valley is shifted in energy
by AE. The [1,1,1], [1,1,1], and [1,1,1] valleys will

also be shifted by AE, but the [1,1,1], [1,1,1], [1,1,1]
and [1,1,1]valleys are shifted by —AE, since a reversal
of direction of the x axis or y axis would correspond to
changing the sign of e,„.We may write
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The value of E3 which we calculate from the elasto-
resistance data will depend upon the degree of anisot-
ropy of 0.;.

We will now calculate the conductivity of e-type Ge.
We shall consider deformation potential scattering by
both shears and dilation produced by acoustical modes.
In our theory there will occur two parameters, E3 and
E&c. Es is de6ned by Eq. (3a) and E&, is the shift in
the bottom of the conduction band for unit dilation.

'We may calculate E, from Eq. (9) using Smith's
elastoresistance data once we know the anisotropy of
the conductivity contribution of a valley. However, as
we shall see, the anisotropy will depend on the ratio
of E&, to E3, and E~, is not experimentally known.
Only E~g, the shift in energy with unit dilation of the
gap between the valence and conduction bands, has
been determined, "and this is approximately —5.5 ev.
%e shall assume that E~, is of the same sign and order
of magnitude as E~g, and shall make conductivity calcu-
lations for several values of Er,/Es corresponding to this
assumption. For each value of this ratio we will obtain
diferent values of E3, and of the total conductivity.

Our first task will be to calculate the probability for
transitions between momentum states in the same
valley. Then we will solve the Boltzmann equation for
f(p), the electron distribution in an electric Geld. We
may then calculate the conducivity contribution of a
single ellipsoid and the total conductivity,

TRANSITION PROBABILITY

For sufficiently long wavelengths, we may treat the
crystal as an elastic continuum. Imposing periodic
boundary conditions, we may expand the displacement
of the continuum as a series of traveling waves:

8R=Q u„Le'k'qkk(t)+e —'"'q k*(t)), (10)

where the sum over the wave number k includes the
allowed values of small k in the first Brillouin zone.
Here uk), is a unit polarization vector, and the summa-
tion over X includes a longitudinal mode and two trans-
verse modes for every k value.

Because the velocity of sound in Ge is not isotropic,

'o This result would be unchanged if there were four valleys
instead of eight.

"W. Paul and H. Brooks, Phys. Rev. 94, 1128 (1954). See
references quoted there.

The normal conductivity without strain is also found
by transforming the 0. s to the crystal axes and
summing. This conductivity is isotropic and is given by

o = {Sj3)trLo;].

Using (7) and (8) along with (3) in Eq. (2) we obtain"

n344kT trfo;]

Ittto(I+1) &

(43+1~ qkk (43) = eWd t

2Ck),k'

(43—1i qkk*i 43) =
AIDÃ

'htsl f
7

2Ck),k'

which correspond to the emission or absorption of a
phonon respectively. Ck), is the appropriate combination
of elastic constants entering into the velocity of propa-
gation of the kith mode.

The perturbing potential acting upon the carriers is
the deformation potential

l =Er. Z' e'.+3Es Z' ~' e't (12)

where the 6rst term is the shift in the energy of-the
conduction band edge because of dilation and the
second term is the shift in the t 1,1,17 oriented energy
minima because of the total shear with respect to the
(1,0,0) crystal axes. Because we shall wish to work in
the coordinate system of the L1,1,1) valley, we shall
transform V to these coordinates. It is easy to show
that V becomes

Elc Pi eii+E3(2ezz ezz ess) ~

The strain tensor is given by

(12a)

4= & SR=i p kukk[e'k'qkk —e "k'qkk*], (13)
kX

so that the deformation potential becomes

y —3 P F (P)PLeik rq „e—ik rq „8]

where
Fi Erc+Es(3 cos'P —1), ——
Fc——3E3 COSP S1I1P COS'y,

Fs ——3E3 cosP sinP sing.

'~ See, for instance, W'. Heitler, The Quantum Theory of Radi-
ation (Oxford University Press, Oxford, 1944), second edition, p.
59.

there is a certain amount of mixing between the longi-
tudinal and transverse modes for directions of propaga-
tion away from the (1,0,0), (1,1,0), and (1,1,1) direc-
tions. The writer solved the normal modes problem for
various other directions and found that the direction of
motion of the predominantly longitudinal mode is
never more than 8' away from the direction of propa-
gation and that this deviation is generally much smaller.
Since it is the square of the wave amplitudes that will
enter the transition probability, mixing will cause
errors no greater than a few percent, and consequently
it will be ignored.

The acoustical modes can be shown to be formally
analogous to a group of quantized harmonic oscillators.
In such a representation the qk), 's have matrix elements
between phonon states. The only nonvanishing elements
are"
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+9Es'(1 Cr—/Cr) cos'P}8(E'—E). (19)

Here p is the angle between k and the s axis of the 2x kT
valley, and y is the angle between ui, p and the plane IV(»p ) = ((Ei~ Ep)'+6[(Eic—Ep)Ep
determined by the [0,0,1] and [1,1,1] direct ons. The
terms for A. = 2,3 corresponding to the transverse modes +-', (C /C )E']
have, as they should, no dilation eGects.

L T 3 cos

l,et us now calculate the matrix elements for transi-
tions between momentum states in the same valley,

(I~1, p'~ V~~, p)='Q kE,
limni(n+ ,'a-,')-

2Ck),k'

SOLUTION OF BOLTZMANN EQUATION

Let us now calculate fi(y)= f(y) —fp(p) from the
Boltzmann equation

f
X

unit
volume

. (y p 'l, (gf) t
d'p'-P 'I —~1

I
«". (16)

~

—
~

= lv(p, p)[f (p') —f, (p)]j - (Bt ),.ii ~ (2vrh)'

ka)n= —kT,
exp (A pi/k T)—1

(17)

thereby considering the modes to be classically excited.
The probability per unit time for transitions between

momentum states becomes

The integral vanishes unless p' —p= &5k, in which case
it is one.

At temperatures for which thermal scattering is
dominant and impurity scattering can be neglected, the
energy of the scattering phonon is small compared to
either the kinetic energy of an electron or kT. We can
therefore make the following approximations. First, we
can neglect any changes in the energy of an electron
which occur in the scattering process and shall consider
the electrons to be scattered on a surface of constant
energy. Secondly, we can set

8 p= —ea v, (20)
BE

where 8 is the electric field, v the velocity, and E the
energy. Because of the complicated nature of W(y, y'),
which depends upon both y and y', a solution for f, of
the form fi= er8 vBfp/itE, corresponding to the
existence of a relaxation time, does not exist. We can
see, however, that for an electric field along any of the
axes of the valley, the electron distribution will be
deformed in the direction of the field. For example, if
8= 8, the distribution would deform symmetrically
with respect to the s axis and f, would be of the form
f,= er pS,p, 8fp/BE. Here 7 p may be a function of 8, the
angle between p and the s axis, but cannot be a function
of the angle of rotation around the s axis because of the
symmetry of the valley. Again, if 8= h,

f,=er i B,v, Bfp/BE,

2x kT
+'(p, p') =—2 E" ~(E'(p') —E(y)).

Ckk

where T& is in general a function of 0. For an arbitrary
(18) electric field, the distribution function will be of the

for m

Because the Ck), 's are rather complicated functions of
the direction of propagation, average values for the
longitudinal modes and for the transverse modes were

used. C~ represents the simple unweighted average of
the three sets of elastic constant entering into the
velocities of longitudinal sound waves propagating in

the [1,0,0], [1,1,0], and [1,1,1] directions, and Cr is a
similar average of the six sets of elastic constants
entering into the velocities of transverse waves propa-
gating in these same directions. The Ck), s do not dier
from their averages by more than 20%%uo, so that only a
slight error is likely to be introduced by this simplifica-
tion. Values of the elastic constants of Ge are given by
Bond, Mason, McSkimin, Olsen, and Teal."

Substituting for the F&,'s and using sin'p=1 —cos'p,
we obtain W(p, p') as a series of even powers of cosp,

fi=e8 r vBfp/BE, (21)

where T is a tensor given by

T.'
7= 0

.0
0 0

0
0 72.

Let us first consider the case for which 8= 8, and
substitute the corresponding fi into the Boltzmann
equation. After canceling out the common factors we
obtain

P.= lV(y, p')[r p(p)P* —rp(y')P*'] . (22)
(27rh)'

To facilitate the integration over d'p', we shall next
make a change of variables which project the ellipsoids
of constant energy onto spheres. This transformation is

"Bond, Mason, Mcskimin, Olsen, and Teal, Phys. Rev. 78, 176
(1950). p=n —' P, v=m—'n&. P, (23)
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where

Also

where

ng 0 0
1n

n= = 0 Og 0
m*

.0 0 n2.

cos'p'
cos'p=-

ns 1+(nr/ns 1) COS P

cos'p'= (I' —P.')'/(P —P')'.

TABLE Il. Directional dependence of 0, , E& and E„(in ev), and
p and pq (in cm'/v sec).

El /E3 I 1 F2 E3 E1 P,T3/2 P, (300 K) Pa(300 K)
—0.5 2.86 0.256 5.48 —2.74 3.48X 10' 6700 115000—1 2.91 0 380 5.84 —5.84 3.18X10' 6100 25 400—1.5 2.62 0.515 6.52 —9.78 2.37X 10' 4550 9 400

was possible to satisfy Eq. (20).

Our transformed integral equation is
RESULTS FOR MOBILITY

Knowing f1, we shall calculate the conductivity con-
tribution of a single valley. The contribution to the
total current is

d3 l

P,= W(P, P')Lrs(P)P, —rs(P')P, ']
(2hpr)'(detn) i

d3p
j;=o.; 8= —e vf1

(2~h)0'
A similar equation containing 7-& and E can be obtained
from the case in which 8= 8 .

The transformed tensor r will be dependent upon the
direction of P through the polar angle 8(P). Since
8'(P,P') is symmetric about the equatorial plane of the
energy surfaces, r must also be symmetric. Therefore,
we may expand the elements of v- in series of even
Legendre polynomials of cos8. A trial solution for 7.

equivalent to the first two terms of each series and of
the form

(27)

where f1 is given by (21). Making the change of vari-
ables (23), we obtain

g2 d3
o-;= n. PP. r(P) fp

m2kT (2prh)'(detn)l

2 (2pr) 41,e'h4CL(detn) &

0' '= F
rN"'(h T)'"E ' (29)

rr= rp(A 0+A 1 cos 8)& re= rp(Bp+Bt cos 8)& (24)
where

P,=Apg 0+A rg1, P,=Bphp+Brh1,

where the g s and h s are functions of 8(P) and were
tabulated for 11 values of 8(P) between 0' and 180'.
Sy trial and error the A, 's and 8 s were adjusted until
the closest simultaneous fit of the equation was achieved.
Using this method, the integral equation (20) was satis-
fied to within a few percent over the full range of 8(P).

Three solutions of the Boltzmann equation were made
for three values of the ratio E„/E~. r is therefore given
by (21) and (24), where

prh4CL(detn) &

70=
rN(2rNE) '*h TEps

(26)

and where the constants entering into 7-~ and r2 are
given in Table I along with the accuracy with which it

TABLE I. Solutions of the Boltzmann equation for the param-
eters in elements of the tensor r LFqs. (2i) and (24)g; and the
accuracy to within which the Boltzmann equation was satisfied
by these solutions.

Eie/Eg

—05—1—1.5

Ao

0.226
0.220
0.190

A1

0.012
0.066
0.096

Bo

0.312
0.428
0.532

B1

0.034
0.110
0.228

Acc.

was then attempted.
The integrals over the surface of constant energy

may be performed exactly. These integrals will be
functions of the parameters A; and 8;.The two integral
equations can now be expressed as

and where

'F,
F= 0

.0

0 0
Fi 0
0 F2.

2 (2pr)'*eh4CL(detn)*'
p= X-,'trLr],

3 res'~'(h T)'~'Es'

lan=17. 5X10rT ~'E ' tr[r] cm'/v sec,

(30)

where E3 is in electron volts.
Knowing the directional dependence of the conduc-

tivity contribution of a single valley, we may go back
to the elastoresistance theory and calculate E3. Using
E3 we may then calculate p. These quantities are
presented in Table II, again for the three values of
E„/Ep. For the purposes of comparison, we have also
listed p&, the mobility which would arise if only dila-
tional scattering were present. We have used the same
values of E&, to calculate p, ~ as were used in calculating
the corresponding values of p. From Table IX we can

r1 n1(A 0+ sA1), r2 n2(B0+ 0B)l.

We can see that the conductivity contribution of a
single valley has a directional dependence which
depends upon both the tensor form of the eGective
mass and also upon the directional dependence of f„
which in turn reflects the highly anisotropic scattering
probability.

The total conductivity is isotropic, as is the mobility,
which is given by
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see that, except for very large values of E,„scattering
by shears is the dominant mechanism.

The accuracy of these results depends on the ap-
proximations used in the calculations. The combined
error for ignoring the mixing of the various modes of
propagation, and for using average velocities of propa-
gation for the longitudinal and transverse modes,
should not exceed 5% Another maximum error of about
5o/o could arise from our neglect of any strain induced
changes of the mobility in the elastoresistance theory.
The errors involved in ignoring the energy of the scatter-
ing phonon and in considering the long-wavelength
acoustical modes to be classically excited should be
negligible. Also, the writer estimates that the error in-
curred in the solution of the Boltzmann equation would
not affect the values of the mobility by more than 5'%%u~.

Therefore, we should expect the calculated values of the
mobility to be accurate within 15/~. It is also worth
mentioning, that if the effective mass data of Dressel-
haus, Kip, and Kittel~ were used, instead of that given

by Dexter, Zeiger, and I-ax, ' the calculated values of the
mobility would be smaller by approximately 10 to 15'Po.

DISCUSSION OF RESULTS

The theoretical temperature dependence of the lattice
scattering mobility for intravalley scattering is T 'l".
This divers slightly from the experimental temperature
dependence" in e-type Ge of T '.",which is known to
hold between 80 and 300'K. Also, the experimental
value of the mobility at 300'K is 3800 cm/volt sec, and
this value is somewhat lower than the calculated values
which range between 4550 and 6700 cm'/v sec.

We may reduce the calculated values of p, by approxi-
mately 12/o to correspond to what we would have
calculated if we had used the more recent effective mass
data of Dresselhaus, Kip, and Kittel. 7 One now Ands

that the calculated value of p at 300'K for Et,/Es
= —1.5 is 4000 cm'/v sec, in good agreement with
experiment. For this case Ey, is approximately —10 ev,
a value almost twice that of E&g. However, we have
not obtained the correct temperature dependence of
the mobility, and in order to do this we shall have to
invoke some other mechanism, which will further
reduce the mobility at 300'K, for this case, to sig-

nificantly less than the experimental values. It is
therefore not likely that —E&, is as large as 10 ev.

A higher temperature dependence of the lattice
scattering mobility than T '" can be obtained in

several ways. First, if there were a bending over of the

'4 F. Morin, Phys. Rev. 93, 62 (1953).

energy surfaces away from the energy minima, we would
obtain a higher dependence. "The reason for this is as
follows: The bending over of the energy surfaces cor-
responds to an increasing effective mass away from the
energy minima. At higher temperatures, the electron
distribution is more spread out around the energy
minima and therefore on the average has a higher
effective mass than at lower temperatures. Since the
lattice scattering mobility is inversely proportional to
the 5/2 power of the effective mass, it will show an
increased temperature dependence.

Another possible mechanism sufhcient to give a
higher temperature dependence is scattering by high-
energy phonons, that is intervalley or optical-mode
scattering. Herring' has shown how such scattering
would modify the ordinary magnitude and temperature
dependence of the mobility for various phonon tem-
peratures and strengths of this additional scattering.
Measurements of Keyes" show that the intervalley
scattering is small at room temperatures. Therefore,
one might also expect the optical modes to contribute
only slightly to the total scattering. However, it is only
necessary that the intervalley and optical mode scat-
tering be approximately 25%%uz of the total scattering at
300'K in order to explain the observed temperature
dependence. In this case, one must assume a high-
energy phonon temperature of approximately 300'K,
but this is entirely possible since the Debye temperature
of Ge is 290'K"

If either high-energy phonon scattering or a "tem-
perature-dependent" effective mass were responsible for
the T " temperature dependence of the mobility in
Ge, we would expect the mobility at 300'K to be
reduced by at least 25% from the theoretical lattice
scattering values. If in addition we reduce the calculated
mobility values to correspond to the most recent
e&ective mass data, ' we obtain p, =4400 and 4000 cm'/v
sec for the cases in which Et./Es= —0.5 and —1
respectively. Either value is in good agreement with
experiment. In view of the small dependence of p on
Ej„it is not possible to say which value of E~, is more
nearly correct.
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