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Effect of the Failure of Isotopic Spin Conservation on the Pion-Nucleon 8 Waves*
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(Received September 6, 1955)

The charge-dependent effects of the ~ —~' mass difference, the Coulomb interaction, and the 27. +p
~y+e radiative transition are calculated phenomenologiaclly using a charge-independent potential model
for the pion-nucleon nuclear S-state interaction. It is found that the charge-exchange S-wave-scattering is
little affected but that the transition rate for a bound w. meson (Panofsky effect) is suppressed about 10%,
removing the discrepancy between the difference in scattering lengths as calculated from scattering and from
the Panofsky effect. However, it is also found that there can be 25% corrections to the sr elastic scattering
amplitude of either sign, making the precise analysis of low-energy 7f elastic scattering experiments difFicult.

INTRODUCTION

'HE over-all success of the hypothesis of the con-
servation of isotopic spin by the pion nucleon

interaction is marred by the discrepancy between the
diRerence in the S-wave scattering lengths as deter-
mined directly, (5i—5s)/k=0. 27, ' and as evaluated
from photomeson experiments and the Panofsky effect
using detailed balancing, (8i—5s)/k=0. 19.s Part of this
discrepancy may be experimental, ' but there are three
ways that the sr —p system fails to conserve isotopic
spin and which could also be large enough to aGect the
analysis of these experiments. In the first place, the
Panofsky effect itself shows that the neutral pion is 9
electron masses lighter than its charged counterparts. 4

This means that the eigenscattering states are not pure
isotopic spin states, so that both the eigen phase shifts
and the asymptotic ratios of the scattered waves will
differ from those calculated using the isotopic spin
formalism. Further, the phase shifts of the
system must. be evaluated at a diGerent momentum
than those in the sr —p system. In the second place, the
Coulomb interaction between the negative pion and the
proton not only modifies the sr —p phase shifts, but
also changes the amplitude of the incident wave at the
proton and hence affects the ~'—e scattering as well.
Finally, the fact that the negative pion can undergo
radiative capture with a probability comparable to that
for charge exchange scattering' again modifies the
eigenstate phase shifts and amplitudes.

Ideally, one would like to calculate all these eGects,
including the mass difference itself, by including the
electromagnetic interaction in the Hamiltonian for the
pion-nucleon system and solving the scattering problem
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for this system. This would in all likelihood lead to a
charge dependent modi6cation of the interaction as well
as to the kinematic sects listed above. However, the
attempts to date to calculate pion-nucleon S-wave
scattering from field theory, even in the absence of
electromagnetic eGects, have not been very convincing
or successful. Consequently the approach used in this
paper is to use a charge-independent potential model for
the pion-nucleon interaction and to include only those
isotopic-spin-dependent terms already required by
experiment: the sr —sr' and rt —p mass difference, the
Coulomb interaction, and a radiative capture interac-
tion adjusted to fit the experimental transition ratio
I' o/I', =0.94+0.20.'

CHARGE INDEPENDENT POTENTIAL MODEL

The fact that the early measurements of 63 did not
extrapolate linearly to zero at zero energy led Marshak'
to postulate a potential model for the S-state inter-
action consisting of a repulsive core surrounded by a
longer range attractive potential. Orear7 has since shown
that the scattering experiments are compatible with a
linear momentum dependence for the S-phase shifts up
to 200 Mev, and that agreement with experiment is
improved by the addition of some d-wave scattering.
However, since there is some slight theoretical justifica-
tion for the Marshak model in terms of a strong meson-
meson interaction, this model is used here.

In order to determine the parameters of the model, it
is convenient to make use of the effective range analysis'
suitably modified to take account of the repulsive core.
This is done by plotting k cot(3+kR) against k' for
some assumed core radius E., Since the present data are
very insensitive to the choice of core radius, "it is con-
venient to assume the same core for both isotopic spin
states. For simplicity in the calculations that follow, it
is useful to use a square well for the attractive part of the
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potential with the same range in both states. The
scattering length and effective range are then given in
terms of the range and depth of the potential by

—a= LtanX(r —R)7/X —r, (1)
and

fr= r —R+ 1/L (R—a)X'7 —(r—R)'/3 (R a)' —(2)

where

V(~)=~, x&R; V(x)= —X', R&x&r;
V(x)=0, r&cc

The effective range plots are given in Fig. 1 for the well
parameters given in Table I, and the momentum
variation of the phase shifts is plotted in Fig. 2. (The
unit of length is t//ns —c.) All these models suffer from
the defect of not giving a 8& as large as is apparently
indicated by experiment around 100 Mev, but (except
for II) are not ruled out by existing data. Since, how-
ever, they all are fitted to the same scattering lengths,
they agree with experiment at low energy and serve to
test how dependent the sects considered here are on
the details of the model. It is, perhaps, of interest that
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FIG. 1. ER'ective-range plots for three core radii. Roman
numerals refer to models given in Table I. All models have scat-
tering lengths a~ ——0.10, aq ———0.17 Lsee Rinehart, Rogers, and
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the more reasonable models (I, III) require a proton of
about the size indicated by the electron scattering
experiments. "

INTRODUCTION OF ISOTOPIC SPIN DEPENDENT
EFFECTS

The above potential models can be considered as
arising from an interaction term of the form

$ $2XP+Xt'+ P,P—Xts) (t T)7)/3, (3)

where t is the isotopic spin of the nucleon, T the isotopic
spin of the meson, and f a six-component wave function
for the pion-nucleon system. If we let the total isotopic
spin I=t+T, this interaction is diagonal in the repre-
sentation diagonal in I, I„and gives the usual Klein-
Gordon equation. If the free-partic1e equation of motion
is to agree with the experimentally determined masses,
we must add to the usual free-particle Hamiltonian a
term of the form

bms(TP+a/, +b/, TP).

Any field-theoretic treatment which is to agree with
experiment must lead to this result, although it might

"R. HoGstatder and R. W. McAllister, Phys. Rev. 98, 217
(1955).

also modify the interaction (3); the latter effect is
ignored here. If y and yp represent the s.——p and the
+'—e wave functions, the equations of motion inside
the range of forces are then

y "+k sy +(XP+2)I, ')y /3+42()I, P—X,')yo/3=0, '
(3)

yp"+kp yp+(2), P+Xr')yp/3+V2() P—)I, t')y /3=0,
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FrG. 2. Comparison of models given in Table I with data. Phase
shifts calculated from the models are indistinguishable on, this plot
from those given by the e/Iective range formula k cot(S+kR)
= (R a) '+sr, ggks—
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where k and ko are the center-of-mass momentum of
the charged and neutral pion respectively. Coulomb
sects can be included sim, ply by using the appro-
priate Coulomb wave functions for the negative pion
outside the range of interaction.

The inclusion of the possibility of radiative capture is
not so straightforward, since this involves the question
of the charge and current distribution inside the range of
interaction, which is unknown. However, at a given
energy, this transition can clearly be simulated pheno-
menologically simply by including an interaction term
coupling the or

——P, pro —zs system to the 7—zs system.
The energy dependence of this term could then be 6tted
by using data on the 5-wave photoproduction of nega-
tive and neutral pions from neutrons. Rather than
attempt such an elaborate treatment here, we simply
adjust the coupling to the or —p system to give the
observed Panofsky ratio, and assume it will not change
significantly over the small energy range (129&E~ & 161
Mev) considered. For simplicity we also assume that
the direct coupling to the ~'—e system is negligible and
that the gamma ray is not scattered once it is produced.
If yp& and yp2 are the wave functions for 5-wave gamma
rays of two different polarizations, our equations of
motion inside the range of interaction then become:

y "+k 'y +(Xss+2Xis)y /3
+~2(Ass —&is)yo/3 —&sy&i —&sy&2 0,

yo"+kosyo+ (2Xs +4 )yo/3+v2 (Xs —Xi )yo/3=0, (6)

y, i"+k,'y, i' —J'y =0 y„s"+k,'y, s—J'y =0,

LABORATORY ENERGY (M E V)
5 IO 20
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77 =P
0
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$z'=nz' sin(k r+8r )/rrz sin(kg+Sr') (9)

If we now impose the usual boundary condition of an
incident plane wave and outgoing spherical waves
(with appropriate momenta), the differential cross
sections starting with negative mesons incident on
hydrogen are

80. do.o vo 40 ~ 2c
=Is I', =—Isols, — -= Is, ls, (10)

dQ dQ v dQ v

where

si = . 7(Ere' exp(if'')Fz/
2ik

where k~ is the center-of-mass momentum of the gamma
ray, and J' is to be adjusted to give the experimental
ratio of 0.94 for x' to p yield in the Panofsky eGect.

Using the obvious fact that we can let y~~=y~2=y~,
there are three normal mode solutions to the above
equations, which we label I', S, and G. These solutions
are:

yli' —O x&R, j=—,Op,

yr'=zrz' sinKz(x —R), R &x &r, I=P1VG, (7)
yr'= $z' sin(k, x+8z&), r &x,

where the normal mode frequencies Ez and ratios
az' are determined by solving Eqs. (6). The nine phase
shifts are given by

k; cot(k,~+8;)=Kr cotI Ez(r —R)5.

Since we are interested in transitions starting with the
or

——p system, we pick our normalization such that
$z

———1. Then continuity of the wave functions gives

20- and we have defined
exp( —

iver )Fr) —5-, ;], (11)
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If we ignore the gamma-ray transition and the mass
difference, E '=k '+X ' and Ezz =k '+his so that
8„=8„=83and 8~ =8N'=8~. Further, since under
these conditions (s'=&2 and err' ———1/v2, F~
=—(1/V2) exp( i8i) an—d Fzz —K2 exp( iso)——, th—is
expression reduces to the usual result.

If we introduce the Coulomb interaction in the s —p
system, the phase shifts for this system are now
de6ned by

kWo'(k r) coslz +k-Go'(k r) sinbr

Fo(k r) cos8z +Go(k r) sinter

=Kr cotI Ez(r —R)], (13)
I.6 .7I I I

~g,4,5
TT MOME NTUM where Fo and 60 are the regular and irregular Coulomb

Fjo. 3. Comparison of the absolute magnitude of the scatte~i~g functions as defined by Yost, Q heeler, and Breit.'
amplitudes calculated including the charge-dependent e6ects with
those calculated from the same model ignoring these effects, is Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).
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The asymptotic coefficients of the scattered waves are
now

$z'=nz'$Fo(k r) cosbr'+Go(k r) sinter]/
zzr sin(k,~+Sr'), j =0,y; $r =1, (14)

and in the ~——p system we must add the Coulomb
amplitude

—rz expr in ln sin'(8/2) j/2k sin'(8/2), n= e'/AziLz, &,
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p =Jr/i' exp(iver')Fr/2ipzFr, (16)

TABLE II. Results of the various models for the Panofsky effect.

Model

0.5479
0.09426
1.6314

r„0/r~

0.945
0.950
0.954

% Correction

—9.81—8.14—11.07

with the FJ de6.ned as before; the ratio of the yield of
neutral mesons to gamzna rays is vo( po('/2c[p~~'. We
can compare the transition rate to that calculated by
Fermi' simply by taking the ratio of p~ to pF„;
=N, (0)v2 (aa —az)/3, where a8 and ai are the scattering
lengths for S-states of isotopic spin ~3 and ~~.

RESULTS AND CONCLUSIONS

If one solves Eqs. (6) and fits the gamma-ray
coupling parameter J' to give the observed ratio of
~' to y yield, all models show that the m' transition
rate is depressed by about 10%%uq compared to that given
by Fermi. The exact values are given in Table II.
Consequently these models, with a diGerence in
scattering lengths of 0.27, predict that the diGerence
in scattering lengths as calculated from the Panofsky
eGect in the usual way should be 0.243, in agreement
with the latest experimental result. ' It remains to
show that they are also in agreement with the charge-
exchange scattering between 20 and 40 Mev. The
corrections to the charge-exchange scattering ampli-

to the nuclear term s defined above,
In the Panofsky eGect we must replace the Coulomb

scattering functions with a bound-state wave function
outside the range of forces. It is a very good approxi-
mation to ignore the level shift and simply use the

mesonic hydrogen atom wave function xN, (x) for
this. We therefore take y = $r xN, (x) outside the
range of interaction. The m' and y phase shifts are
defined as before, but the asymptotic ratios now
become

$z'=rzr'rzz. (z)/nr sin(kw+Br'), j=O,y, $r =1. (15)

If we normalize to one bound m
—meson, the amplitudes

of the outgoing waves are
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FIG. 4. Comparison of the phase shifts calculated including the
charge-dependent effects with those calculated from the same
model ignoring these effects. The large rise of the H —n phase
shift corrections at low energy is due primarily to the fact that the
7r momentum remains finite as k approaches zero.

tude are given in Fig. 3, and are at most a couple of
percent for all models over this energy region, so that
it can be safely concluded that the charge dependent
corrections considered here do remove the discrepancy
between charge exchange scattering and the Panofsky
eGect.

The situation with regard to elastic scattering is not
so straightforward. As can be seen from Fig. 3, the
corrections to the elastic scattering amplitude can be
as much as 25% and go in opposite directions for a
small core and large range (II) and for a larger core and
smaller range (III). That this change is not just due to
changes in the Dhase shifts can be seen from Fig. 4,
where it is seen that the corrections to the phase shifts
that replace 8~ and 8z (F and X normal modes in the
notation of equation 7) are very similar for models I
and III. It is clear from the numerical work leading to
these results that both the changes in asymptotic ratios
and the role played by the normal mode in which the
radiative transition is dominant are sensitive to the
choice of model. Consequently it will be necessary not
just to reinterpret the phase shifts in the usual isotopic-
spin-independent scattering amplitude but to use
expression (11) for the analysis of ~ elastic scattering
at low energy when results of precision greater than
25%%uo are desired. Since this expression contains 15
experimental parameters (9 phase shifts and 6 ratios),
it will be hopeless to attempt this analysis directly at a
single energy even if precise photoproduction and
radiative capture data are available in addition to
scattering experiments. However, if one is guided by
model calculations to assume that certain of the
parameters are energy-independent, analysis should
become possible, if tedious,


