HIGH-ENERGY PROTON REACTIONS IN Bi

The recoiling thallium nuclides formed directly have
forward to backward ratios almost equal to unity.
Inasmuch as a forward velocity component would be
expected from the transfer of momentum to the target
nucleus, similar in magnitude to that observed for lead
and bismuth recoils, the apparent cancellation of this
in the production of thallium nuclides must be the
result of another process, isotropic in nature, and
capable of transferring appreciable momentum. It is
proposed that the thallium nuclides studied are formed
by the evaporation of neutrons and an alpha particle
following the passage of the bombarding proton through
the nucleus. The recoil momentum of the thallium
nucleus resulting from an alpha particle emitted with
an energy of the order of 30 Mev would be about 2.5
times the momentum of the struck nucleus and would
lead to a more isotropic distribution of resultant recoils.
The range of the thallium recoils can then be taken to
be about four times the “effective range,” which would
be about 0.4 mg/cm? Bi, or about 5 to 6 times the range
of the lead and bismuth recoils. The range-velocity
dependence for heavy fragments at these low kinetic

energies, where the range is varying with the second to’

third power of the velocity,* yields an expected value
of about 8 for the ratio of the range of the thallium
recoils relative to those of the bismuth and lead recoils,

2 J, Knipp and E. Teller, Phys. Rev. 59, 659 (1941).
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from their velocity ratio of about 2.5. The agreement
between the expected and observed values for the ratio
of the ranges lends support to the model advanced for
the production of the thallium nuclides of mass number
~200, in which an alpha particle and neutrons are
emitted. In earlier work on the photoactivation of
bismuth with 86 Mev bremsstrahlung,® the yield of
directly formed TI** was higher than that of directly
formed Pb?.. The formation of Pb2" by photons in-
volves the emission of one proton and neutrons, and
that of TI®! two protons, or an alpha particle, and
neutrons. The fact that the yield of T1* is higher than
the yield of Pb*! probably means thatin this case, too, the
TE% nuclide formation involves alpha-particle emission.
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with Professor R. B. Duffield on the Cosmotron results,
the theoretical assistance of Dr. Peter Fong on some of
the basic equations, the help and cooperation of Dr.
Gerhart Friedlander and members of the Brookhaven
nuclear chemistry group ‘in the performance of the
Cosmotron experiments, and the cooperation of the
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Chicago synchrocyclotron and the Brookhaven Cosmo-
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Calculations based on a statistical model have yielded results
concerning the relative probabilities for the different multiplicities
and charge distribution of mesons produced in nucleon-nucleon
collisions. In deviating from a pure statistical model the important
effects of final state interactions and various selection rules have
been included, using results of meson-nucleon scattering experi-
ments. Notably in the results the suppression of some one-meson
final states by consideration of the Pauli principle and conser-
vation of angular momentum and parity, along with the enhance-
ment of two-meson states due to resonance effects, have brought
about results which are in closer agreement with experiment
than predictions of a pure statistical nature. Account was taken
of the final state interactions by considering separately the
nucleon-nucleon and meson-nucleon interactions, a separation
made plausible by consideration of the small amount of kinetic
energy taken away by the more massive particles. Meson-meson

I. INTRODUCTION

IN Fermi’s!? statistical theory of multiple meson
production, the relative probabilities for alternative

* Supported in part by the Office of Naval Research and a
grant from the National Science Foundation.

L E. Fermi, Progr. Theoret. Phys. (Japan) 5, 570 (1950).

2 E. Fermi, Phys. Rev. 92, 452 (1953) 93, 1434 (1954).

interactions were neglected. The nucleon-nucleon interaction was
taken care of by introducing in the statistical weight a factor
which is the square of the wave function for the scattering of two
nucleons evaluated at the origin of their interaction. The meson-
nucleon final state scattering was treated by the method discussed
by Chew, modified for the case of a meson scattering off two
stationary and superposed nucleons. Multiplicities up to two
mesons were considered. On comparing with experimental results,
at 1.7-Bev bombarding energy of neutrons on protons the ratio
of the probability of occurrence of the final states (np+—):
(pp—0):(pp—) is calculated to be 3.0:1.0:0.9, while experiment
gives 3.3:1:0.8. The ratio of the total probability for double
meson production to that for single meson production at this
energy is 1.2, while a modified result of observations gives 1.4.
Results on proton-proton collisions do not yield good agreement
with present observations.

processes initiated by a nucleon-nucleon collision de-
pend primarily upon the volume in phase space avail-
able to each final state when the energy of the colliding
nucleons is high. The dependence upon the dynamics
involved is argued to be diminishingly small under the
assumption that all possible final states are equally
excited due to the strong interactions involved. Thus,
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with the inclusion of necessary restrictions and refine-
ments (conservation of energy, momentum and charge;
charge independence?; physical indistinguishability of
particles??; etc.), the relative probabilities of the com-
peting final states are obtained by calculating the
fraction of phase space accessible to them in the collision
region when equilibrium is established. However, even
if such an equilibrium is achieved, it alone cannot be
expected to determine the weighting of the final states.
One considers that in the collision region very strong
interactions rapidly bring about equilibrium, but as the
particles leave this volume the less strong but longer
range interactions become predominant. The final state
particles emerge not into plane wave states of free
particles, but into the perturbed states of their mutual
interaction. Familiar in low-energy phenomena, (beta
decay, near-threshold meson production, etc.), these
final-state interaction effects are known to be appreci-
able. For example,*® the final-state nucleon-nucleon
interaction increases single-meson production by 2 or 3
orders of magnitude over what is predicted neglecting
this effect.

Recent experimental investigations with the Brook-
haven” Cosmotron have made it possible to compare
the statistical theory with experiment. At Cosmotron
energies single and double meson production were ob-
served in collisions between Cosmotron-produced neu-
trons and protons in a hydrogen-filled diffusion cloud
chamber. The observed ratio of the probability for
double meson production to that for single meson
production is more than 20 times greater than that
predicted by the statistical model. In view of this
seemingly poor agreement of the statistical theory with
what is observed, it has been thought worth while to
investigate the above-mentioned refinement due to the
effects of final-state interactions. Of the final state
interactions in this type of process which can be ex-
pected to be appreciable, namely, the nucleon-nucleon,
meson-nucleon, and meson-meson interactions, the first
two, at least, can easily be seen to bring about cor-
rections to the statistical theory in the desired direction
for agreement with experiment. That is, the nucleon-

nucleon interaction favors the higher multiplicities of

mesons produced, since for higher multiplicities the
nucleons are left with less kinetic energy. Moreover,
the meson-nucleon interaction with its resonance can
presumably enhance double meson production at the ex-
pense of triple as well as single production in the proper
energy region (around an energy such that the two
mesons can both rescatter at resonance off the nu-
cleons, while if one or three mesons are produced the
most probable energy each will take off is beyond or

3C. N. Yang and R. Christian, Brookhaven National Labora-
tory Report (unpublished). See also footnote 22, reference 7.

4K. Brueckner, Phys. Rev. 82, 598 (1951).

§ K. M. Watson and K. A. Brueckner, Phys. Rev. 83, 1 (1951).

6 Kenneth M. Watson, Phys. Rev. 88, 1163 (1952).

7 Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 95,
1026 (1954).
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below the resonance region). This latter effect should
occur roughly around 1.5 Bev of laboratory energy,
near the mean energy of the Brookhaven experiments.”

In what follows, the production of mesons at Cosmo-
tron energies will be treated by-a statistical theory
with the added refinement of the final-state effects of
nucleon-nucleon and meson-nucleon interactions. The
further refinement due to the requirements of the Pauli
principle and of angular momentum and parity con-
siderations will be included in obtaining the relative
probabilities of occurrence of the various possible
charge states of nucleons and mesons in nucleon-nucleon
encounters.

II. NUCLEON-NUCLEON FINAL STATE
INTERACTION

As the first step, the more familiar interaction of the
nucleons in the final state will be considered, neglecting
the effect of the mesons. This separation and inde-
pendent treatment of the involved interactions of the
final-state particles into specific interactions between
the different types of particles is only approximate.
However, it finds some support in the relative duration
of, say, the nucleon-nucleon and meson-nucleon inter-
actions in the final state. Even after the mesons have
left the region of their production, and their interactions
have ceased to be effective, the more slowly moving
nucleons will still be moving well within the range of
their mutual interaction. This then may be considered
as the case at hand.

From the assumption of statistical equilibrium in
the region of primary interaction, the matrix element
connecting the initial and final states (according to
the statistical theory) when N particles appear in the
final state is just!-8

(f]3¢|4) = const.(Q/V)¥e=3Cp, 1)

where the constant is independent of the final state,
V is the normalization volume for the final state free
particle wave functions, and Q is the volume of collision
which initially contains the N-particle virtual states.
From the transition rate

w~|(f3e]d) |%or, 2

the relative probability that » pions will emerge from
a nucleon-nucleon high-energy interaction is

Sﬂo=((;r)3)"“ [ favaw....

P?
Xdkna(E-———wr— ce —-wn), 3)
M

where the nucleons are treated nonrelativistically and
P is their relative momentum, w; is the energy of the
ith meson,? E is the total available energy, and where

8 Richard H. Milburn, Revs. Modern Phys. 27, 1 (1955).
9 We use #=c=p (the pion mass)=1.
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the number of dynamically independent particles is
(n+1) instead of (#+2) due to the conservation of
linear momentum.

If instead of a Born approximation we use the actual
wave function of the final nucleons, (r|¢), where r is
the relative nucleon coordinate, then the transition
matrix element (using a momentum representation) is'

(|5 P = f @|P)(P|5c|PYdP/(2x), (&)

where only the relative nucleon momentum labels the
states, the meson coordinates being omitted. From the
Fermi assumption, Eq. (1), (P|5¢|P’) is independent
of the final state variables and can be removed from
the integral. The remaining integration yields just the
nucleon wave function evaluated at the origin of the
relative coordinate, (r=0|¢)=y o so that

W|3e|P)=3Cr¢ o). (5)

Hence, the weighting of a final state containing #
pions becomes

P
Xdkné(E———wl—— e —w,,). (6)
M

It will suffice for our calculations to use square-well
wave functions derived from a potential of depth V,
and range 7o (neglecting spin dependence). In the low
energy approximation! (with only S-waves contribut-
ing) this can easily be seen to give

(e19) [1 4V, ]% sinKr
rly)=|14+
(do+ boEN) (EN+ E) K?’

where ao=[2+4+ (Me)tro 2, bo=Mrg, and the normal-
ization is to unit amplitude in the asymptotic region.
Here e is the deuteron binding energy, M is the nucleon
mass, and K=[M (V,+Ey)]:. Admitting the bound
state solution as well, for the case of a neutron-proton
final state, the deuteron wave function must also be
considered.”? For a square well this is"

B ]* sinBr
27 (14-aro) Br

where =M (Vo—e) ] and a= (Me)?.
Since such a nonsingular potential may underestimate

, r<rg (7)

(rl",’D):[ y <ty (8)

10 See appendix of reference 4.

1 H, A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 82
(1936); see page 119.

2 Since the formation of the bound state places another re-
striction on the momenta, the weighting factor in this case is

Su(D)= (2@3(%)"“;,;,,(0)]2 oo [y
Xdknd (E—w1— - - - —wn).
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Fic. 1. Probability near threshold of multiple meson production
with nucleon-nucleon interaction in the final state, relative to
the statistical result. The curves are labeled by the multiplicity
of the mesons produced.

the magnitude of the wave functions at small sepa-
rations, the depth of the well was somewhat arbitrarily
adjusted. Instead of using those square well parameters
which give a best fit to experiment, a depth V, was
used (for 7o=1.09) which matched the square-well wave
function for the deuteron, Eq. (8), with the Hulthén
wave function®® at r=0. Such a depth is V(,=0.78.

The computation of the weights, Eq. (6), was carried
out with appropriate approximations for the low- and
high-energy regions, while retaining the relativistic
inclusion of the meson rest mass in all cases. That is,
in the near-threshold region in terms of the meson
kinetic energies, T;=w;—1, the condition that the
total energy w; will be slowly varying was used in
removing some average value for it from the inte-
grations. Thus,

5oz é:?sf Pras@tor [ ol

X (TO_ Ti—--- "‘Tn)*(Tl' . Tn)i‘d]‘l . .dTn, (9)

where T is the total available kinetic energy, and the
assumption has been made that momentum conser-
vation need be applied strictly only to the nucleons.
At higher energies, where k/w is slowly varying, the
integrals were again simplified to

Sn'°‘=(ét§3)n+lﬂ—?<é>;f"'fl‘/f«»]z

X(E—wi— -+ - —wa)widw: « - 0:2dwa.  (10)
18 See, for example, G. F. Chew, Phys. Rev. 84, 710 (1951).
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Fi1c. 2. Probability at energies well above threshold of multiple
meson production with nucleon-nucleon interaction in the final
state, relative to the statistical result. The curves are labeled by
the multiplicity of mesons produced.

The weights for deuteron formation were similarly
handled.

As an indication of the effect of the use of the actual
nucleon wave functions, these weights were calculated
relative to the statistical result (i.e., where [¢ (o |2=1)
and are shown in Figs. 1 and 2 for the two energy
regions, Egs. (10) and (11), as a function of the kinetic
energy available to the mesons and their multiplicity.
The corresponding ratios for the case of deuteron
formation are shown in Figs. 3 and 4. In more restrictive
energy regions these effects can be seen from general
formulas for the production of # pions. For instance,
near threshold but at energies high enough that ¢, the
deuteron binding energy, can be neglected compared
to the available kinetic energy, we have

et M% [w (@4 1)FrantD T @rtD) /2

3n+1
2"(3n+1)P(~—2-——

=0 ((21r)3

Tk

3n+1)vV,
X[Hw_], (11)

0

where y~4/a,=0.73 at low nucleon energies [see Eq.
(7)7]. The last factor compared to unity indicates the
enhancement of the cross section near threshold due to
the nucleon-nucleon interaction as a function of the
meson multiplicity and available kinetic energy. From
this it is seen that at, say, 80 Mev above threshold for
two-meson production in the center-of-mass system
(which is 260 Mev above threshold for the production
of a single meson), the cross section is eight times that
obtained from the pure phase-space result, while single
production is enhanced by a factor of 2.2. However,
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as indicated by Fig. 2 for the high-energy region and by
47Q \ vH ME pin1T (6nD 2
(27r)3) 2 6nt1
"5)
2
(6n+1)vVo
X[ 14+— ] (12)

0

Snrel =

#—0

for the extreme relativistic region, the weights for the
lower multiplicities and high meson energies are en-
hanced by about the same amount by the nucleon-
nucleon final state interaction, and the enhancement
becomes negligible in the limit where the meson mass
can be neglected. Hence, in the region of Cosmotron
energies, although the enhancement is still considerable,
the relative probability of single to double meson
production is not much changed from the pure phase
space result by the effect of the unbound final state
interaction of the nucleons. Therefore, this effect alone
cannot be expected to bring the statistical result into
better agreement with the experimental observations.
The effect of the formation of deuterons is even more
inappreciable at Cosmotron energies. As shown in Figs.
3 and 4, although it is quite important near threshold,*
this effect falls off even more rapidly than the effect of
the unbound final state interaction. Hence, in what
follows deuteron formation will not be considered.

III. MESON-NUCLEON FINAL STATE INTERACTION
A. Single Meson Production

In order to take account of the meson-nucleon final
state interaction in the spirit of this calculation, a
solution to the problem will be found in terms of the

30

20|

Fic. 3. Probability near threshold of multiple meson pro-
duction with deuteron formation, relative to the statistical result
neglecting neutron-proton interaction. The curves are labeled
by multiplicity of mesons produced.

14 K. A. Brueckner and J. S. Kovacs, Phys. Rev. 94, 726 (1954).
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Mdller'® wave matrix into which are built the features
of the Fermi statistical model for the actual production
of the mesons. For example, that part of the wave
matrix which corresponds to the production of a single
meson in a nucleon-nucleon collision is!®
1
Q=0,-I', (13)
a
where H' is the interaction which produces the meson,
a=E—H+i, n being an infinitesimal parameter
specifying the contour of integration for outgoing
waves, Ho is the Hamiltonian for the noninteracting
fields, and €, is the wave matrix which describes the
scattering of the final state particles and satisfies the
Lippmann-Schwinger!” equation
1
Q,=14-0%,. (14)
a
Identifying H’ with the phenomenological Fermi matrix
element corrected by using the actual wave functions

for the final state nucleons, and with a factor which
ensures meson production in P-states, we have

H'=Vp(A k/w), (15)

where Vr is the matrix element given by Eq. (5). Here
A-k/w;, will be of order unity at high energies if we
make A an unspecified unit vector which may depend
on spins, etc., but which we shall leave arbitrary and
average over classically when necessary, in keeping
with the statistical method. From Egs. (13), (14), and
(15) we get in momentum representation

A-q

E—wq—f—in[ ! Wq

+f & amo—— v 2K g
¢ F )
(2m)? 1 jE—wk—}—ir] wp

where P’ and P are the initial and final relative nucleon
momenta, ¢ is defined by

(¢,P|Q[P)=

1=0Q;, 17)
and satisfies the integral equation!®
1
t=0+0. (18)
a

Thus, when ¢ is determined, the transition matrix 7'
for the whole process (which can be seen to be the
quantity enclosed in the { } in Eq. (16)) is also deter-
mined.
To the lowest order for linear coupling, the potential
constructed for the scattering!® includes terms which
1% C. Mgller, Kgl. Danske. Videnskab. Selskab, Mat.-fys.
Medd. 23, No. 1 (1945).
(119‘23{). A. Brueckner and K. M. Watson, Phys. Rev. 90, 699

17 B, Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
18 G, F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
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Fic. 4. Probability well above threshold of multiple meson
production with deuteron formation, relative to the statistical
result neglecting neutron-proton interaction. The curves are
labeled by multiplicity of mesons produced.

express the nuclear force interaction between the
nucleons, the absorption of the created meson by one
nucleon and emission by the other, as well as the
scattering of the meson by the individual nucleons.
We shall deal with just the last of these!® and use as
the potential for the scattering of the produced meson
by the two fixed and superposed nucleons

(k|0 K) =—T—

1
a1 k‘h' Uk*——ﬂl'k,‘!l‘ Ulc’
2 WrWr E

1
+05- ko Uk*?z'k'W' U

+0‘1 . k'n . Uk»——**—(n . k‘h . Uk*
E—wk—wkr

1
+0‘2 . kl‘cz . Uk"——ﬂz . k“72 ‘ Uk* ] ) (19)

E—wp—wy

where the interaction used is the pseudovector coupling
term for the charge-independent pseudoscalar theory.
Here the nucleons are both assumed to be at the origin
of our coordinate system, fis the pseudovector coupling
constant, ¢; and «; are the spin and isotopic spin
operators corresponding to the ith nucleon, and U,
and Ug* are vectors in charge space which serve as
annihilation and creation operators for the meson.

In order to simplify the calculations, we shall express
the problem in terms of eigenstates of angular momen-
tum and isotopic spin. If we assume that the nucleons
come off in S-states while the meson is produced in a
P-state relative to either of these, then the possible
states of angular momentum are labeled by J=0, 1,
and 2 when the nucleons are in the triplet state, and

¥ Compare, for example, with Aitken et al., Phys. Rev. 93,
1349 (1954).
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J=1 for the singlet state. Similarly, the total isotopic
spin can be I=0, 1, and 2 for the nucleons in the
isotopic spin triplet state, and /=1 for the singlet.
In this representation the potential can be written in
the form

°U= 2(B'—A){Ea—2E1‘-E2'—2F1—F2+F3}
+2(4+4B){(Es— E;—2E;)(F3—F;—2Fy)
+2EsFs+1}  (20)

where P 1
AR L (21a)
6(wwor)t E
4 2k 1
Pl , (21b)

B 6(wkwkf)% E—-wk——wk:

E,, E;, E; and E, are projection operators onto the
four states of angular momentum, and

E5= (01—02) 1/2\/2—, (22)

with the F; the analogs of these for the isotopic spin
states. The projection operators,?

(]=0, S= 1): E1='1‘12‘{—3—0'1'0'2

+L(orte2) 1T}, (232)
(]= 1, S= 1) . E2=%{6+20‘1‘0‘2'—2(0‘1+0'2) l
—[(o1+e2)- 1T}, (23b)

(J=2,S=1): E;=(1/24){6+ 261 02+ 6(a:1}02) 1
+L(o1t02)- 1T},  (230)
(J=1,5=0): E;=1{1—0;-03}, (23d)

can be easily seen to have the usual properties, while
E; operating on the states s, s has the properties

Ea‘/’z. 1M= Es‘/’o, = 0;
Eﬁ‘l’l, 1M = ;*ﬁl. oMa

Eg)r, o= —¥1 M.
Here
K1) =—— ™ (k] 1[key=— k ko
=——=X— an 0)=——"—
(k] ]ko) dr kb kg 4 N
Thus U is not diagonal in this representation, although
the off-diagonal elements arise merely from the mixing
of the two J=1 states as well as from the mixing of
the corresponding isotopic spin states. Diagonalization
of these submatrices diagonalizes the whole potential
and reduces the problem to one of nonmixing channels
for which the integral equations, Eq. (18), depend
only upon the magnitude of thé momentum. In this
form the equations readily lend themselves to an
approximate solution by one of Schwinger’s variational
principles? according to which

2 With corresponding relations for the isotopic spin states.

21, Schwinger, ‘“Lectures on Nuclear Physics,” Harvard
University, 1947 (unpublished). See also, for example, G. F.
Chew, Phys. Rev. 93, 341 (1954).
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TaBLE I. Elements of diagonalized potential V. States are
labeled by the total angular momentum J, total spin of the
nucleons S (for cases where J=1, ¢ and b indicate symmetric
and antisymmetric combinations, respectively, of states of S=1
and 0), and similarly defined labels for isotopic spin quantities.
4 and B are defined in Eq. (21).

i

J S I T (Z|0]9)

2 1 2 1 8B

2 1 1 a 2B

2 1 1 b 2B

2 1 0 1 —4B

1 a 2 1 2B

1 a 1 a (17/2)A+(9/2)B
1 a 1 b (1/2)4— (7/2)B
1 a 0 1 94—B

1 b 2 1 2B

1 b 1 a (1/2)A—(7/2)B
1 b 1 b (17/2)4+(9/2)B
1 b 0 1 94—B

0 1 2 1 —4B

0 1 1 a 94—B

0 1 1 b 94—B

0 1 0 1 1844-2B

(%] ta| ko)
(k] Va] o)
a 1 (|0 B) (B |Ou| BB dE
1— (k| ] ko) f %)
(2m)? E—wy
(24)

where the U, are listed in Table 1.2 With the same
arguments by which the scattering in only the 3, 3 state
is seen to be enhanced in meson-nucleon scattering, 2
it can be seen upon examination of the entries in Table
I that only for those potentials which are equal to 8B
or 2B can there be enhancement in the scattering of a
meson off two nucleons. Of these, all but two are ruled
out by conservation of isotopic spin (I can be only 1
or 0 for an initial state consisting of two nucleons).
For the remaining two channels, with the labels
o/=(J,S; 1,“T”)=(2,1;1,b) and o’ = (2,1; 1,a), we have

A fhgho

(kg |ta|ko)=— - , (25)
3wro(Ewro) [ 1—1 (E wso) ]
where
fz “max wro(wp?— 1)%dwk'
I(Ewko) =——f ,  (26)
62 1 wkf(E—wk') (E—wkf—-wko)

using a cutoff, and where the final nucleon energies
have been neglected. This differs from the meson-single
nucleon scattering operator mainly in that off-the-
energy-shell scatterings are included. The meson can
be produced at any energy wyo and scatter back on the
energy shell.

% The complete set of projection operators for the new states
after diagonalization can easily be seen to be Ey, Fs, E,
=3(Ey+Es— Es), and Ey=%(E,+E4+Es) where the new states
brought about by the transformation are y,=1/VZ(l2+4),
¥5=1/V2(s—y=) and where ¥» and y4 correspond to (J,S)=(1,1)
and (1,0) respectively.

% Goeffrey F. Chew, Phys. Rev. 89, 591 (1953).
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[ Re Q(E)

F1c. 5. The real part of the function Q(E) defined in Eq. (31).

A careful examination of #,» shows that there can
indeed be enhancement in the scattering in these states
in the energy range under consideration. That is, when
the coupling constant and cut-off energy are chosen to
agree with meson-single nucleon scattering results, the
principal value of the integral, I (E,wxo), is close to unity
near E=2 for the off-the-energy-shell scatterings as well
as for those on. This makes the scattering in this energy
range important for only these two states, justifying
the neglect of the contributions of the other states in
which the scattering is suppressed. The results obtained
in this manner are not expected to be too bad consider-
ing the approximations used. Particularly in the region
near resonance, where the fit was made to meson-
nucleon scattering data, this semiphenomenological
treatment should reproduce the main features of the
final state scattering.

The transition matrix which for the complete process
is ‘

(¢,P|T[P)
A-q dk  (q]tlk) A-ky
_ {“ f il
(27)* (E—witin) ws
can now be calculated if ¢ is written in the form
where A is determined by
(a]t|k)=2a(qlta] k) (EF)a.

Then carrying out the angular part of the integral, T is

(27)

Wq

EdRA-A
wi(E—wip+in)

2 A rough estimate of the parameters was obtained by requiring
the phase shift for the scattering in (3,%) state to pass through
90° at E=2 (see also reference 23). For a chosen cutoff wmax=06,
f2/4r=0.16 was found.

A- 1
(aP|T] P')={——q+

}VF. (28)
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With only the resonant terms considered so that ¢ is?

4 fqk (Fo++F4)Es

tk)=— 29
(aflk) 3wi(wiwe) 1= 1 (wi, E)] )
Eq. (28) becomes
A-q 2f%4Q(E)’E;(Fy+F,
O ek Skl VA
where ) ( rwa)%d
(E) j; wk%(E—wk)(l I) (31)

and 'Es is E; with k/k replaced by A. The real and
imaginary parts of the function Q(E) are plotted in
Figs. 5 and 6 with wmax=06. From these it is seen that
in the region up E~ 3 the second term gives its greatest
contribution to 7.

In order to evaluate the weights for the different
charge distributions of the final state particles, some
assumption will have to be made about the way the
creation operators appear in the phenomenological
matrix element V. Let us simply assume that there is
some operator O appended to Vr which creates the
meson while keeping constant the total isotopic spin I
and its g-component /5. For example, to create mesons
into the isotopic L=1 state O should be of the form
B-U.*, where B is some vector in charge space which,
except for the above requirements, would be left
unspecified in accordance with the Fermi statistical
method. We can then write the transition matrix as

(o.P|T[P)=[x—YF]o, (32)
where for brevity we have set
(’X:‘—‘-VF'A'(]/COQ, F=F2+F4, (33&)
e 21 4Q(E)
q
=— 'EsV . (33b)
IT  w,
¥ \imae)
-6}t
-24} _
-32f
I
E

F16. 6. The imaginary part of the function Q(E)
defined in Eq. (31).
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TaBLE II. Matrix elements of T for one-meson production
allowed by hypothesis of charge independence including final
state meson-nucleon scattering contribution. Initial and final
states are labeled according to isotopic spin notation where £+19
corresponds to a state containing 2 nucleons in the isotopic
triplet state and a neutral meson, ¢* being the state consisting
of two protons, etc. O, O, On are the three different matrix
elements of the production operator allowed by charge inde-
pendence.® The first subscript refers to the isotopic spin of the
initial state while the second refers to the isotopic spin of the
final nucleons. & and Y are defined in Eq. (33).

i f (fIT9)

it t+1e (X— ‘y)(‘.)u/\/?
* 1+ —(X—=Y)Ou/V2
a8 si+ (X—Y)O10

s i1 XO01/V3

s 1+ XO00/V3

s s1o 0

s 10 — X00/V3

p - (- Y)Ou/ V2
2 1+ —(X—Y)Oun/V2
o 10 (30— )01

* 010 0

The matrix elements of T between the various initial
and final charge states are then given by

(N Tl)=x(flol)—Y Xa(f/IF[IDAI|0[d). (34)

The elements (f| F|II) are most naturally evaluated by
making use of the projection operator properties of F
and expressing | f) and |II) in terms of angular mo-
mentum eigenfunctions in charge space for a meson
and two nucleons, [I,73,T). The evaluation of these
matrix elements of 7 is then straightforward and the
results are shown in Table II. These are in agreement
with the general relations obtained by Brueckner and
Watson in their analysis of pion production using the
hypothesis of charge independence. [See Eq. (17) of
reference 5.

With no meson-nucleon interaction in the final state,
~ Y=0, these matrix elements should correspond to those
of Fermi? That is (including the factor giving the
nucleon-nucleon final state interaction), |7'|? should
equal ||? times the weights listed in his Tables II
and III of reference 2. This will be so if the square of
all of the matrix elements of © between eigenstates of
isotopic spin are assumed to be equal. Then, since it is
relative weights we are after, we can disregard these
matrix elements of O. Thus fitting the matrix elements
of our unspecified operator © to give the Fermi result
in the limit of no meson-nucleon final state interaction,
we see that the matrix elements of our transition
operator are given by the Fermi matrix element plus
the correction term for those final states in which we
get resonance scattering—all multiplied by the factor
obtained from the assumption of charge independence.

On the basis of the Pauli principle and from angular
momentum and parity considerations,® all of these
transitions are not allowed if we assume the final
nucleons to be in S-states and the meson in P-states.
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For instance, for the transition +—#1* conservation
of parity allows only those transitions in which the
initial state is symmetric in space, and, since the initial
state consists of two protons, antisymmetric in spin.
Since the final state is symmetric in isotopic spin, it
must be antisymmetric in spin. This cannot give even
J-values, hence this transition is forbidden. Table ITI
lists for those transitions allowed by charge indepen-
dence the transitions allowed by these latter consider-
ations. Column 3 lists the matrix elements which result
from all of these requirements combined.

B. Production of Two Mesons

Considering two-meson production, we shall again
treat the primary interaction by means of the statistical
model, and assume that the final state interaction with
the nucleons can be considered independently for each
meson. That is, we shall neglect the meson-meson
interaction. Then we shall again take as the wave
matrix

1
Q=0-H, (35)
a
where H' creates the two mesons
Arrky Ak,
H = [ + ]V P (36)
Wk1 Wk

and Q, accounts for the final state scattering of the
mesons by the nucleons

1 1
Qo= 14+—t14~ts, (37
e a
where
(91,92) 11| ks ko) = (27)%6(q2—ko) (a1 ] ¢ ky),  (38a)
. (a1,92| 2| ki ko) = (27)% (q1— k1) (q2| ] k2),  (38b)
an
(q1,q2] 1]k, ko) = (2m)% (q1—k1)6(q2—ks).  (38c)

Then in a manner similar to the treatment of one-meson

TasLE III. Matrix elements of T for single meson production
allowed by charge independence, Pauli principle, conservation of
parity, and conservation of angular momentum assuming final
nucleons in S-states and meson in P-states.

Transitions allowed Transitions of nucleon states

by charge allowed by Pauli principle, Matrix
independence conservation of spin and elements
hypothesis angular momentum of T
tt—t10 Forbidden
tr—p1t Forbidden e
tt—s1t 1D,—38, X— ‘y
150351 &L
s—it1 351, 3D1—1So 1/\@&:
e 38y, 3D —1So 1/¥v3X
s—1010 351, 3D1_>lSo 1/\/3-3:
P—tt1— Forbidden e
P—t1t Forbidden s
510 1Dy—3S51 L—-Y
156351 x*
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TasiE IV. Elements of transition matrix T for the production of two mesons when initial state is ¢*. For the various final states
the coefficients of the matrix elements of the unspecified production operator, (7,I'| ©'|*), are listed. T and I’ are the isotopic spins
of the final state nucleons and of the combination of the two nucleons and the first meson, respectively. I and I; for the final state
are suppressed in denoting the states since they are determined by the initial state.

f (f1711,2) F1T11,1) (17110 f1710,1)

! ’ ’ ’

Lol 0 0 0 *‘5(33 = Y'=Y)
! ! ’ ’

s1+y? 0 0 0 5(sx —Yy'— YY)

bty —L[6fr'— (5/2)Y] 1Y —I—‘HZ' 0

/60 03
1 1
20 Pt P :/—66?13' —3(X'—Yy) %EX:' 0
1 , , o  iacs 1 ,
1,010 —%[33 = (5/2)Y'] A=Y —3Ys) _2—\5% 0
+ ! ’ ’ 1 ’ r__ 1 ’ ! 7 __1 ’
1ty %Ex +(5/2)Y.'] (X' =Y —3Yy) v_g(m -3Y) 0
#hrld Tt —$(X'=Yy) 0 0
1 , , Lo 1 Lo,
#1,01,5* %[ZSXZ —(5/2)Y] 1Y "FS(SI —-3Yy) 0

production we get

(01,92, P| T|P) = {X'— Y,'F/'— Y 'F'} o', (39)
where

Q3 A q1 A, q2

x'= (—) \//(o)[ + ], (40a)
V Wql Wq2
2\  2fqQ(E—we)

Yi'= (—) lll(or*j“—‘““i'Ea(%), (40b)
14 Imwqid

and where ¢’ refers to the final state scattering of the
first meson only. O’ is the operator which creates two
mesons and satisfies the requirements of charge inde-
pendence.

The matrix elements of 7" between the appropriate
initial and final charge states for the production of two
mesons are obtained in a manner similar to Eq. (34)
for single production,

(.f] T[”’) =I'ZT(f] TII,Is,T,I’) (I’I:‘)’T)I/l Olli)) (41)

where

(f] TII’I37T’I,)= sx:’(fl III)I37TaI,)
—‘yll(lellllrIﬁ‘:T)I’)_‘y2’(le2,lI:I3’T’I,))

and where, in our approximation, the matrix elements

(42)

of Fi’ and F, are the same as those of F. The states
|1,I5,T,I") are the isotopic spin eigenfunctions corre-
sponding to the four states??® /=1 and the two states
I=0, where I and I; are the isotopic spin and its third
component for the final state and T and I’ are the
isotopic spins of the final state nucleons, and of the
combination of the final nucleons and the meson
labeled 1 respectively. For the different initial states,
i+, 0, and s, the matrix elements of 7 which enter in
are tabulated in Tables IV, V, and VI respectively.
Expressing the transition matrix elements in this
manner allows us again to take care of the unspecified
creation operator by means of the Fermi assumption of
statistical equilibrium in the volume of collision. This
means that we can set the squares of all of the matrix
elements of O between the different eigenstates of
isotopic spin equal to unity. Thus, entering into the
determination of the cross sections will be?6

(GBI NGRS AR AT

Again in the limit of no final state interaction and
zero mass for the meson, this leads to the Fermi result.2

% E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1953), p. 76.

26 All transitions listed in Tables IV, V, and VI are allowed by
angular momentum and parity considerations.
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TasLe V. Elements of transition matrix 7" for the production of two mesons when initial state is #0. For the various final states the
coefficients of the matrix elements of the unspecified production operator, (I',1’|©’|#), are listed. T and I’ are the isotopic spins of
the final state nucleons and of the combination of the two nucleons and the first meson, respectively. I and I; for the final state are
suppressed in denoting the states since they are determined by the initial state.

f f1711.2) f1711,0) (f1711,0 (f1710,1)

1 1

L PR —:/_66[2 X'~ (5/2)Y~"] -1y \75(%'—%‘92') 0
K]

i_1]°12+ %%’ %(ﬂ:’—- (yll) 0 0

1 1
#1715+ ‘\/“86[3&7‘“ (5/2)Y2"] —=3(X'—= Y ~3Yy) 'Z—\E‘yz' 0

1 1
01,41, *\76—6[3%'— (5/2)Y:"] —3(X'—-Y/'—-3Y.) ;\E(yz' 0

1
101,010 ~:/—6~6$£’ 0 —FSC' 0
3
51,010 0 0 0 0
1
sty 0 0 0 = Y= )
1,7 1.% 0 0 0 ! (¢ ")
s1;7 12 — r__ r__ 5
7 Y=y

11,01~ :/“663:' HX'—-Y 0 0

1 1
AN P v —%[fo'— (5/2)Y:"] -1y '\/}(fx"%cyf) 0

IV. THE RELATIVE PROBABILITIES FOR THE
POSSIBLE EVENTS

To obtain the relative probabilities for the various
processes we need to evaluate

4 spur(T1E,TE;),

where E; and E; are the nucleon spin projection
operators onto the initial and final states. In order to
evaluate these spurs by the usual techniques we will
need to make some assumption about the dependence
of the arbitrary unit vector A upon the spins. However,
let us neglect the dependence of the cross sections upon
the relative spin orientations of the nucleons in the
initial and final states and leave A arbitrary. Then we
have '

dSu=4(spur| T[*npr, (44)

where the spur is evaluated independently for each
nucleon and the indicated average is over the values of
A in the manner

(A-BA-C),=1B-C.

Using the allowed matrix elements listed in Table III
for single production and in Tables IV, V, and VI for

double production, the relative probabilities for the
processes of interest are easily obtained with the appli-
cation of Eq. (44) and with the appropriate average
and sum over the initial and final states which con-
tribute. For example, the relative probability for the
process #n+p—n-+p-+=° is obtained by using for | 7|2
the sum of the squares of the matrix elements for which
the final states are £1° and s1° for a given initial state,
and then averaging over the contributions from the
initial states # and s. For processes resulting in the
production of two mesons an additional factor of % is
included in the relative weights to account for the
symmetrization of the two meson final states. The
relations obtained for the relative weights for the
possible one- and two-meson processes are listed for
convenience in Table VII with the notation defined in
the Appendix.

As a function of the laboratory bombarding energy
the relative probabilities”” for the different events are

27 For the parameter Q, the volume in which the primary
interaction takes place, we use Fermi’s choice of a Lorentz
contracted sphere with the meson Compton wavelength as its
radius, Q= (4x/3)2M / (E+2M).
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plotted in Figs. 7, 8, and 9 normalized to

S S, /1= 100. (45)
fin

Multiplicities higher than two are neglected for the
energy range under consideration, while for the case
where no mesons are produced we use for the relative
weight

So= Nl 1+ZK2)E7(4+——) (2+——) (46)

where adjustment has been made for the common
factors omitted in S; and S.. The ratio of the total
probability for all double meson production to that for
all single meson production is also of interest and is
shown in Fig. 10 as a function of the bombarding
energy for n-p and p-p initiated events. Finally, as an
indication of the effect of the final state interactions
upon the meson energies, the energy distribution for

TABLE VI. Elements of transition matrix 7" for the production
of two mesons when initial state is s. For the various final states
the coefficients of the matrix elements of the unspecified production
operator, (T,I’|0|s), are listed. T and I’ are the isotopic spins
of the final state nucleons and of the combination of the two
nucleons and the first meson, respectively. I and I3 for the final
state are suppressed in denoting the states.

(F1711,1) (F1711,0)

f X (X' — Yy —Ys'):
i_11+120 1/\/6 0
t“11°12+ —‘1/'\/6 0
P15+ 1/A/6 0
t011+12— —1/\/6 0
01,0150 0 0
51,0190 0 —1/V3
sitly— 0 1/v3
s 1.t 0 1/v3
t+11012— 1/\/6 0
e RER) —1//6 0

one of the mesons is shown in Fig. 11 for the process
n+p—n+p+at+a— at a total available center-of-
mass energy of E=6. Comparing this with the distri-
bution obtained from just phase space considerations
(which is shown normalized to the same total proba-
bility), it is seen that the final state interactions spread
out the distribution because of the tendency for the
two mesons to come off near the resonance energy.
Moreover, at high total energies the distribution is
thereby shifted toward lower energies with respect to
the phase space result.

V. CONCLUSIONS

A comparison with experiment of the calculated
probabilities for the various events shows better agree-
ment, in general, than given by the pure statistical
model. In particular, as indicated in Fig. 9, the distri-
bution of the three-pronged events initiated by #n-p
collisions is calculated to be (np+—): (pp—0): (pp—
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08 [X¢] 1.2 14 1.6 18 20
BOMBARDING ENERGY (BEV)

Fic. 7. The relative probability for the occurrence of p-p

initiated two- and four-pronged events as a function of the

bombarding energy. Curves are labeled by the charges of the
final particles.

=3.0:1.0:0.9 at a bombarding energy of 1.7 Bev. The
analysis of events of this type by Fowler ef al.” at
Brookhaven gives for these ratios 3.3:1:0.8 for processes
initiated by bombarding neutrons in the energy range
of 1-2 Bev with a median energy ~1.7 Bev. The
improved agreement over the statistical result® (~3.3:
1:20.5) can be attributed to the resonance enhancement
of the two-meson states discussed above, and to the
suppression of one of the states (pp—) by considerations
of conservation of angular momentum and parity (see
Table IV). Although experimentally indications are

TaBrLE VII. Formulas giving the relative probabilities as a
function of available energy for single and double meson pro-
duction in nucleon-nucleon collisions. The notation is defined in
Egs. (49) and (52).

i f Sali—f]
b 20 0
pp np+ Ar{GoFA1)
o pp— A1{3Go}
pn np0 A{3Go+341)
m nn+ A1{3Go}
pp pp+— A2{2.49NTo+-644}
pp $p00 A2{0.8Tp+-6A,}
pp pn+0 A2{1.6MT0+642}
PP nn-{——{- Az{ 12m0+6A2}
pn pp—0 As{17/15Mo+7A2}
P% nn—l—O Az{17/15mu+7A2}
pn pn——+ A2{42/15NTe+3045}
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F1c. 8. The relative probability for the occurrence of #-p
initiated one-pronged events as a function of the bombarding
energy. The curves are labeled by the charges of the final particles
resulting from the collision.

that these ratios remain fairly constant in the 1-2-Bev
range, the calculated ratios run from 2.4:1.0:3.9 to

24 T T T T T

PN+~

20 1

16 1.8 20

%08 0 12 1.4
BOMBARDING ENERGY (BEV)

Fic. 9. The relative probability for the occurrence of n-p
initiated three-pronged events as a function of the bombarding
energy. The curves are labeled by the charges of the final particles.
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2.9:1.0:0.7—still good agreement in the upper part of
the range.

The ratio of the total cross section for double meson
production to that for single meson production is
somewhat smaller than the experimentally determined
value, although it is ten times greater than that calcu-
lated by means of the statistical model. For 1.7-Bev
bombarding neutrons, for example, S:(total)/S;(total)
is calculated to be 1.2, while the experimentally deduced
value from 149 analyzed events gives for this ratio the
value 2.2. However, this ratio is obtained from obser-
vations of three-pronged events only, and from the re-
lation Sq(total)/Si(total) =[Ss(np+—)+S2(pp—0)]/
2.3S1(pp—) which follows from Fermi’s? weights for the
different neutron-proton reactions within each state of
meson multiplicity. With the inclusion of the final state
interactions such a simple relation involving the three-
prong probabilities cannot be obtained, as the relations
for these probabilities indicate (Table VII). At ~1.7
Bev an approximate relation of this form is Sy(total)/
Sy(total) =[Sa(np+—)+S2(pp—0)1/3.65:(pp—). With
the data from the observations of Fowler et al., this
gives Sq(total)/S;(total) =1.4.

Preliminary results from pp-induced events analyzed
at Brookhaven indicate that about one percent of the
total interactions result in four-pronged events,
(pp+—), at 1.5-Bev bombarding energy. The calcu-
lated value for this is 8.59, at 1.5 Bev.

Although detailed agreement is not to be expected in
view of the approximations that were made, indications
are that results of calculations based on the statistical
model can be made to agree with experimental results

L6f
' S, (roTaL)
¢ A(TMAL) PN

.45
PP

Q6}
04t E

0.2}

08 10 12 4 1.6 1.8 20
BOMBARDING ENERGY (BEV)
Fic. 10. The ratio of the total probability for the production

of two mesons to that for the production of one meson as a
function of the bombarding energy for p-p and #-p collisions.
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Fic. 11. Momentum distribution in the center-of-mass system
of the =~ from the reaction (pn—pn-+—) at a total available
energy E=6. Curve A represents the prediction obtained from
the statistical theory, while curve B includes the effect of the
final state interactions. Both curves are normalized to the same
total probability.

when resonance effects are accounted for and conser-
vation laws are applied.

The author wishes to express his grateful appreciation
to Professor Keith A. Brueckner for his guidance and
suggestions throughout the course of this work.

VI. APPENDIX

Following Eq. (44) and Table III, the probability
that the #° in the process n-p—n-+p+=° emerges
with energy w in the interval dw is

dS1[np—mp0]={3—3[aw! ReQ(E)—Buw|Q(E)|*]}
X [W(0) |2 (E—w)des (47)

where a= (5/97)(f?/4x) and B=(7/27x*) (f?*/4r)?. The
total weight for the process is

Si[np—np0]=A1{3Go(E)+3A:(E)} (48)

where
Av={g/wn?, (492)
Ar=— (aG:(E) ReQ(E)—BG:(E)|Q(E)|?), (49b)

and

Qn(E)‘—‘f [¢(0) |2(E—w)b"92dw.  (49¢)

£A, represents the effect of the final state meson-nucleon
interaction. Factors common to all S; and S, are
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omitted in Eq. (48). Similarly, for a two-meson process,
n+p—n-+p+at+a—, the probability that the nega-
tively charged meson emerges with energy w_ in the
interval dw_ is

dSoLnp—np+—]
o e[ D e

+6/98(=) 1410 'gu(B—a)

+(5/4)6<€> g Q(E—w) *Ga(E—w)

~(5/92) - ReQ)galB—0-)
- <s/4>a<3> g ReQ(E—w ) Gu(F—w) ]dw_,
A (50)

where approximations similar to those made in Sec. II
were made in carrying out the integrals when the
meson energies can be high. The total weight then is

Sa[ np—mp+—]=A[ (42/15)Mo(E)+304,(E)], (51)
where L o
N\t
=gl E+2M<;>M’ (522)
1
and o
Mo (E) = f Go(E—w)wdos, (520)

E—1

M (E) = f 61 (E—w) ReQ(E—w)dw, (52d)

M (E) = f Gy (E—)| Q(E—w)|%idw.  (52¢)

Again the term with the A, represents the effect of the
meson-nucleon interactions in the final state. In the
energy range of interest (1-2 Bev), the ratio of this to
the first term ranges from about 2.0 to 0.5.



