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The “reduction of the wave packet” is an essential feature of the quantum description of measurement.
Since it means an abrupt change in the wave function, it therefore also implies an abrupt change in the
statistical description of the system. If the differential-space theory of quantum systems rests on a descrip-
tion of reality more detailed than quantum mechanics, it must contain an account of this change which is
consistent with the strictly probabilistic point of view of the theory. It is here shown that the theory does
satisfy this necessary condition. The need of a special postulate for the measurement process is eliminated in
this formulation, and a new explicitness is introduced into the description.

L

N quantum mechanics, the phrase “theory of meas-
urement’”% has become a handy designation for
those considerations having to do with the process
called “reduction of the wave packet.” In general, one
speaks of reduction of the wave packet under the
following circumstances: Two systems have been placed
in interaction, as a result of which their states as super-
imposed in their wave function are correlated. An ob-
servation is made on one of them,* and the pure-state
wave function assigned to the combined system is
thereby changed to one consistent with the result of the
observation. When the observations on one system are
made for the purpose of yielding information about the
state of the other, we have a further consequence, and
this is the really interesting thing about this process:
The new pure-state wave function of the combined
system yields a new (in general, mixed) quantum-
mechanical state for the second of the two systems con-
cerned, with respect to observables of the second
system, when those of the first are disregarded. And in
the special case where each distinct state of one system
is coupled to only one state, or comparatively few states,
of the other, the new state of the second system is,
respectively, almost pure or pure: In this case we call the
process a measurement on the second system.
In the differential-space theory of quantum sys-
tems,’® the statistics ordinarily obtained by the Born
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postulate from the wave function are embedded in a
statistical ensemble of “representative” systems iden-
tical in properties with the system of interest but
suitably distributed over values of observables. When
the system of interest is compounded of two or more
subsystems, the representatives are too. We may give
the statistical description of the measurement process in
three stages, as follows (our discussion will deal only
with exact measurements). First stage: There are two
independent systems and one has a differential-space
ensemble for each, obtained by the polychotomic al-
gorithm?®-® from the two wave functions. Second stage:
The two systems are interacting, and are thus to be con-
sidered as a single composite system. The appropriate
ensemble has as its representative systems duplicates of
this composite system, with distributions obtained from
the wave function of the combined system. Third
stage: An exact measurement has been made of the
instrument system; assuming it to be nondegenerate,
one may then treat the composite system in terms of a
wave function for each part (the composite wave func-
tion is then a simple product). Thus we return to a
differential-space description in terms of two ensembles,
exactly as in the first stage. (If the instrument states are
degenerate, one has a mixed state for the other system.)

If the foregoing were the only way to carry the differ-
ential-space description through the three stages of the
process, one would have to look upon this method as
incapable of giving a fundamental account of physical
processes. As stated, the replacement of one statistical
description by another as one goes from stage to stage
requires an appeal to quantum mechanics, and seems to
lie outside the domain of the differential-space method.
Even on the formal level, one would want the differen-
tial-space description to be autonomous in this respect.
Physically, one sees the meaning of this requirement
even more clearly: If the method is a fundamental
description of reality, then the ensembles represent
statistically representative populations in a real sense;
i.e., one should be able to use in place of any ensemble a
set of real systems duplicating the distribution of ob-
servables in the ensemble, with the individual systems
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all obeying a common dynamics [given by Eq. (2’) of
reference 5]. This implies, in particular, that in the
measurement process described above, it should be
possible to trace through the transitions in the en-
sembles from stage to stage in terms of individual
systems that maintain a continuous existence and
always obey the appropriate dynamics. The purpose of
this paper is to show that this requirement is satisfied :
The transition from the first stage to the second corres-
ponds to no change in membership of the ensembles
involved, from the differential-space point of view, being
merely a change in description—individual systems of
the two separate ensembles are combined into pairs of
composite systems. The transition from the second to
the third corresponds to a selection of a subensemble
from the ensemble of composite systems, followed by a
change in description exactly the reverse of the one
mentioned in the previous sentence; each system of the
subensemble selected maintains a continouous existence
(in fact, all systems do), subject to the known dynamics,
throughout the process of selection.

The remainder of this paper consists of the formal
demonstration of these remarks, with detailed inter-
pretations. We give only the transition from the second
to the third stage. As stated above, the changes in mode
of description in the two transitions are the reverses of
one another.

II.

We need first a mathematical description of composite
systems suitable for the differential-space description.
This is readily obtained in the product Hilbert space of
the Hilbert spaces of the individual systems. For
simplicity we use discrete representations, as always;
the generalization to the continuous case is described in
our previous papers.

Let us introduce a verbal distinction between the two
systems described: The “first” system of Sec. I will be
called the instrument ; the “second’’ system, the particle.
The work “particle” is used only in a manner of speak-
ing; the “second” system might in reality be a gas of
6102 molecules, and we would still call it a particle;
we know of no accurate, brief equivalent for the clumsy
phrase “system under observation”. The use of the
words “instrument’’ and “particle” does not, moreover,
restrict the argument to the case of the measurement
process narrowly conceived. It applies equally well to
any physical process described by the formal procedure
of “reducing the wave packet.”

The instrument and particle are both considered as
having one degree of freedom. (Any system may be
reduced to such a one by the formal procedure given in
reference 6, Sec. 3.)

Let R be an Lh.c. operator’ for the particle, with
eigenvalues R;, eigenkets |R;); S an Lh.c. operator
for the instrument, with eigenvalues S; and eigenkets
" 7We use the term “Lh.c. operator” to denote “linear Hermi-

tian operator having a complete set of eigenstates,” ie., an
“observable” in Dirac’s nomenclature. (See reference 6.)
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[S:). R and S commute. They are taken to be non-
degenerate and to have discrete spectra only. RS=T is
an Lh.c. operator for the system, particle4instru-
ment. The eigenvalues

Ty=R:S;, ey

where p=u(7,7) are either nondegenerate or may be
made so by a replacement of either R or S by a suitable
nondegenerate function of the operator replaced. The
numbers u(%,7) are to be distinct for distinct pairs (5,5);
hence the inverses Z(u) and j(u) are uniquely defined.
The differential space of the composite system has the

eigenbasis
{Tw},

and a point P in it has components
$u= <Pf T,), (2)

whose real and imaginary parts are Gaussianly dis-
tributed, with measure

11C2m)~ exp(—|$u]%/2)ds urdSr 3)

»

assigned to the interval

T1dsurdiur 4)
®

(R and I in this formula stand for real and imaginary,
respectively).

Imagine that the instrument and particle have been
brought together so that they interact, after which they
separate so that we may consider the interaction to have
ceased. As a result the ket for the composite system
must in general be expanded as a series of eigenkets
| T'.), with coefficients ¢,:

l¢>=Z | Ty (5)

L2

The observable [S] (we distinguish between the opera-
tor, S, and the observable, [S])¢ is then measured on the
instrument, and found to have the value S. In ordinary
quantum theory one then proceeds as follows: The
sum (5) is changed instantaneously to the restricted sum
over values of y compatible with j=j4":

W= =2cuii, i | Tw)- (6)

This contraction of |¢) into [¢/) is just an immediate
consequence of the Born statistical postulate applied to
the observable [ S]. Since

[Tui )= |R)|S5), (7

a state vector |.S;) may be factored out of each term of
(6). The state of the particle (in the quantum-mechan-
ical sense) is then independent of that of the instrument
and its statistical properties are given by the state

vector
| @) =2 iCuci, i | Ry). (8



DIFFERENTIAL-SPACE QUANTUM THEORY

Now, the detailed description of the differential-
space theory would go as follows: Before the measure-
ment of [S] we must think in terms of an ensemble of
composite systems working out their destinies in the
product differential space of the operator T. Afterwards,
as far as the particle is concerned, it is no longer neces-
sary to be so general; all its statistical properties are
given by an ensemble of particles in the factor differential
space of R. But the determination of [ S] as equal to .S
is in the differential-space description a selection of a
subensemble of composite systems all of which have
[S]=S; for their instrument components. Each of
these is coupled to a particle. Hence we have selected a
subensemble of particles, with known statistical dis-
tributions over all values of all particle observables.
These distributions are the same for the subensemble
chosen as they were before the measurement of [S],
since the particle is not disturbed by this measurement
(the interaction has ceased). We now come to the point
of this paper, as indicated in Sec. I: It must be possible
to identify each system of this subensemble in a one-to-
one manner with a system of the subensemble obtained,
independently, from |¢). In more precise language:
It must be possible to identify all subsets of the differ-
ential-space set associated with the selected suben-
semble, weight for weight, with subsets of the differ-
ential-space ensemble independently constructed from

| ).
1L

Our task is in effect to show that the differential
space of R pre-exists as a factor differential space in that
of T, with regard to both measure and distribution of
values of [R], for R any operator on the particle. In
order to do this we must assign eigenvalues of S to
points in the T differential space by applying the poly-
chotomic algorithm not with respect to individual axes
in T space, but with respect to manifolds each consisting
of all eigenaxes of T laving the same eigenvalue of S.
[This is necessary for our present proof, but it should also
be noted that, as shown in the appendix of reference 6,
the former method would give nonunique results for
S(Py), since S is a degenerate operator in the factor
space of T; it is nondegenerate only in its own Hilbert
space.] The mathematical method for doing this is
contained in reference 5, in the paragraph containing
Eq. (39); the following is simply an adaptation of this
method to the present situation.

Let
bi= (il e DY, 9)
and .
]¢i)=;Z Cuti, | T (10)
Then ’
[¥)="220;1¥5). (11)

|¢;) is an eigenfunction of S, with eigenvalue S;. The
|¢;) are normalized and orthogonal. Thus the com-
ponents (P|y;) of a differential-space point P have, as
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a consequence of the distribution of the {,, Eq. (3),
Gaussianly distributed real and imaginary parts, each
with mean square 1, and these quantities are all dis-
tributed independently of one another. Thus the poly-
chotomic construction of the function S(P,) can be
carried out according to Sec. 5 of reference 6, with the
(P|y¥;) as the Gaussianly distributed quantities and the
b; as the fixed coefficients.

Consider the subspace defined by a particular value
7' of , {P|S(Py)=S;}. The quantities [see Eq. (2)]

Cut n={P|Tuti, » (12)

will have (for each ) a certain distribution in this sub-
space. They are, of course, distributed over the entire
space according to Eq. (3). But they are, in fact, dis-
tributed in exactly the same way over the subspace
(apart from normalization, naturally). This may seem
strange, since the polychotomic choice of the subscript
4’ means that we have imposed a bias that makes
(P|y¥;+) small relative to the other coordinates of P. This
might seem to distort the distribution of the ¢, ), in
view of the relation

1
(Plllff):;Z Cuti, N e (13)

However, the (P|y; with j%4' do not contain the
¢ui, i; any condition of relative smallness of (P|y;r)
is equivalent to a condition of largeness of the (P|y;)
for j=4', relative to (P|¢;), and in the latter form it is
apparent that such a condition may be regarded solely
as one on those (P|y;) for which j=7'; these are inde-
pendent of the {,; j-), hence the latter are unaffected in
their distributions.

Now the vectors | T, j-») with fixed 7* and all values
of ¢ are a complete set for the Hilbert space of the
particle. The quantities {,(; ;) can therefore be put into
one-to-one correspondence, according to the subscript
1, with the quantities

£=(P'| Ry, (14)

which are the Gaussianly-distributed coordinates of a
point P’ in the differential-space of the particle; more-
over we have just seen that they are also distributed in
the same way. We now recall that (reference 5, Sec. 5)
the assignment of eigenvalues of R to points in the sub-
space j=7 will take place according to the polychotomic
theorem with the use of the distributed quantities
¢uci, i and the coefficients c,(;, j+y of Eq. (6).

We now have everything we need to complete the
correspondence between the subspace ;' of the differen-
tial space of the combined systems and its associated
distribution of values of [R7], and the whole differential
space of the particle and its associated distribution of
values of [R] obtained from the “reduced” state vector
| ¢) [Eq. (8)]. The quantities {,, ;) and &; of the two
spaces respectively are identically distributed, and the
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coefficients ¢,(;, j»y used in the polychotomic algorithm
are the same in both cases. [R] may moreover be any
observable of the particle. We associate points having
equal values of the {,(; ;) and the & in the two spaces
pairwise with one another. (This association is invari-
ant to the eigenbasis used, hence the two points that are
associated are the same for any [R].) A pair of asso-
ciated points will thus have the same value for any
observable. A mapping of the spaces on one another
according to values of observables preserves measure;
the spaces correspond to identical distributions in all
respects.

From the last sentence follows the basic conclusion of
this article: If a reading of the instrument after the
interaction has ceased corresponds, as it should, to
nothing more than the selection of the appropriate sub-
ensemble of particles from the over-all ensemble, the
subensemble obtained is statistically identical with that
obtained from the “reduced” wave function.

It should be noted that the measurement process as a
whole is not unaccompanied by a disturbance of the
particle, but this occurs during the interaction, not at
the moment of the reading of the instrument. At this
point, without going into details, we make one remark:
In our theory, if the form of the interaction is properly
chosen for the purposes of measurement, the disturb-
ance affects only variables other than that being meas-
ured. Thus the measurement is only a measurement and
nothing more so far as this observable is concerned, and
does not force a value on the particle that it did not
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previously possess; it is a forcing process only so far as
other variables, particularly that conjugate to the one
being measured, are concerned. In this respect our
theory differs concretely from that of Bohm,? since in
the latter the position (or functions thereof) is the only
variable that can ever be measured on an individual
system without in general simultaneously altering its
value.

In a certain sense, the picture given here furnishes a
definition of the “reduction of the wave packet” in
terms of everyday concepts. The only proviso is that one
must admit the “real existence’ of the individual sys-
tems represented by points in differential space. (If
one is not willing to do so, a mental picture still re-
mains, however unverified.) In our first paper we
claimed to have a postulate equivalent to the Born
postulate. We might now change thisassertion as follows:
One introduces a certain dynamical description, a
mathematical measure (probability) defined in terms
of it, and a method of constructing statistical ensembles,
such that zo new postulate is needed to account for the
change in statistical description that results from
“taking the pointer reading”: One has merely selected
a subensemble by separating out systems having a
common value of some variable, and the postulate in-
voked in doing so is at least as old as the theory of
statistics—it is so familiar, in fact, that so far as we
know no one has ever even bothered to give it a name.

8 D. Bohm, Phys. Rev. 85, 180 (1952).

? This phrase is of course fraught with epistemological impli-
cations. We mean to use it in a quite commonplace sense.



