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Coulomb Interference in High-Energy Proton-Proton Scattering*
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(Received August 17, 1955)

The use of Coulomb interference in the phase-shift analysis of p —p scattering is considered. To this
end the Coulomb amplitude is calculated relativistically in the Born approximation, using a static anomalous
magnetic moment. This amplitude is used to obtain formulas for the Coulomb interference contribution
to the cross section and polarization. An application to the phase-shift analysis of the 200-Mev data is
discussed.

I. INTRODUCTION

''T has been recognized that interference between
&- the electromagnetic and nuclear scattered ampli-
tudes in proton-proton scattering at high energies
provides additional information useful for the deter-
mination of nuclear phase shifts. In particular Breit
and co-workers have given expressions for the cross
section and polarization in terms of phase shifts for the
case of a central Coulomb force. ' This writer has
reported an analysis of 200 Mev data in terms of s
and. p waves including Coulomb interference effects. '
For this calculation an approximate relativistic formula
was derived for the Coulomb scattering amplitude that
takes account of the anomalous magnetic moment of
the protons. While at 200 Mev the unpolarized cross
section derived from this expression does not dier
appreciably from that obtained using the Mott formula,
the polarization divers considerably.

II. THE ELECTROMAGNETIC SCATTERING
AMPLITUDE

We shall 6rst calculate the Born approximation
matrix for two Dirac particles with static anomalous
magnetic moments. The protons interact with the
electromagnetic field through an interaction Hamil-
tonian

H = ei Py„A„+ ', ts ptsoi
—Po„„F„y, -.

where A„ is the four-vector potential, F„,=c)Q, i).A„, —
a„,=y„y„—y„y„, tip=eh/2Mc, and tt„ is the proton's
anomalous magnetic moment, i.e., tip(1+tt„)e is the
total moment. The first term in Eq. (1) is the usual
interaction between the charge and the electromagnetic
field, and the second is the Pauli term describing the
interaction of a static anomalous moment with the
6eld. We obtain the Born approximation transition
matrix by calculating the four diagrams of the type
shown in Fig. 1, where one or the other of the two

terms in H are used at the two vertices to emit or
absorb the photon.

The resultant scattering amplitude may be written
as a matrix as follows:

(R;"= —{(vi'y. tti) (esty.us)+-'„tt„f(wit(.ui) (esty. ls)
Mc' Q'

,'st—.'—(oi'4»)(ss+4sts)) (2)

(R"~ is the amplitude for a 6nal state in which particle
j(=1,2) has momentum p, spin ns/, and correspond. ing
spinor v;, when in the initial state particle j had
momentum p;, spin nt;, and spinor u;; the transition
being accomplished by the exchange of one photon.
e3fc' is the energy of each particle in the center-of-mass
system, Mc'Q„= (pi)„—(pi')„, and $ =iQ„o„. The.
superscript "ord" indicates that the formula is not
antisymmetrized. The first term in Eq. (2) is simply the
Mpller formula. '

In order to calculate interference e6ects, (R must be
expressed in terms of the combined spin space of the
two particles. To do this we take as basis states the
positive energy spinors /ms, nt&. =As (this in effect
defines the "spin"), where the large components of

(1& (0~
lt; and f; are

]~ [ and ] ) respectively. The four

components of the (R matrix are thus designated
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M. H. Hull, Jr., and A. M. Saperstein, Phys. Rev. 96, 806 (1954).
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FIG. 1. Born approximation diagram.
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6tmr'ms' mtms" (g,&) for c.m. scattering angles g,
where the s-axis is along the direction of incidence.
R is then expressed in terms of singlet and triplet states
f s which are the usual linear combinations of ltmr

and pm2, where S=O refers to the antisymmetric and
5= 1 to the symmetric combination, and 222'= imr'+sr42',

222=222, +ms. Writing these matrix elements (R

we have, for example, R1, 1
——(R;~ ~ ~. Finally the

antisymmetrized matrix (R ', is given by

(R, s(g y) (R, s ord(g y)
+(—)' -' "'( — + ) ()

When Eq. (2) is evaluated explicitly in this way, we
obtain the following matrix elements for the p-p
system. I.et 2i=e2/AU, U= incident velocity in lab
system, Ak= c.m. momentum of each proton, mt,'e= c.m.
energy of each proton. Also let

2(e—1) 2) e' 2e' —1

4m' e(e' —1)

e=[2 (7+1))' v= [1—U'/&'] *

s=sin(g/2), c=cos(g/2), x= cot(g/2). (4)

Then (R may be written as follows:

7l

e.„„=— [A'+x']
2ks

A'= ,'is„a(1-+e)s'[I.+IC],
X' = —'2is„is,a (1+e) s2 7',

E "=—E 1"=—E "*=E "*=V2eXe'&.

(6)

In Eq. (6) the notation R ~
s's is used for elements

that mix singlet and triplet states.
Since at high energies the Coulomb effects are only

significant at small angles, it is often sufficiently
accurate to consider in 3f, only the terms proportional
to 0 ' and 8 '. When this is done one obtains the formula
of reference 3:

where

4rr+&2

2k sin'(g/2) 2
' ll slI10 )

Besides the matrix elements listed in Eq. (5), the
following nonzero matrix elements exist:

1—1 ll ) 10 10 ) 0—1 Ol )

(Rr t' ——(R rr'*. (5"')

A similar calculation may be carried out for the
neutron-proton case. The result is as follows, where
pop„e„ is the neutron's magnetic moment:

61'= [z+A+x].
2ks'

(5)
v = [(2e+1)+2e(e+1)is,]

26

A=is, a(1+e)s'L X=-'44 'a(1+e)s'V
oooo= &)

Z 2' ——1—a[(2e+1)—es']s'

goo'= 1—2a(c+s')s'
Z ro' ——( a/V2) e'es 2x[( 2e+1)+ 2s ]2,

Zor = (a/~2)e'&s x[(24+1)—2es ]
Z rr' ——aee24'4s (21 —s')

LPoo ——1,

2e+ (2e—1)$,
Loo' = —(4e—3)—2 (3—2e)s'

L go' ——v2xe'e[e —(2e—3)s')
I., r =V2Xe*e[e—(2,—1)S2]

L rr'= (2e—1)(1—s')e'"'

(5")

Ir pop 2e2 —(e2—1)s2

+111 1+ (222 2e+ 1)s2 (e 1)2s4

Irpp'= —2 (e' —1)—(3+4e—5e') s' —2 (e—1)'s4,

Ir ro'=v2ei@ssx[(2+» —2e')+ (e 1)'s']-
Pot' = —V2e'&s'x[e (2e—1)—(e—1)'s']

I —111 ssie(1 s2)[(2e2 1) (e 1)2s2]

Z, A, and X are given in Eq. (5") below, where we have
written

(5')

n=(prXpr)/~prXpr ~.

The matrix si(or+4r2) n has four nonzero elements;
namely, those connecting the triplet m=0 with the
rrs=&1 states Their . value is (1/v2)(222' —222)e'&

01 and e2 are Pauli spinors acting on the large compo-
nents only.

This Born approximation. formula, (5) or (7), may
be multiplied by the nonrelativistic phase factor
exp[i( —22i lns+221p)], sip = argr (1+i2i), for this will

cause the product to reduce to the exact nonrelativistic
Coulomb amplitude at low energies. Of course this
would also happen if the phase factor only multiplied
the diagonal terms of N, , but comparison with the case
of electrons scattered by a fixed Coulomb field suggests
that it should multiply the spin-dependent terms as
well. 4 This treatment of the phase factor is rather
arbitrary, but around 200 Mev this nonrelativistic
phase factor is close to unity in the Coulomb interference
angular region, and hence this approximation might
be reasonable. However, this point remains to be
investigated further. '

4In the case of a particle with anomalous moment scattered
by a Axed Coulomb 6eld, it may be shown that
(R= —(ri/2k) expL2i( —ri 1ns+rio)ps~)1 vrirs m 2—v&s'+0(o—s)g,

where vq= L(4—1)/24)L1+(4+1)iso', 4 D —Vs/osj =&, andv=ZZ'
X+/h V.

')Vore added ir4 proof Concernin. —g these matters compare G.
Breit, Phys. Rev. 99, 1581 (1955); M. E. Ehel and M. H. Hull,
Jr. , Phys. Rev. 99, 1596 (1955); S. Ohnuma and D. Feldman,
Bull. Am. Phys. Soc. 30, 65 (1955).
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g in the formulas

section 0- and ol
n s in' for the

o arization I':
upolarized cross

o(8)=~~ TrMMt=-', Q 1M„„s '

o-(8)P(8)n=-' TrMMt — m1 By=11 Q Im
2~2 ~~

III. COULOMB-NUCLEALEAR INTERFERENCE

he contribution of the Coulomb inomb interaction to the
an po arization is obtained b

'
e yta ing

M=(R+K.

Irl these calculations the ex ressi

(8

p Qn of X in terQl f
o e the same as for th

6I
e a sence of Coulomb f

. Wolfenstein and J. Ashkin Ph

e a orces, exce t
s in, Phys. Rev. 85, 947 (1952).

we write
X 1 ~

—i@ ~ 1+ i$ (9).(8)= (8)+..(8)+.;-.(8),

rr(8)P(8) =o~P~+o.,P,+ (oP); ~,

where o-~ arises entirely from K 0.rom K, 0., entirely from R
e cross terms an

terms in OI'. If we evaluate these ter
, an likewise with th

p
g e approximation (7) instead. of (5 )
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TABLE I. Representative phase shifts (A branch) and corresponding parameters defmed by Eil. 13 Gtting the large-angle 200-Mev
data: o (8)=3 56 mb/sterad independent of e with no Coulomb interference, P (45') =0 22. Other possible sets (IS branch) are obtained
from those in this table by changing the signs of bp, Bp, and leaving other signs unchanged.

Set &o

Ap 0
A1 176

39.4
A3 387
A4 292
Ae 82
Ae 283
A7 216
As

—69.4—60.0—35.1—25.3—17.1
0.0

13.0
13.0
0,0

4.6
6.1
5.7
2.4—2.0—12.0—18.5—26.0

-32.0

4.4
5.0

10.0
15.0
20.0
23.0
15.0
10.'0
7.5

Ap

0
0.0909
0.4022
0,3906
0,2382
0.0202
0.2256
0.1353
0

0
0.2882
0.4901
0.4877
0.4261
0,1407
0.4181
0.3421
0

0.9249
0.8219
0.5110
0.5228
0.6750
0.8930
0.6876
0.7779
0.9277

0.2929.
0.3181
0.6811
0.9892
1.2213
1.1882
0.5665—0.1078—0.7012

—1.7423
1 4959—0.5410—0.0356
0.4083
0.6337—0.0683—0.5270—0.7573

0.8013
0.9832
1.4994
1.8972
2.2737
2.4085
1.7143
1.5987
1.9952

1.8129
1.5871
0.9019
0.8395
0.9954
1.1984
0.8722
0.8888
0.9617

0.1166
0.0588
0.5527
1.1.028
1.5830
1.9076
1.2857
0.4534—0.4423

we obtain

o. ;„&
———il(4ks ) i Re{es'& i~'[Tr&—vv2 sing

X (&is'e'& —Koi'e '&)g)

(oP), —
rf (4ks2) —1 jm(esis 1na[~g(cg leis

—&oi'e '&)+ i sin8(Kii'+FLoo' —Ki i'e"&)j) (11)
o,= (if/2ks')', o,P,=O.r (12)

When o; t, and (oP); t, are exp.anded in terms of phase
shifts and only s and p phase shifts are included, one
obtains (again ignoring 8' terms compared to 1):

4k Cr ' =2il[(A psp —Bpep)+ (ASi —Be]) cos8]y

4k'(oP);.,=if sin8[(C+ i E cos8) ei
+ (D+ i F cos8) S,g. (11')

Here 6& and Sz, are respectively the real and imaginary
parts of

s ' exp(2iif lns+irfr, it)o), —
and the other parameters in (11') are defined by Eq.
(13) below:

A o= sin'bo,

Bs——-', sin(2bs),

A = sinsbis+3 sin'oi'+5 sin'ois,

B=—',[sin25i +3 sin28i'+5 sin25i'f,

C= —2 sins' '—3 sin'5i'+5 sin'eis

D= is[—2 sin23is —3 sin23i'+5 sin23isj,

Q= 2 sin'$i'+3 sin'gi'+ 7 sin'$i'

F= is[2 sin28i'+3 sin25is+7 sin25i'j,

3,=8(S,), 3,'=3('P ).

(13)

Set

0
37—38—30

—69—37—31
10

5
6
4—16

10
12
17

p(15o)

0.065
0.103
0.112
0.132

~ It is interesting to note that o..P, does not vanish if we include
higher order terms in 8, but because of the exchange terms in
3f, one gets o,P,=8v(q/2k)' csee sin(2q In tan(e/2)].

TABLE II. Phase shifts for s and p waves at 200 Mev that Gt
the large-angle cross section and polarization, and the small-angle
cross section.

IV. APPLICATION TO THE ANALYSIS OF THE
200-Mev DATA

An example of the eGect of Coulomb interference in
a particular case is provided by the analysis in terms of
s-and p-wave phase shifts of the 200-Mev data."The
large-angle cross section and polarization measurements
limit the possible phase shifts to a one-parameter
family with two branches. ' ' Table I shows representa-
tive phase shifts on one of these branches, called A,
arranged so as to permit interpolation between the
entries, as well as corresponding values of the parameters
defined by Eq. (13).

Using (10), (11'), (12) and the formulas of reference
7 for oiv, o (8)/oiv(8) has been calculated for the phase
shifts of the two branches, A and 8. These are shown
in I'ig. 2. The curves show that Coulomb interference
discriminates rather well between the phase-shift sets
of Table I. To obtain the best 6t to the data, we have
interpolated between the curves. Thus for the A branch
sets A o and Ay are quite good, for the 8 branch three
sets are obtained: Bo, one obtained by interpolating
between 02 and Bg, the third by interpolating between
Bs and Bs. However As and Bs are identical (since
5s——0 for them), so there are four distinct phase shift
sets that 6t both the large-angle data and the cross
section in the region of Coulomb interference. These
are shown in Table II,which was also given in reference 2.

Referring to (11'), Ss and Si are about 1/15 as large

as Co and 6~, while Co 8~. Hence a measurement of
Coulomb interference at this energy is mainly a meas-
urement of Bs+B, i.e., of Re[TrK(0)]. Spin-dependent
terms in R do not appreciably affect o (8).

On the other hand, the spin-dependent terms (propor-
tional to i) give a large contribution to the interference
term in the polarization. This can be seen by comparing
C to vE in Table I, since these are respectively propor-
tional to the leading spin-independent and spin-

A. Garren, Phys. Rev. 92, 213, 1587 (1953).
'An experiment of L. Marshall and J. Marshall at Chicago

LPhys. Rev. 98, 1398 (1955)g, indicates that the sign of the
polarization is positive. Hence two of the four branches explained
in reference 2 are eliminated, and the remaining two, which we
call A and 8, di6er only in the sign of 8p.
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dependent contributions to (oE); & Lsee Eq. (11') noting
that at this energy v~0.5j. Figure 3 shows curves
of P/Ptv for phase shifts of Table X that best fit the
small-angle cross sections, and show that good small-
angle measurements of the polarization would also
help in determining the phase shifts.

It should be remarked that it now seems unlikely
that s and p waves suflice to describe the scattering at
this energy, but this example shows the value of

Coulomb interference for distinguishing between phase
shifts that fit the large-angle data equally well. "

The writer takes pleasure in thanking Professor L.
Wolfenstein who suggested these investigations for
his very helpful advice and guidance, and Professor
G. C. Wick and Professor J. Ashkin for their interest
and suggestions.

"C. A. Kiein fNuovo cirnento 1, 581 (1955)j has carried out a
somewhat similar phase-shift analysis.

P H YSI CAL REVIEW VOLUME 101, NUM BER 1 JANUARY 1, 1956

Effect of the Finite Size of the Nucleus on y-Pair Production by Gamma Rays*
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The cross section for p,-pair production by gamma rays is calculated by using the Bethe-Heitler formula,
taking into account the finite nuclear size. The cross section is shown to be considerably smaller than that
for a point-charge nucleus.

INTRODUCTION

' 'N recent years, experiments on the pair production
~ - of p mesons by gamma rays have been performed'
with the hope of further establishing the nature of the
p meson. The pair cross section is so small, however,
that to date it has been possible to determine only the
upper limits for its value. These seem to indicate that
nuclear forces do not play a sign6cant role in the inter-
action of p mesons with nuclei. Estimates given, by
Hough' and based on purely electromagnetic interaction
give a value for the cross section that is about 20 times
smaller than the most recently determined upper limit. '

Experiments now in progress at Stanford' are bringing
the upper limit of the pair cross section close to Hough's
estimate. 4 These experiments attempt to measure the
cross section

d'o./dQdE,

for obtaining one of the p mesons of the pair in a given
solid angle dQ and with an energy between E and
E+dE.

*Partly supported by the joint program of the OfIxce of Naval
Research and the U. S. Atomic Energy Commission.

f C.B.P.F., Rio de Janeiro, Brazil, at Stanford under a Fellow-
ship of the Brazilian National Research Council.' Feld, Julian, Odian, Osborne, and Wattenberg, Phys. Rev. 96,
1386 (1954); further references are given in this paper.' P. V. C. Hough, Phys. Rev. 74, 80 (1948); the approximations
used in this paper are not applicable for the energy region near
threshold for which the present calculations are performed.

s Masek, Lazarus, and Panoisky, Phys. Rev. 98, 650(A) (1955);
G. E. Masek and W. K. H. Panofsky, Phys. Rev. (to be pub-
lished).

4 As suggested in reference 2, an estimate of the effect of the
nuclear form factor can be obtained by multiplying the integrated
point —charge result by+ taken at the most probable value. For
the ranges of the variable considered in this paper, this procedure
gives a result too large by a factor of ~2.

1.865&(10 "cm
c

g (tt/t c)

becomes smaller than the nuclear radius. In this case
the matrix element describing the interaction of the
pair with the electric 6eld of the extended nucleus
becomes smaller than the point-charge matrix element
because the regions of space that most contribute to it
have dimensions smaller than X,.

«For example, the recoil energies occurring for a 500-Mev
photon vary between 0.1 and 16 Mev for beryllium, and between
0.05 and 5 Mev for aluminum; the most probable values are
approximately 0.6 and 0.2 Mev, respectively. In the case of a single
proton, the minimum recoil energy is 1.2 Mev; the most probable
values occur near 6 Mev.

e See Eq. (8) in the Appendh.

It is the purpose of this paper to present the results
of a calculation (in Born approximation) of the cross
section (1) on the basis of a purely electromagnetic
interaction of the p, meson with the nucleus. This calcu-
lation consists in treating the p meson as a heavy,
spin- —'„Dirac particle, and the nucleus as a static
distribution of protons. The incoherent eGects of the
individual protons, the excitation of higher nuclear
energy states, and nuclear recoil energies are neglected. '

Under these assumptions, the differential cross section
for pair production is given, in Born approximation, by
the Bethe-Heitler formula. ' Because of the larger rest
mass p of the p, meson, the p,-pair cross section divers
from the electron result by a mass scaling factor

(1/207)', and by a nuclear form factor. The nuclear
form factor arises because, for p,-pair production, the
recoil momentum q transferred to the nucleus can be so
large that the associated wavelength,


