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The interactions of an atom with its neighbors in an idealized solid are taken into account explicitly in
treating the absorption of light, as contrasted with the usual introduction of an "effective" Geld and mass.
In the discussion of the magnitude of the absorption coe%cient, two cases are treated: one, the absorption
by an impurity atom, in which case we are led to an equation similar to Smakula s; and two, the absorption
by one of the atoms of the perfect crystal. The computations are based on a simple idealized model whose
validity is discussed for existing systems.

I. INTRODUCTION

~CONSIDERABLE progress has been made in recent~ years in the understanding of the shape of absorp-
tion bands of atoms in solids, particularly of impurity
atoms. ' ' Relatively little attention has been directed
to the problem of the total amount of absorption by the

atom, that is, to the integrated cross section. This is a
somewhat more difficult problem, requiring explicit
knowledge of the details of the wave functions, which

are, in most cases, severely modified by the medium

from their values i e vaclo.
The usual method' for the treatment of the magnitude

of the absorption has been to make use of the atomic
wave functions of the atom, completely uninfluenced

by the presence of the medium, and to attempt to take
account of the eGect of the medium by the introduction
of an "effective field" and an "eBective mass" for the
electron. This procedure is satisfactory in limiting cases,
where the values of these effective parameters are

known, but suRers from the difhculty that in general

the parameters are not known. In an alternative de-

scription, presented here, the transition probability of

the system is calculated, using wave functions for the
whole crystal in which interactions among the atoms

are taken into account. Since the interactions are

explicitly accounted for in the wave functions, the
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introduction of effective masses and fields is unneces-
sary, and this difhculty is avoided; for this difFiculty
there is substituted the problem of calculating wave
functions in which the interactions are included. This
is, in general, a formidable task since the interactions
are many and large, so large, in fact, that perturbation
theory may not be applicable in a simple way in some
systems.

In one idealized model, however, the calculation of
the wave functions and the transition probability can
easily be carried out, and the results can be expressed
in a form similar to Smakula's equation' for impurity
atom absorption. This is included in Sec. II, where there
is also presented a discussion of the simplifying assump-
tions inherent in the idealized model. In Sec. III is a
similar calculation for the absorption of the pure host
crystal itself. In this case we obtain a result, not previ-
ously emphasized to the knowledge of the writer,
which is equivalent to the statement that the integrated
absorption cross section of an oscillator is unchanged by
the dipole-dipole interactions with other identical
oscillators.

II. IMPURITY ABSORPTION

Here we shall be concerned particularly with an
impurity atom which absorbs light of a longer wave-
length than that at which the host crystal absorbs; thus
its absorption is not lost in the fundamental absorption
of the host crystal. We shall also assume that the im-

purity concentration is sufficiently low, say less than
e A. Smakula, Z. Physik 59, 603 (1930).
7 C. Herring, Proceedings of the Atlantic City Conference on

Photoconductivity, November, 1954 (John Wiley and Sons, Inc. ,
New York, 1955). Herring has suggested some modi6cations to
Smakula's equation based on a somewhat different point of view
than that expressed. here.
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10" per cm', that interactions between one impurity
atom and another may be ignored.

The model we shall assume is based on a familiar one,
which has been used by numerous workers in treating
optical properties of pure crystals. " The crystal is
eGectively infinite, and of cubic crystal structure. The
ground states of the atoms are assumed to be S-type,
and the excited states of interest are thus P-type.
Thermal vibration may be left out of the calculation
since only integrated absorption cross sections are to be
calculated here. ' Any possible spin effects are ignored.
According to this model, the dominant interactions
between atoms is a dipole-dipole, or van der Waals'
interaction, with exchange and higher multipole eGects
less important. All eGects are assumed small, so that
their squares are neglected. (This statement will be
made more precise a little later, but essentially we
treat inn/3, t. he Lorentz correction, as small, so that
its square may be dropped out. ) Further, the overlap
of wave functions centered on one atom with those on
another atom is assumed negligible, so that normalized
atomic functions are still orthonormal in the crystal.
Thus to a zero-order approximation (indicated by the
superscript on%'&o&) the wave function for the ground
state of the system (denoted by the subscript 0) is given
by an antisymmetrized product of ground state wave
functions for one impurity atom and S—1 host crystal
atoms.

2(—~) ~~'(1)a:(2)
QS! ~

XPx t'(~' —&) q'(~~). (&)

Here we sum over the E~ permutations I', the lower
case P's are host crystal atomic wave functions, the
subscript indicating the location of the atom, the super-
script labelling the atomic state, and the argument
specifying the electron occupying the state. The letter
p will be used to denote the wave functions of the im-
purity atom in its ground state (p') or excited states
(p'). According to the assumption just above, this wave
function Eq. (1) is normalized if each P and p is nor-
malized. %e shall now use stationary perturbation
theory to compute the ground-state wave function to
a first-order approximation, taking the dominant inter-
ations into account.

The wave function Eq. (1) is an eigenfunction of the
Hamiltonian

Here lower case indices are used for electron coor-
dinates, and upper case letters for those of the atomic
cores. The primes above the summation symbols act to
exclude the equivalence of the two summation indices.
Considering the Hamiltonian H~ ——H —Ho as a small
perturbation, we may express the corrected ground-
state wave function formally as

~,o) =~,(o)+p @ (0)

+0
(4)

%e must now discuss the wave functions 0' (') which
are coupled to %0('& by the interaction H~. Since H» is
a function of pairs of coordinates, H;, , only those + ("
appear in which two of the wave functions P and q

changed. Thus the@ &" are of two types, one containing
two excited atoms Pz and Pr", and the other con-
taining one/' and one q»'. We shall see later that it is
only the latter type which contributes to the low-
energy transitions associated with the impurity atom.
(The former type which we may call +s&o&, is similar to
the "double exciton" wave functions discussed in
reference 13.) Thus let us rewrite Eq. (4) including the
first type only formally, and the second explicitly.

~e(&) —~s(o)+p cp~p(o)
P

(z„m, J )et)o)—ZZZ — +., -, "' (5)
L m j e-+St&

Here we have inserted the energy diGerence Eo—E
as —(e +w, ), each atomic energy being measured
from the ground atomic state; the letter t. is used for
the energy levels of the host crystal atoms, and m; for
the impurity atom levels. The wave function +L,
is the antisymmetrized product

~(—&)'&It'(&) ~i"(~) ~'(&),gX! ~

(6)
and the matrix elements of H&,

(r., ~, ')a, (o)

where each term H; is an atomic Hamiltonian. The
actual crystal Hamiltonian, which includes interactions,
1S

1 8 1 8 e'
P=8p+ 'Q—Q' —+—P Q' —P P' —.(3)2; i s;; 2 I J rid i J rim

H'p=Q H, , (2) 1
2 Z(—1) "'J ~~"*(1) o -*g)

2+ t I' I"
s J. Frenkel, Phys. Rev. 37, 17, 1276 (1931); Physik Z. Sow-

jetunion 9, 158 (1936).' R. Peierls, Ann. Physik 13, 905 (1932).
M J. C. Slater and W. Shockley, Phys. Rev. 50, 705 (1936)."F.Seitz, Modern Theory of Solids (McGraw-Hill Book Com-

pany, Inc. , Neer York, 1940), p. 414."W. R Belier and A. Marcus, Phys. Rev. S4, 809 (1951).
's D. L. Dexter and W. R. Heller, Phys. Rev. 91, 273 (1953).

X p'*(&) (P Z'Ks)~Sr'(&) . .

Xfz'(~) q'(&)dr, (7)

are nonzero under two circumstances, corresponding
to dipole-dipole or exchange interactions. If the per-
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mutations I' and I"are identical, we find, by expanding
II;; in a power series in 1/r;, , the dipole-dipole coupling;
if I' and I"are identical except for the pair of electrons
occupying the excited states Pz, and (o&', we obtain the
exchange coupling. Thus Eq. (7) becomes

tribute in the final result).

+.(()=+.(o)+Q d + (o)

(L„~,ala, l j)—Z Z 2 — +i.-, -") (11)
r m nwj e +w„—w).

(r„x,—3r„RI,x; RI,/EL, ')
RL,'

g2

4 ~"*(1)("*(2)~~'(s)("(1)dr».
~12

Here r" is the matrix element of r between f * and P,
and x; that between (o&" and y', Rr, is the vector
separating the impurity atom and the Lth atom.

The energy of the ground state, 8'0, is given by the
expectation value of B in the state +0"),and is equal to

Wo= —
o P P" e fr *(1)))«z, *(2)~«(2)))t'z (1)dr»

1—P e' fr'*(1)oo'*(2)~r'(2) (o'(1)dr(o. (9)
I 4

Here the double prime on the first summation reminds
us that I and L are not equal and that neither refers to
the impurity atom. Thus —5'0 is the amount by which
the energy of the system is lowered by the exchange
interaction among all the atoms, the zero of energy
being chosen equal to that of the X isolated atoms in
their ground states. To Eq. (9) might be added addi-
tional terms coming from the small terms in Eq. (5),
but since these would appear as squares of quantities
such as (1., m, jlH&IO)/(o~+w;), they are neglected.
This same approximation is made throughout, con-
sistent with the use of first-order perturbation theory.

%e now discuss the excited states of the system. The
lowest excited states are those in which the impurity
atom is excited, according to our stipulation that we
wish to be able to see its effect in absorption. Thus a
zero-order excited wave function is the antisymmetrized
product,

2 (—1)'&4 ~'(1) |t~—~'(&—1)( '(&).
gX! &

The wave functions to be mixed with this by the inter-
actions are of two types: the first, wave functions having
two host atoms excited as well as the impurity atom;
the second, wave functions having one host atom excited
and the impurity atom in a diferent excited state or
the ground state. The first type will not contribute to
the final result and will be included only formally, as
+~&". The others are described explicitly below in Eq.
(11), where the summation over e includes the ground
state (which is, in fact, the only term which will con-

(r„x;„—3r„R,x;„RI/8&')
RI.'

1—e')t $1o*(1)(o''*(2)—$1. (2) (o"(1)dr) o, (12)
~12

and the energy of the state 4', "' is given by

(1)4'«(2)~"(2)))««'(1)dr»
I J r12

—e' Q pro*(1) y&'*(2)~ro(2)(o'(1)draco. (13)

Thus the energy difference 8';—8'0 is just equal to the
atomic energy level difference plus an exchange cor-
rection.

1
W& Wo=w, e'—Z !IPr *—(1)fr'(2)—

~12

X ((p *(2)(p'(1)—(p'*(2)("(1))d . (14)

Now that we have the corrected wave functions of
the system, we may apply time-dependent perturbation
theory" in the usual way to calculate the probability
of a transition of the system under the influence of an
electromagnetic field

8=u So[exp' (k. r—(ot)+c.c.j.
The transition probability per unit time is given by

p;=(2~/h)pElu C I' (15)

where p~ is the density of radiation at the energy given
by Eq. (14) polarized in the direction of the unit vector
u, and where C; is given by

—8A
t @.o)4(Q p e(k r~)@ (l.)d

Q) 'm
(16)

Here o), is the (mean) frequency of the absorption line

(W& Wo)/A, V ' the gradient operator for the ith
electron, and k the propagation vector of the radiation.
Inserting the wave functions given by Eqs. (5)—(8)

'4 See for example p. 215 of reference 10.

The matrix elements here are computed in the same
way as in Eq. (7), and are equal to

(I., ~, e
I a,

I j)



ABSORPTION OF LIGHT B Y ATOMS IN SOLI DS

e 4x2
~,(E)dE= )C;.u-) o(W —W,).

4 a' Ac
(18)

Thus substituting for (W;—Wp) and for
) C; u)' we

obtain the area under the absorption band p;(E) for a
density Sp of impurity atoms

1 4s' 4pr
IJ,,(E)dE= 1+——cong(w;)

mac 3

r p h(mj) 1—2 E + ):F(0,j)—~(0,0)1
~ (o '—w')& 2w

X/pe'x 'w (19)

where we have made use of the relation ~—e'. These
last two factors may be related to the atomic oscillator
strength fp; and we obtain finally

p;(E)dE

1 2~'cob
t

4~ r o h(m, j)1+—mono(w;) —2 P
e mc I 3 (o„' wP) $;—

+ L~(0&j)—~(0P)j &ofoJ (20)
2Rg

This result may be compared with that obtained by
use of the effective Geld and mass parameters, as dis-
cussed by Lax, '

12%el h H

) p;(E)dE= — 1Vofo;,
e m*c

and (10)-(12),we obtain the result derived in Appendix
A,

amp r„p„B(m,j)
u C;Io=eox P 1+ no(w;)+2 P

3 m (p & —wo)g

+—LE(0,j)—~(0,0)j (1&)
)o

w,
' ' )'

For the isolated atom we would obtain the simple
result e'x,&, so that the quantity in curly brackets
represents the eGect of the medium. The first correction
term is the familiar "local field" correction, evaluated
at the energy of the transition. Here ny, is the atomic
polarizability of the host crystal atoms, of density ep,
at the energy m;. The other terms are exchange terms
defined in the appendix. The integrated absorption
cross-section is obtained by dividing the energy ab-
sorbed per second, that is, (W;—Wp) times the transi-
tion probability, by the incident energy Aux corre-
sponding to one photon per unit volume. Since the
energy carried by the photon is o Sp'/2m and the velocity
is c/e, we obtain

and it is seen that the quantity in curly brackets in
Eq. (20) is the effective field ratio in cases where the
effective mass to be inserted in Eq. (21) is the electronic
mass. (This will be the case in systems for which the
foregoing calculation is justiffed. ) Thus the effective
field ratio in the present calculation is

hen
1,

4~
= 1+~on@(wr)+j'+E, (22)

where we have grouped together all the exchange terms
in Eq. (19) in the symbol J. We may consider that E
contains higher order corrections in the form of dipole-
quadrupole and higher multipole eGects, squares of
parameters such as 4reono(w;)/3 and the exchange
terms in Eq. (19), and effects of overlap and non-
orthogonality.

If J and E may be ignored, we may derive a gener-
alized "Smakula equation" by making use of the
relations

K= B = 1+4'rn)

e'+2
=1+47rlono(w;)/3+X'.

3

(23)

Here n is the polarizability of the crystal and E' is
another term of the magnitude of E, and is dropped in
the following. Thus by substituting Eqs. (23) in Eq.
(22) and Eq. (21), we obtain

1 (2~'e'hy ~N'+2q '
' ~ (E)dE=-) II I &ofo (24)N(mc)& 3 ]

Equation (24) may be considered as describing an
experimental method for measuring the concentration
of impurity centers Xp in cases where the above sim-
plifying assumptions are valid. That is, the oscillator
strength in the transition may be measured Az eacuo,
the index of refraction e of the host crystal may be
determined optically, and the absorption band area
found in the usual way. If the absorption coeKcient is
expressed in reciprocal centimeters and the energy in
electron volts, Eq. (24) may be written

e
To=1.29X10"cm ' —p, (max) U . (26)

(&'+2)' fp~

1 f
lVo=0 821X10'7 cm ' — p; (E)dE. (25)

(m'+2)' fp; &

Two simple cases may be treated further. Smakula'
treated the case for which p, (E) is of the classical,
Lorentzian shape, so that the integral J'p,;(E)dE is
equal to (~/2)p;(max)U;, where p;(max) is the peak
absorption coeKcient and U; the width of the absorp-
tion band at half-maximum. Thus we obtain the
numerical coefficient as it has been commonly used,
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However, in solids the width of the band does not
arise in the classical dispersion manner, but rather
from interactions of the center with lattice vibration.
Thus in simple centers the absorption band is more
nearly Gaussian in shape, so that the integral in Eq.
(25) is (-', )(pr ln2)lp, ;(max) U;, and Eq. (25) becomes

&o=0.87X10 cm
s 1—li, (max) U, . (27)

(ts'+2)' fp,

This point has been recognized independently by
Herring. ~

The drastic simplifying assumptions made in deriving
these last few equations are probably not even approxi-
mately valid in ionic crystals. (For example, we have
treated urn/3 as a small quantity; even in the alkali
4alides 4trn/3= (s—1)/3 is almost unity, and is larger
than unity in other ionic crystals. ) Appreciably better
equations would entail vastly greater work, and would

very likely be appreciably better only for the particular
crystal system for which the calculations were per-
formed. One's intuitive feeling is that because of overlap
eGects the interactions with the medium are less than
those used here, so that the numerical coe%cients should
be increased over their values in Eqs. (25)—(27).
Another way of viewing the overlap effects is that as
the wave functions of the impurity atom extend over
regions comparable with or larger than the unit cell,
the field which is eGective in inducing the transition is
just the average field within the medium. However, in
this case the wave functions become so distorted that
they bear little resemblance to the initial atomic wave
functions, and the type of calculation attempted here
is not valid; Lax" has recently discussed some of the
problems of the diffuse center, such as impurities in
germanium, and concludes that an equation such as
Eq. (21) may describe the absorption, but that here the
effective field ratio is unity, and the eRective mass to
be used is a harmonic mean of the effective mass tensor
components in simple cases. However, in this case the
oscillator strength is rot associated with a transition of
the isolated atom itself but rather with that of the
diffuse center. That is, the oscillator strength may not
be measured independently of the crystal.

The type of calculation presented here may have
quantitative validity, particularly if exchange is
included as in Eq. (20), in the solid rare gases or other
molecular crystals in which van der Waals' interactions
are predominant. The investigation of the optical
properties of xenon impurities in solid argon, for
example, would be extremely interesting, but unfor-
tunately the experiments would be dificult to perform.

One additional restriction should perhaps be men-
tioned here. If the energy of the transition in the
impurity atom is close to the energy of the fundamental

'5M. Lax, Proceedings of the Atlantic City Conference on
Photocondnctivity, November, 1954 (John Wiley and Sons, Inc. ,
New York, 1955).

absorption band of the host crystal, the denominator
in Eq. (11) becomes small, and resonant effects will
become important. In fact, if we consider the energy of
the transition to be just equal to that of the funda-
rnental absorption band, we have essentially the same
problem as is discussed in the next section, where the
resonance effects necessitate the introduction of exciton
wave functions

S'8g i r)e) 4m. r,'e,
~

u C i(k')
~

= 1——ape' P
Wi(k') —Wp 3 i ei(e,+pi)

r, &,.24x
+—npe' Q +1. . (28)

3 jul (e~ ei) ei

Here the Kronecker delta function 8g, g states that
transitions are only allowed to exciton states which
have the same momentum as the absorbed photon; L is
a symbol for the several exchange terms. The denomi-
nator Wi(k') —Wp is found to be

4~ ape'
Wi(k') —Wp=«( 1—— rP (+&+T, (29)

3 e, i

III. HOST CRYSTAL ABSORPTION

In this section we shall treat the magnitude of the
absorption in transitions to the exciton states of the
system. The crystal model is that which we made use
of above, except that we now have no impurity atoms
present, but just X host crystal atoms. Since extensive
calculations have already been made with this model,
we shall draw on previous results for the sake of brevity.
The ground state of the system is an antisymmetrized
product of ground state atomic functions, +0(", plus
an admixture of higher excited state wave functions
coupled in by the dipole-dipole and exchange interac-
tions [see Eqs. (4)—(7) of reference 137. Specification
of the excited states of the system by the location and
state of an excited atom is not an adequate description
because of the Ã-fold degeneracy arising from the
periodicity of the crystal structure, and we are led to
the exciton wave functions by choosing a suitable linear
combination of the localized atomic excited wave func-
tions. The S linear combinations of one excited atom in
state l and E—1 atoms in the ground state, each corn-
bination characterized by a propagation vector, k', are
known as exciton wave functions [see Eqs. (8)—(10) of
reference 13 for further details]. These wave functions
take into account the interactions among the atoms to
the same approximation as in the previous section.
Making use of these wave functions, we now apply
time-dependent perturbation theory to calculate the
transition probability of the system when an electro-
magnetic field is applied (as contrasted with reference
13, where the polarizability was computed). We find,
as in reference 13, the value for

~
u Ci~,
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where I denotes the exchange terms, and T the kinetic
energy of the exciton. Since we are interested only in
the states for which hk' is equal to the very small
photon momentum, we may set T equal to zero with
high accuracy, as Heller and Marcus" have shown. The
transition probability per unit time per unit volume in
the energy range dE is given by

2~ 2'
P(dE= pleo—e'rPdE 1+ eoe—

3

4m' ( pro;
~+L' . (30)

3 & ~«oP —oP)

Note that the possibility of the same transition 0 to l
in the other atoms increases the transition probability
for each of the atoms. This is shown by the first cor-
rection term in the curly brackets. The other transitions
to states j/$ account for the second correction term,
and L' is a sum of exchange terms which we shall not
describe explicitly. The second correction term is of
the familiar form, (47(eo/3) times the polarizability at
energy e& arising from all transitions j// in the atoms,
but there is the additional correction, just mentioned,
from the same transition to state l in the other atoms.
This same dependence is exhibited by the extinction
coeKcient, equal to p&kc/(8'& —TVo), though not by the
absorption coefficient.

To obtain the absorption coefficient, we proceed as
before.

( 2orn (W(—Wo)
P((E)dE.) p, (E)dE=)

KC
(31)

e 4m'

~
p((E)dE= &oe'rPo) 1+L"—

a kc

4m' ( er, oo; ) io
+—+oI 2 Z ) (32)

3 E j/l oP —oo) j

In the vicinity of the absorption band, e and z are
functions of the energy, but the contributions to e and
& by the other transitions j// must be slowly varying
if e; is not too close to e~, so that their contributions
may be called constant. (If the energies are closely
equal, the use of perturbation theory in deriving the
wave functions is not justified anyway. ) The dispersion
near the absorption maximum makes the contribution
to e and z from the 1th transition change sign on the
two sides of the 1th absorption band, and, to the
approximation we have been following here, this con-
tribution vanishes. Thus the integration may be carried
out, and we obtain

be written

e 2~VS
~p((E)dE =

mc

47r ( e'r 'o
X 1+—Nol 2 g It+L'" eofo( (33)

I 3 0 ~'w o' —o']

This exhibits the interesting result that if only one tran-
sition in the atom has appreciable oscillator strength,
the total absorption per atom is uninQuenced by the
presence of the other atoms.

Thus, aside from the effects of transitions to states
j/l and aside from exchange and higher order eGects,
the effective field ratio is 1+ (4)rmo/3) (2e'rP/ ~)oin
treating the low-frequency polarization of an atom, is
1+(ir)oo/3)(2e'rP/o() for purposes of calculating the
transition probability, but is unity as regards the ab-
sorption coefficient. Another way of stating this is that
although the transition probability is increased by the
presence of the other atoms, the energy of the transition
by the presence of the other atoms, the energy of the
transition is reduced by the same interactions just
enough to leave the total absorption unchanged. This
result was not previously known to the writer and
demonstrates that one must be careful in applying the
"effective field" concept. Essentially this result may
be obtained classically, as shown in Appendix B.

This idealized model probably bears little resem-
blance to most real crystals, except perhaps the solid
rare gases and possibly other molecular crystals. How-
ever, even if there should be little practical application,
the calculation seems worthwhile since with this model
it is possible to carry out in detail the computations for
the very commonly used van der Waals' interaction,
showing results rather different from those commonly
assumed. The formal result that the van der Waals
interaction between an oscillator and other identical
oscillators produces no change in the amount of energy
absorbed cannot obviously be carried over to other
interactions, but it is at least suggestive.

APPENDIX A

In this section we wish to compute the transition
amplitude C, given by Eqs. (16) and (A1),

—eA

u C = — ' 4' ("*(u P; g;e'""')4o")d7. (A1)'.
co;m

There are three types of terms in 4';&"* and three in
%0(", in each case one wave function with a large
coefficient, and the others with small coeKcients. We
shall keep none of the product terms involving the
product of two of the small coe%cients. The leading
term is

In terms of the oscillator strength, fo(, Eq. (32) may
j ' i 0 )@,(o)8(u.g ~ .&(k rg)+ (o)d& (A2)
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@,(o)8(» p. V.e(k ~ ri)

and
L tn n em+ uIr

and there are additional terms with one small coe%cient and only those states j contribute which are polarized
in the direction of polarization of the field u.

The next term (A3) gives a contribution for all states
I., m, in which the direction of polarization is parallel
to u, but only for the impurity state e the same as the
state j.Similarly in (A4) the state e must be the ground
state for the impurity atom, in order to get a nonzero
contribution, because of orthogonality. The correction
terms are found in the same way as above to be

(o)+

J J s ng) e~+r()~— e lPure„
X(u P V,e'""')eo("dr. (A4) lf 2

—~0 ~ ~
eik rl

-em+ad) j em u)j- ~

The terms like
e2

Xl [r x,—3r Rlx; R&/2&'] —SL,(m, j) l.
EEL'

and

(o)+(u P V,e'k"')P c @ (o)dr (A5) Here hl, (m, j) is an exchange term
(A10)

p, d,+, "(*( up; V;e'~ ")+o(')dr (A6)

do not contribute, since +p(" involves 2 excited host
crystal atoms, so that it does not combine with +,&p)~

with a one-electron operator such as V;. The same
argument applies to the term labelled (A6). The leading
term is

or,mE t

hr, (r)),j)= )itl,™*(1)oo(*(2)~r,'(2) (o'(1)dr, (A11)
r12

which drops off exponentially with the separation EL.
The summation over the atoms Pr, may be performed
with an integral for small k, as shown by Heller and
Marcus"; for the dipole-dipole terms the result can be
simply expressed, but the details of the wave functions
must be known to evaluate the exchange terms. We
shall use the symbol 8(rr(,,j) for Pz, e'~'r hl, (m, j), and
assert that it does not depend appreciably upon k,
since the wavelength of the light is much longer than
the range of the exchange interaction. Thus we obtain

q &*(Ã)(u P; V;e"r')(po(g)dr
(o)M

co,m
(A7)

u C;=
2u rm~mm;

S~
X

l

——roe'P, fcos(k,u)]r„.x;
3

m;ux; e
+

W, —8'p W; —8'p e '—ZV
2

The first step involves first the recognition that the St
permutations P and P' must be identical, because of
orthogonality, in order to give a nonzero result, and
second the integration over all the electronic coordinates
except those describing the electron, say the lVth, on
the impurity atom. In the next step we find a con-
tribution in the sum P, V,e'~"' only for that same
electron, the Eth. In the following, we shall choose our
coordinate system to be centered on the impurity atom,
so that expik r)i is unity. Note that the V matrix
element is computed between atomic states, so that we

may apply the well-known theorem,

Here P2 is the Legendre polynomial of order 2, and its
argument is the cosine of the angle between k and u.
This angle is, of course, m./2 for photons, so that Po
is ——,. The Bessel functions jp and j2 are functions of
p=k(3/4wmo)' which is of the order of the lattice
spacing divided by the wavelength of the light, so that
p is very small and jp—j2 can be replaced by unity.
Thus we obtain

earn

28~
ux, 1++ n,o r'—

3 e

em;
u C;=

t/V, —8'p
(jl via)= x;(u;-u)o),

k2
' (AS)

2U. rate~
+Q 8(m, j) . (A13)

m u x;(e„'—u)P)relating the gradient and dipole matrix elements. Thus
the leading term is

[eli7&/ (W& —Wo) ]u ' x&

Now the polarizability n& of a host crystal atom at
(A9) energy w; is 2e'P r 'e /(e '—u)P), so the second
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term in the square brackets is (42rnp/3)(22(w;). Finally,
we substitute for 8',—Wp from Eq. (14), and, defining
the exchange terms

8
F(0,u) =p, t pl *(1)p2 *(2)—pl (2) (d'(1)drip, (A14)

we obtain

42r u r„p„h(m, j)
u C;=eu x, 1+—-no(22(2e;)+2 Q

3 u xg'(ops —2e' )

is (dk/c, so that its integral is

I p ((d) dM =prpnpe2/mc.

If the oscillator is inserted in a medium where the
effective field for polarization is not cg but h+4n. P/3,
the right hand member of Eq. (81) should have added
to it the quantity 42(Pe/3=4rrnpepx/3. This term may
be combined with the last term on the left of Kq. (81),
to give the solution

+—(F(0,j)—F(0,0)), (A15) where
x= (e/m) 8/(cd2 c'+—iMb),

M =Mp —4rlnpe /'3

(86)

(87)

the square of which is given in Eq. (17).

mx+mbx+mMppx= eh,

and has the solution
(e/m) c'

g=
Mp Cd +ZCd&

(81)

(82)

where lop is its resonance frequency and b is a damping
term. Thus the polarization per oscillator is p= ex, the
polarizability per oscillator is (2, =p/cd, and the total
polarizability (2 is npp/cd (for an oscillator strength of
unity). The dielectric constant c(= (n —ik)' is 1+42m so
we have

8 1
(n —ik)'= 1+42rno-

m Mp —M +2M'
(83)

in terms of the extinction coeKcient k and the index e.
Solving for k, we obtain

f 8 ~ cvMco

k((d)d(d =22rnp— (84)
p m J p (MQ2 M2)2 +M2$2

= 7f' Rp8 SSMp.

Thus the integrated extinction coefficient is independent
of the damping constant, and is inversely proportional
to the resonance frequency. The absorption coe%cient

APPENDIX B

A result similar to Eq. (33) may be obtained clas-
sically, as follows. An oscillator in a vacuum satisfies
the diGerential equation

prpnpep ( prnpe') '

) k'(M)dM=
mMo E 3MQ'&

' (89)

to the desired order of approximation. However, the
quantity e2/mMQ2 is the atomic polarizability at zero
frequency, n, so that the modified extinction coefficient
integrates to

( imp
k'(M)dM=i 1+ (2,

i
k(c)dM.

J & 3 ) g
(810)

Since both the transition probability, quantum me-
chanically speaking, and the extinction coeKcient are
proportional to the absorption coefficient divided by
the frequency of the transition, they are proportional
to each other, and hence the transition probability
must be increased by the same ratio as in Kq. (810).
The agreement with Eq. (30), for the case of just one
type of oscillator and no exchange, may be observed by
noting that 2epr(2/ pc in Eq. (30) is the quantum mechan-
ical value for n at zero frequency.

On the other hand, since according to Eq. (85) the
integrated absorption cross section is independent of
the resonance frequency cop or co, it is unchanged by the
presence of the other identical oscillators, in agreement
with Eq. (33).

Thus the resonance frequency is shifted by an amount
given by

(d/(d Q 1—
22m pe2/3M Q2, (88)

so that the integrated extinction coeKcient is increased
by the reciprocal of this ratio, or


