
P H YSI CAL R EVI EW VOLUME 101, NUM BER 1 JANUARY 1, 1956

Thei-sisal Magnetoresistance of Zinc at Low Temperatures*
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The variation of the low-temperature thermal resistance of single crystals of zinc in large magnetic fields
has been investigated. The work was divided into two parts, one using very large fields (B&&60 kilogauss)
and the other using Gelds ranging to 25 kilogauss. The high-field work was concerned mostly with the be-
havior of the thermal magnetoresistance for various orientations of the crystalline axes relative to the mag-
etic Geld. It was found that the thermal magnetoresistance is a strong function of orientation in the field, and
an attempt was made to extrapolate the data obtained to infinite fields. The low-field work was carried out
primarily to investigate the de Haas-van Alphen effect, and electrical as well as thermal magnetoresistance
data were taken. Oscillations of the de Haas-van Alphen type were found in both the thermal and the elec-
trical magnetoresistance and an average value of P~/E& 5 8)&1—0—' .gauss ' was derived from the thermal
data. Comparison with theory yielded a value of the order of 0.2 electron per atom for both the thermal and
electrical cases. The variation of the Lorenz ratio with magnetic field was also derived.

INTRODUCTION

'HE effect of a magnetic Geld on the thermal con-
ductivity of metals at low temperatures has been

investigated sporadically for the past twenty years.
Much of the work, however, has been done at the tem-
perature of liquid hydrogen (14'K to 20'K), and ex-
tension to the liquid helium range is a fairly recent
development '

The Grst work done at 4.2'K was done by Shalyt'
in 1944 in which he investigated the thermal magneto-
resistance of bismuth. In 1950, Hulm, ' in connection
with his work on the thermal conductivity of super-
conductors, investigated the behavior of tin mono-

crystals in fields ranging to 1500 gauss. His crystals
were quite pure and the magnetoresistance eGects were

strong, but the observations were incidental to the
main work on superconductivity. In 1953, a survey of
thermal magnetoresistance by Mendelssohn and Rosen-
berg' was carried out on a variety of metals, many of
them single crystals. They were primarily interested in
testing the validity of Kohler's rule' for thermal resist-
ance. They used fields up to 4 ko for most of the work,
but the data for Zn, Cd, Sn, and Tl were carried to
20 kG. However, a detailed investigation of the proper-
ties of any particular metal was not carried out.

%e were interested in the behavior of the thermal
magnetoresistance because of the recent observation
that the peculiar behavior of the diamagnetic sus-

*Based on a thesis submitted to the Faculty of the Graduate
School of the University of Maryland in partial fulfillment of the
requirements for the degree of Doctor of Philosophy (unpub-
lished).

' J. L. Olsen and H. M. Rosenberg, Advances in Phys. 2, 28
(1953). This is a review article on low-temperature thermal con-
ductivity containing a bibliography complete to about the middle
of 1952.

2 S. Shalyt, J.Phys. (U.S.S.R.) 8, 315 (1944).' J. K. Hulm, Proc. Roy. Soc. (London) 204, 98 (1950).
4 K. Mendelssohn and H. M. Rosenberg, Proc. Roy. Soc.

(London) 218, 190 (1953).
e M. Kohler, iNaturwiss. 36, 186 (1949).

ceptibility of certain metals (the de Haas-van Alphen

efFect) is reflected in other physical properties. Work
has been done on the electrical magnetoresistance,
Hall effect, ' and thermal emf' of several metals, and a
similar investigation of the thermal conductivity seemed

to be in order. Since the experiments reported here were

undertaken, work has been done on bismuth by Steele
and Babiskin' on nearly all of these properties. In
addition, the availability of large magnetic fields made

such work desirable. The theoretical description of low-

temperature magnetoresistive eGects is not in a satis-

factory state and one of the reasons is the scarcity of

experimental data. Experiments in high Gelds can pro-
vide such data over an extended range, especially if
more than one temperature is used.

The work reported here was therefore undertaken to
make a thorough investigation of the eGect of magnetic
fields on the thermal magnetoresistance of crystals of
zinc at various orientations and at two different tem-

peratures. The work fell into two categories. First, the
high-field (H &~60 kilogauss) measurements were made

on crystals of various orientat'. ons with respect to the
magnetic field. Second, the low-field (H~& 25 kilogauss)
measurements were made to investigate the existence
of de Haas-van Alphen behavior in both the thermal

and electrical magnetoresistance. The associated elec-

trical measurements allowed us to observe the behavior
of the Lorenz ratio as a function of Geld and to make a
crude estimate of the heat conductivity of the lattice.

' Bi:P. B.Alers and R. T. Webber, Phys. Rev. 91, 1060 (1953);
Zn: T.. G. Berlincourt and J.K. Logan, Phys. Rev. 93, 348 (1954),
using data of N. M. Nachimovitch, J. Phys. U.S.S.R. 6, 111
(1942); C (graphite): T. G. Berlincourt and J. K. Logan, Phys.
Rev. 93, 348 (1954); Sb: M. C. Steele, Phys. Rev. 98, 1180(A)
(1955).

~ Bi:Reynolds, Leinhardt, Hemstreet, and Triantos, Phys. Rev.
96, 1203 (1954); L. C. Brodie, Phys. Rev. 93, 935 (1954); C
(graphite): T. G. Berlincourt and M. C. Steele, Phys. Rev. 98,
227(A) (1955).Sb: M. C. Steele, Phys. Rev. 98, 1180(A) (1955).

8 Bi:M. C. Steele and J. Babiskin, Phys. Rev. 94, 1394 (1954).
' Bi: M. C. Steele and J. Babiskin, Phys. Rev. 98, 359 (1955).
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APPARATUS

The calorimeter" for the high-field work was designed
to fit into a metal dewar Rask, suitable for use in a
Bitter-type solenoid magnet. The calorimeter can was
28 in. in diameter and 28 in. high and was turned out of
a solid piece of brass. See Fig. 1. It was secured to a
brass lid by means of twelve beryllium-copper screws,
and a gold-wire ring provided a vacuum seal. The
crystal to be investigated was mounted perpendicular
to the axis of this can, with one end soldered to a copper
post in thermal contact with the helium bath. A small
heater coil, noninductively wound, was attached to the
other end of the specimen, and three carbon-composi-
tion resistors used as thermometers were attached to the
specimen rod at appropriate points. Two of these re-
sistors were used to give the temperature difference,
and the third monitored the average temperature of
measurement.

The entire assembly was attached to a stainless steel
pumping line leading to a vacuum system mounted on
the top plate of the apparatus. The plate was screwed to
a Qange on the top of the metal dewar Qask. An 0-ring
seal at this point made the dewar system vacuum tight
and allowed us to reduce the temperature by pumping
on the helium bath.

BERYLLIUM-COPPER

The low-6eld apparatus was the same in principle, but
since the magnetic field was horizontal, the specimen
could be mounted vertically. The gap between the
magnet pole pieces was 18 in. , but the available space at
liquid helium temperatures, after the dewar Basks were
assembled, was only ~ in. in diameter. Accordingly, a
new calorimeter was designed, as shown in Fig. 2.

Temperature diGerences of the order of a few hun-
dredths of a degree Kelvin were used, and they were
derived from a measurement of the difference between
the resistance of the two carbon thermometers. A com-
parison circuit was used to measure this difference
directly. It is fully described in an article by Dauph-
inee" except that the motor-driven switch employed in
that design was replaced by a high-speed double-pole-
double-throw switch in the form of a "Millisec" relay
driven by a square-wave generator. Such a circuit
provided greater sensitivity than a Wheatston bridge at
the power levels employed ((1@m), while permitting
the use of a conventional deflection galvanometer of
moderate sensitivity.

The specimens used came from two diGerent sources.
For the high-Geld work, crystals grown by Horizons,
Inc. , Cleveland, Ohio, were used. In Zn I and Zn II the
hexagonal axis was nearly perpendicular to the axis
of the rod (y= 89'), and in Zn III the axis was parallel.
The low-field work was done using crystals very kindly
loaned to us by Dr. K. I. Salkovitz of this laboratory.
In both crystals the hexagonal axis was perpendicular
to the rod axis; in Zn VI, y=89'and inZn VII, y=85'.
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FIG. j.. Diagram of calorimeter used for high-field work.

"Many of the techniques employed in the design of these
calorimeters were originated or adapted by D. A. Spohr of this
laboratory, now on leave at the Clarendon Laboratory, Oxford,
England.

I I',' . —.HEATER

FrG. 2. Diagram of calorimeter used for low-Geld work.

"T.M. Danphinee, Can. J. Phys. 31, 577 (1953).



THERMAL MAGNETORESI STANCE OF Zn

35

25 25

~w
Wo

l5

~W 20
Wo

15

IO
IO

0
50 60

The thermal and electrical constants of each crystal
are given in Table I.
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FIG. 3. Relative change in thermal resistance (5') as a function
of magnetic field for Zn I. Heat flow is perpendicular to the field
and perpendicular to the hexagonal axis of the crystal. For curve
A, the hexagonal axis is at an angle of about 5' with the direction
of the field. For curve 8, the hexagonal axis is parallel to the field.
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FIG. 4. Relative change in thermal resistance (W) as a function
of magnetic field for Zn II and Zn III. For Zn II, the heat flow
is perpendicular to the Geld and perpendicular to the hexagonal
axis of the crystal. For Zn III, the heat flow is perpendicular to
the Geld and parallel to the hexagonal axis of the crystal. In both
cases, the hexagonal axis is perpendicular to the field.

EXPERIMENTAL RESULTS

The thermal magnetoresistance data is presented in
terms of the relative change in thermal resistance
AW/Wp. Wp is the thermal resistance in zero field at the
temperatures indicated on the graphs, and ATV=R"
—8"0, the change in thermal resistance as the field is
increased. Values of 8'0 for each crystal at the tempera-
tures employed are given in Table I.

High-Field Results

Using Zn I, two sets of data were obtained. In both
cases, the heat current Q Qowed perpendicular to the
hexagonal axis of the crystal, but in one run the hexag-
onal axis was not quite parallel ( 5' o6) to the mag-
netic field. This is shown as curve A in Fig. 3. The
orientation was then adjusted and the data for curve 8
were obtained. It is clear that the thermal magneto-
resistance is a very strong function of orientation.

In Zn II, the crystal was oriented in the apparatus so
that the magnetic field was perpendicular to the
hexagonal axis. The heat current, Q, was also perpen-
dicular to this axis, as before. The data for two tem-
peratures appear in the lower curves of Fig. 4. A crystal
of diGerent orientation was used for Zn III in order to
obtain the third permutation of Q, H, and crystal axis.
In this crystal the field was perpendicular to the hexag-
onal axis, but the heat current was parallel to it. The
data obtained appear in the upper curves of Fig. 4.

In both cases, the temperature dependence of the

magnetoresistive eGects was small. However, the eGect
of a change of temperature on Zn II was opposite to
that on Zn III. This may or may not be a real effect;
it is felt that there is probably an error in the value of
~0.

As a general rule, the magnetic eGects were smaller
in the case where the crystal presented a high degree
ot symmetry to the field. This was true for Zn I (8) and
Zn II. In the case of Zn III, the positions of the binary
axes were not known, but since it is unlikely that they
were precisely parallel or perpendicular to the field, the
strong eGects observed should not be unexpected. This
dependence on symmetry is recognized in most theories
of electrical magnetoresistance, and these results can
be looked upon as corroboration of the eGect in the
thermal analog.

It is therefore plausible to assume that the orienta-
tions of highest symmetry would be the ones most
sensitive to small changes, and it appears that this is
true. When the field is parallel to the hexagonal axis, a
marked de Haas-van Alphen eGect is observed in the
susceptibility, and it is also at this orientation that
anomalies in the electrical magnetoresistance have
appeared. ' It was thus an orientation of considerable
interest for the thermal magnetoresistance.

Low-Field Results

The work at low fields was carried out using a hori-
zontal iron-core magnet which could be rotated about
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FIG. 5. Comparison of thermal and electrical magnetoresistance
as a function of angle for field fixed at 12.3 kG.

a vertical axis. The magnet was calibrated by means of a
nuclear resonance Quxmeter, and it could be positioned
with respect to the crystalline axes of the specimen with
a high degree of precision. It was therefore well-suited
to an investigation of de Haas-van Alphen behavior.

Both thermal and electrical magnetoresistance data
were taken on the specimens used in this part of the
work. The characteristics of Zn VI and Zn VII appear
in Table I. In both specimens, the hexagonal axis was
perpendicular to the rod axis, and thus lay in the hori-
zontal plane, making an angle 8 with the field direction.
To insure proper orientation of the field with respect to
the crystalline axes, a "rotation diagram" consisting of
the variation of the magnetoresistance with the angular
position of the magnet was taken at some constant field

TABLE I. Electrical and thermal characteristics of the
zinc crystals used in these experiments.

—in this case, about 12 kG. Both the electrical and
thermal cases were studied, and the data for Zn VI
appear in Fig. 5. There is clearly strong similarity be-
tween the two curves, which would imply that the
thermal conduction is almost entirely electronic.

The absolute minimum in the curves corresponds to
the orientation for which the field is perpendicular to the
hexagonal axis (0=90') and the relative minimum
occurs when the field is parallel to the axis (8=0').
It is this orientation for which the de Haas-van Alphen
eA'ect is the strongest. Accordingly, the magnet was
locked into position, and the variation with 6eld for
both the thermal and electrical magnetoresistance was
observed. The resulting curves, for Zn VI, appear in
Figs. 6 and 7.

Again, the electrical and thermal curves resemble
each other closely, and there is a faint suggestion of an
oscillatory component on each one of them. By sub-
tracting away the gross increases in resistance, it is
found that the oscillations are periodic in reciprocal

TABLE II. Values of the de Haas-van Alphen parameter P*/Ep
derived from thermal and electrical magnetoresistance data,
compared to the value obtained from susceptibility measurements

T Kp EFQ

watt-unjts ohm I gm I
I.o l/A

watt-ohm/('K)~ cm I P+/&o, gauss '

Zn I
Zn II
Zn III
Zn VI
Zn VII

3.75 6.50
3.58 7.34
3.50 6.1.2
3.45 5.60
3.46 4.78

~ ~ ~

1.23&& 10s
1.00)&10

~ ~ ~

1.32+10 '
38)&10 s

19.8
17.9
17.7
21.6
24.5

Zn VI

Zn VII

Zil

Thermal
Electrical
Thermal
Electrical
Susceptibility

5.7X10 '
5.3)(10 ~

6.0)&10 '
58)(10 '
6.4)&10 ~
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Geld, a characteristic of the de Haas-van Alphen effect.
The results of this type of analysis appear as Fig. 8.
Since only two oscillations are clearly observed, the
de Haas-van Alphen parameter, P*/Ep, derived from
the oscillations can be used only for purposes of com-

parison.
Following the assumption that the oscillatory com-

ponent of the thermal magnetoresistance is simply
added to a steady monotonic increase, we can write

hW/8'p Ar(H——,T)+As sin(2srEp/P*H).
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In this expression P*=eh/m*c, a double effective Bohr
magneton, and Eo is the energy overlap between the
Brillouin zone boundary and the Fermi surface. If the
zeros of the sine function, expressed as values of 1/H,
are plotted against successive integers, a graph of the
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Fro. 8. Difference curves for thermal and electrical magneto-
resistance of Zn VI, showing de Haas-van Alphen oscillations.

lyzed in the light of the 2-band theory of Sondheimer
and Wilson, " Grst published in 1947 and somewhat
amplified in the second edition of Wilson's Theory of
Metals" in 1953. They consider a model consisting of
two overlapping bands of electrons, the s-band and the
d-band, whose energies are given by E=hk'/2m. The
model is not claimed to be representative of any real

metal, but was chosen for its mathematical tractability.
It yields equations of a familiar form:

Ap/pp=AHs/(1+BHs) (electrical),

AIF/IF =CH'/(1+DH') (thermal).

They describe a magnetoresistance curve which is
parabolic at low Gelds and which approaches some con-
stant value at high fields. If we assume that two bands
make equal contribution to the conductivities, so that
,o=o =eo. /p2 and E,=Ed=Ep/2, we can then deter-

mine the number of electrons in each band. For the

0
lo l5 20 25

lO "x l.4—
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FIG. 7. Relative change in electrical resistance as a function of
field for Zn VI. Hexagonal axis is perpendicular to current and
parallel to field direction.

type shown in Fig. 9 is obtained. The slope of this line
is equal to P*/2Ep, and the ratio is usually broken, in

the case of susceptibility measurements, by a study of
the temperature dependence of the amplitude of the
os cillations.

Values of P*/Ep obtained from the electrical and
thermal measurements on Zn VI and Zn VII appear in
Table II. The best value from susceptibility measure-
ments is given for comparison.
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DISCUSSION AND CONCLUSIONS

Comparison with Theory

Apart from the oscillatory effects, the magneto-
resistive behavior of these specimens have been ana-

FIG. 9. Straight-line plot used to analyze de Haas-van Alphen
oscillations found in thermal magnetoresistance of Zn VI.

"E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
190,435 (1947l.

"A. H. Wilson, Theory of Metals (Cambridge University Press,
Cambridge, 1953),second edition.
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in zero field (gaussian units), and T=absolute tem-
perature. By taking the experimentally observed values
of Dp/ps and hW/Ws at two f'telds, 10 Iologauss and
20 kilogauss, and substituting these in the equations
quoted above, values of m, and e~ can be determined
for both the electrical and thermal cases. The results
are shown in Table III. While a certain measure of
agreement exists between the values derived in both
cases, it should not be concluded that the experimental
results agree with theoretical predictions. Figure TO

shows a comparison between theory and experiment,
using the constants just derived. It is clear that the
simple parabolic behavior predicted is not borne out at
low temperatures, at least. However, a somewhat more
fundamental discrepancy exists in the number of elec-
trons per atom. It is considerably less than the number
one would intuitively expect for a metal like zinc,
although other experiments on thermal conductivity
give similar results. The work of Webber, Andrews, and

OO lo
8 kG

l5 25

Q' T
1.0
I

2.0 X IQ
I

FIG. 10. Comparison of experimental results on the electrical
magnetoresistance of Zn VI with the theory of Sondheimer and
Wilson. 5.0

electrical case, the constants are

tl 8 fSg 0 P

A=
(n,ns)' E4ecI

(n, —ng)' ( op y
'

( , n~)n' E4ec)

and for the thermal case

(n, +ng)'( 3eEp

(n n.)s &4~s~scT)

(n, —nd)'( 3eEp )'
(n,n~)' (47r'jt'cT J

where n, =number of electrons/cc in the s-band, nq
=number of electrons/cc in the d-band, os ——electrical
conductivity in zero field (gaussian units), e= electronic
charge (esu), c=velocity of light (cm/sec), k=Boltz-
mann constant (erg/'K), Ks = thermal conductivity

Zn VI ns/atOm nd/atOm

Thermal 2.22)(10" 0.914&(10' 0.332 0.137
Electrical 1.70&(10" 1.12 &(10" 0.255 0.168

TABLE III. Values derived from Wilson-Sondheimer theory for
the number of electrons in the s-band (e,) and the number in the
d-band (nq) The number . of electrons per atom for the respective
bands is also shown.

y 2.0

1.0

I I I I I I I I I I

0 I 2 5 4 5 6 7 8 9 IQ IIXIQ 5

B GAUSS '

FIG. 11.Two methods of determining the value of thermal con-
ductivity of Zn VI in very large fields (E„).The aT axis is used
in conjunction with the two curves marked with squares (0)
and triangles (&). The It-intercept at 8 '=0 is 0.50 watt units.

Spohr" for example, yielded a value of 6)& IO ' electrons
per atom for aluminum. In addition, the susceptibility
measurements of the de Haas-van Alphen eGect indicate
that only about 1&10 ' electrons per atom are taking
part in the oscillations. If we assume, from the size of the
de Haas-van Alphen component, that only one percent
of the total number of electrons taking part in the con-
duction process are de Haas-van Alphen electrons, we
arrive at a 6gure of I)&10 4 electrons per atom. This is
clearly much too small, but the qualitative fact remains
that the number of electrons per atom available for
thermal or electrical conduction at low temperatures is
apparently an order of magnitude less than the valence
number, two.

"Webber, Andrews, and Spohr, Phys. Rev. 84, 994 (1951).
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Extrapolation to In6nite Fields

Two techniques have been employed to determine
the value of the thermal magnetoresistance in an in-
finitely large field for Zn VI and Zn VII. The 6rst is
very straightforward; the data are expressed as thermal
conductivity and then plotted against the reciprocal
of the 6eld. From about 10 kilogauss up, the experi-
mental points fall on a reasonably good straight line
which can be extrapolated to 1/H=O or H= ~. The
point of intersection of this line with the E axis pre-
sumably gives the value to which the conductivity is
tending.

The second method is similar to the Grst, except that
instead of an abscissa of 1/H, we use o'T, the product
of the electrical conductivity and the temperature.
This has the effect of separating the thermal conducti-
vity into two parts; one, a part designated E. which
depends on the same electrons as the electrical con-
ductivity and thus is sensitive to a magnetic field, and
the other, a Geld-independent part, designated E . If
we make the questionable assumption that in the limit
of inGnitely large H, 0 goes to zero, the E-intercept
gives the value of E„.The results of such an analysis
appear in Fig. 11.The agreement between the values of
E„derived by the two methods is probably fortuitous;
nevertheless, the fact that two diferent crystals yield
the same result is intriguing.

If we assume that the thermal conductivity of the
metallic lattice, E„can be added to the thermal con-
ductivity of the electrons and that the electronic con-
tribution is reduced to zero in the limit of large 6elds,
it would seem that E„could be identi6ed with E,. In
fact, the second method given above is one of the tech-
niques used to yield an estimate of E,. For these experi-
ments, however, this is apparently not the case. If we
take the data for Zn I (A) and Zn I (8) and plot the
values of thermal conductivity against reciprocal
6eld (method 1), we obtain the curves shown in Fig. 12.
It is clear that the values of E„for the two cases are
quite diferent, indicating that the angular anisotropy
observed at ordinary Gelds persists for indefinitely large
ones. This indicates that the electronic contribution
to the thermal conductivity is never completely
quenched by a magnetic field. It is probable that at
very high 6eMs, both the thermal and electrical con-
ductivities reach a value which no longer depends on
the magnitude of the Geld, but only on its direction
with respect to the crystalline axes.

2.o—
TN 5.74 K

W.Uo

I.O—

'7 ro-=
0 2 ioxio 5

(QAUSS ')

Fn. 12. Graph showing persistence of angular anisotropy in
thermal conductivity at very high fields for Zn I.

we have the result shown in dotted lines in Fig. 13.

4.0

3.0

addition, the variation of L with field is quite strong,
indicating that the thermal and electrical conducti-
vities are not mere reAections of each other. I'igure 13
shows the variation of L/Lo with 6eld for Zn VI.
Although Lp is almost certainly in error, the data show-

ing the relative change of L with field is probably valid.
Using the values of e, and ed derived earlier and sub-
stituting into the expression for L/Lo given by Wilson, "

~Hq
' ~nP+n&'~

1+eI —
I I(ec] 0 n,2n' )

(Hp ' )n,2+nPp Lo'
1+iI —

I I(ecl ( n,2ng I I. '
(H) ' (ng —n2)' L02

(ec) nPng L„'

fH) ' (ng n2)'—
1+—,'.

I

—
I

E ec) BPn2

The Lorenz Ratio

The Lorenz ratio derived from these experiments is
somewhat anomalous. If we calculate Lo Eo/oTfrom- — .
the data given in Table I, we see that it is considerably
below the value to be expected at these temperatures.
For Zn VI, Lp=1.32X10 and for Zn VII) Lp=1.38
X10 '. The values obtained for other metals at these
temperatures are usually much closer to the room
temperature value of 2.45X10 8 watt-ohm/('K)'. In

2.0

ORY

I,O- lo
B kG

Pro. 13. Comparison of experimental results on the Lorenz ratio of
Zn VI arith the theoretical results of Sondheimer and Wilson.
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Absorption of Light by Atoms in Solids*

D. L. DEXTER
Ivtstitlte of Optics, Urtieersity of Rochester, Rochester, Seto York and Uvtited States Avasa/ Research Laboratory, Washirtgtol, D. C.

(Received September 16, 1955)

The interactions of an atom with its neighbors in an idealized solid are taken into account explicitly in
treating the absorption of light, as contrasted with the usual introduction of an "effective" Geld and mass.
In the discussion of the magnitude of the absorption coe%cient, two cases are treated: one, the absorption
by an impurity atom, in which case we are led to an equation similar to Smakula s; and two, the absorption
by one of the atoms of the perfect crystal. The computations are based on a simple idealized model whose
validity is discussed for existing systems.

I. INTRODUCTION

~CONSIDERABLE progress has been made in recent~ years in the understanding of the shape of absorp-
tion bands of atoms in solids, particularly of impurity
atoms. ' ' Relatively little attention has been directed
to the problem of the total amount of absorption by the

atom, that is, to the integrated cross section. This is a
somewhat more difficult problem, requiring explicit
knowledge of the details of the wave functions, which

are, in most cases, severely modified by the medium

from their values i e vaclo.
The usual method' for the treatment of the magnitude

of the absorption has been to make use of the atomic
wave functions of the atom, completely uninfluenced

by the presence of the medium, and to attempt to take
account of the eGect of the medium by the introduction
of an "effective field" and an "eBective mass" for the
electron. This procedure is satisfactory in limiting cases,
where the values of these effective parameters are

known, but suRers from the difhculty that in general

the parameters are not known. In an alternative de-

scription, presented here, the transition probability of

the system is calculated, using wave functions for the
whole crystal in which interactions among the atoms

are taken into account. Since the interactions are

explicitly accounted for in the wave functions, the

*This research was supported in part by the U. S. Air Force
through the Once of Scientific Research of the Air Research and
Development Command.

' K. Huang and A. Rhys. Proc. Roy. Soc. (London) A204, 406
(1950).

s M. Lax, J. Chem. Phys. 20, 1752 (1952) and subsequent pub-
lications.' F. E. Williams, J. Chem. Phys. 19, 457 (1951)and subsequent
publications.' C. C. Klick, Phys. Rev. 85, 154 (1952).

~ D. L. Dexter, Phys. Rev. 96, 615 (1954).

introduction of effective masses and fields is unneces-
sary, and this difhculty is avoided; for this difFiculty
there is substituted the problem of calculating wave
functions in which the interactions are included. This
is, in general, a formidable task since the interactions
are many and large, so large, in fact, that perturbation
theory may not be applicable in a simple way in some
systems.

In one idealized model, however, the calculation of
the wave functions and the transition probability can
easily be carried out, and the results can be expressed
in a form similar to Smakula's equation' for impurity
atom absorption. This is included in Sec. II, where there
is also presented a discussion of the simplifying assump-
tions inherent in the idealized model. In Sec. III is a
similar calculation for the absorption of the pure host
crystal itself. In this case we obtain a result, not previ-
ously emphasized to the knowledge of the writer,
which is equivalent to the statement that the integrated
absorption cross section of an oscillator is unchanged by
the dipole-dipole interactions with other identical
oscillators.

II. IMPURITY ABSORPTION

Here we shall be concerned particularly with an
impurity atom which absorbs light of a longer wave-
length than that at which the host crystal absorbs; thus
its absorption is not lost in the fundamental absorption
of the host crystal. We shall also assume that the im-

purity concentration is sufficiently low, say less than
e A. Smakula, Z. Physik 59, 603 (1930).
7 C. Herring, Proceedings of the Atlantic City Conference on

Photoconductivity, November, 1954 (John Wiley and Sons, Inc. ,
New York, 1955). Herring has suggested some modi6cations to
Smakula's equation based on a somewhat different point of view
than that expressed. here.


