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Isotopic Spin Impurity. II. Shell Model
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Princeton Un& ersity, Princeton, Sew Jersey*

(Received August 8, 1955)

The isotopic spin impurity introduced into nuclear states by the Coulomb interaction is calculated with
jj-coupling shell-model wave functions. Upper limits on the impurity present in X=2 nuclei for 4 &A &16
are given and shown to be in agreement with the experimental work of Wilkinson on the isotopic spin selec-
tion rule for Ej transitions.

L INTRODUCTION

HK introduction of isotopic-spin impurity into the
ground state of light nuclei by the Coulomb po-

tential can be treated most easily by considering the
nuclear wave function as a (J, T=O) core of nucleons
coupled to a wave function for the nucleons outside the
core. The core impurity has been calculated on the
Fermi gas model' by computing the mixing of excited
T= 1 states with the ground state of an Ã= Z even-even
(Tr 0, A=4N) ——nucleus. This core impurity has been
found to exceed by a large factor the isotopic-spin
impurity estimated by Radicati' to arise from Coulomb
distortion of the wave function for nucleons outside
closed shells. This predominance of core impurity will
now be verified on the jj-coupling model with harmonic
oscillator wave functions, where the core now consists
of the shells completely 611ed with both neutrons and
protons.

We shall 6rst perform a more rigorous calculation of
the Coulomb mixing of the isotopic-spin states for the
nucleons outside closed shells by using a more realistic
representation of the nonexchange potential interaction
with the core nucleons than the (1/r) dependence of
Radicati. Following this, the calculation will be ex-
tended to obtain the isotopic-spin impurity for He
and C", which are closed-shell configurations, (1s1)4
and (1st)'(1P,*)s respectively. After giving a simple
method of reproducing the shell-model calculations by
use of an equivalent potential, we shall have a way of
obtaining, from the isotopic-spin impurity of He4 and
C", estimates of the impurity in the ground states of
some X=Z nuclei having open shells.

II. T%0 NUCLEONS OUTSIDE CLOSED SHELLS

When there is only one nucleon outside closed shells,
there can be no mixing to higher isotopic-spin states
unless there is also excitation of the core. With the
appearance of two nucleons outside closed shells, how-
ever, the possibility arises of mixing between T=0 and
T=1 states as well as between T=1 states of diGerent
con6gurations. The first type of mixing produces viola-
tions of the isotopic-spin selection rules, while the
second type of mixing destroys the displacement prop-

=Ze'/r. (2)

Using harmonic-oscillator wave functions, one can show

easily that the contribution of the region outside the
nucleus to nuclear matrix elements is only a few

percent of the contribution from the nuclear volume.
In evaluating the perturbation eBect of the core po-
tential, we shall therefore use V(r) = —Ze'r'/2Rs. The
total interaction of two nucleons in an open shell with
each other and with the core will be taken as

erty of the isotopic-spin operators Tp&iT„, since the
eigenstates of T~ and T~+& are not related by

(Tt+iTs)@rrr [(TW——Tr) (T&Tr+1)]+rrr. (1)

The implications of this circumstance for P decay will
be discussed in a later paper. These two types of mixing
are produced by the interaction of the extra-shell
nucleons, both with each other and with the core. The
core interaction is a central potential which commutes
with the j of the individual particles and will produce
mixing to excited con6gurations diGering from the
ground state only in the principal quantum number of
one of the nucleons. On the other hand, the nucleon
interaction does not commute with the j of the in-
dividual nucleons and can mix the ground state to
many excited con6gurations whose parities are the
same as the ground state.

For a specific investigation of the two-nucleon mixing
we shall consider the (1pt)' and (1pt)' configurations,
and the results will be speci6cally applicable to the
triads at 3=6 and 3=14. We do not imply that jj-
coupling should be valid for so light a nucleus as I.i',
but from the results of the calculations on (1pt)' will

emerge certain general conclusions that are applicable
to any configuration j'. Indeed the most signi6cant
features of the mixing are also present in I.S coupling
and the configuration P.

The nonexchange potential for the Coulomb inter-
action of an extrashell proton with the protons in closed
shells will be shown to be represented approximately
by the potential of a uniform spherical charge
distribution,

3Ze' ( r

2R ( 3R')

~ Present address, Department of Physics, University of Wis-
consin, Madison, Wisconsin.' W. M. MacDonald, Phys. Rev. 100, 51 (1955). This paper
will be designated as (I).' L. A. Radicati, Proc. Phys. Soc. (London) A66, 139 (1953).

V= V.+V„;
V,=——(Ze'/2R') L(—', —trt)ris+ (s—trs)rest

V =(e'/ )(-' —t )(-.—t ) (3)
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where t~ is related to the usual spin matrices
s= {rt,r„,rr) by t= 12~ and to Tl by

Tr p tr——;= 12 (N-Z—)
i=a

The decomposition of V, and V„ into irreducible tensors
in isotopic-spin space gives

V V (o&+ V (io) .

V &'& = —(Ze'/4R') (ri'+r2')

Vg ("&= (Ze'/2R') (tr] r1'+ tr 2r2') ) (4)

(0)+V (10)+V (20) .

V ('& = (e'/r, ) (-',+-', t t ),
V (' ) = —(e'/2r&2) (tri+ tr2),

V„&"&=(es/r&2)(tritr2 —sti ts))

~here V(~" is the /th component of a tensor of rank k.
For two-nucleon configurations, V„""and V ("~ can
be written in terms of T and T~,

V ("'=—(e'/2r12)Tr

V„(")= (e'/2r12) (Trs —is T'). (6)

TABLE I. Coulomb interaction matrix elements between (1pt)2
and nearest configirations. The energy separation of (ip)~ from
1p1f, (1d)2, and 1p2p is taken as 30.9 Mev.

Tr=o (Li')
M= f(1pt)AT~ 'U), 1p42psJT'7 J=0,2, T=1, T'=0;

=0.1778 Mev J=1,3, T=O, T'=1.
p=M2 (30.9 Mev)~=3.31X10 4.

L(1P )2J1Tr~ 'U)jj'J1Tr j=M(Tr).
Eo—E,=30.9 Mev. p=M2(Tr)(30. 9 Mev) 2

M(1) p M( —1) p

—0.001858 0.003717
0.002230 —0.004456—0.01024 1.1)&10 ' 0.02048 4.4&( 10 '
0.005474 3.1)(10 —0.01045 1.3)(10 '

—0.01340 1.9&10 7 0.02681 7.5g 10 '
0.02496 6.5&(10 7 —0.04993 2.6)(10 '
0.008146 6.7)(10 —0.01629 2.8)(10
0.009977 1.0&10 —0.01995 4.2&(10 7

0.03700 1.4&(10 ~ —0.07403 5.7)(10 t'

0.03406 1.2)(10 6 —0.06812 4.9X10 '
—0.00985 1.0X 10 ~ 0.01971 4.1X10 7

0.002787 8.1)&10 ' —0.005575 3.3)(10 '
0 002787 8 1&(10~ 0 005575 3 3)&10-8

—0.2475 6.2&(10 ~ 0.3171 1.0)& 10 4

—0.2363 5.8)(10 5 0.2949 9.5X 10 ~

8'
(ip))'
ipse ip&
1py 1f5& 2 2

ip) if51' 2
ipse if7/2 2
(id)}2 0

2
id) id@2 2
(id5/2)'

2
1P& 2P&

ipse 2pk
ip& 2P&

ipse

2P~
2

These expressions clearly exhibit the fact that the inter-
action of the extra-core nucleons produces no mixing
of diferent isotopic-spin states of the two nucleons.

In calculating the effect of the Coulomb perturbation
we shall use only the vector and tensor parts of V, since
the scalar part can be included in the nuclear Hamil-
tonian and T will still be a good quantum number. The
perturbation that we shall use in computing isotopic-

Voo'o'=o

Voi&'& = (Ze'/4R') (ri' —rs'),

Vaa"'=o

Vii& '& = —(Ze'/4R') (ri'+rs')+ 2 (e'/ris)
&

V, i &'& = (Ze'/4R') (r1'+r22) —
2 (e'/r12). (10)

The antisymmetric character of Vpa('~ arises from the
difI'erence in symmetry of the space-spin part of the
wave functions for T=O and T= j.. The sign of Voa(o)

is determined by the phases of the vector addition
coefficients and is not unique. This arbitrariness dis-

appears when one comes to the matrix element of
Vpa( ~ since the sign of the antisymmetric space-spin
function associated with the T= 1 state is also deter-
mined by the sign of the vector addition coeKcients.

The matrix elements of the Vyz" (~t' between diferent
J states of (1p;)' and higher jj configurations can be
evaluated by first finding the matrix elements between
(1p)' and higher configurations in the LS representa-
tions. As Talmi' has shown, the Slater integrals
F("&(rsittnsls, rislsr&4/4) which appear at this point can
all be easily evaluated for the case of harmonic-
oscillator single-particle wave functions. These func-
tions have the form

where Vp(t&, p) is a surface spherical harmonic and,

R„1(r) =N~& exp[ —(v/2)r2 jr(+'L~i t'+'(vr2),

22=1, 2, (12)
' L Talmi, Helv. Phys. Acta 25, 185 (1952).

spin impurity in this case is

(10)+V (10)+V (20) (7)

The evaluation of matrix elements of 'U is easily per-
formed by transforming into a representation in which
states are characterized by the individual t~ quantum
numbers. In this representation the problem of finding
the matrix elements of an isotopic-spin dependent
potential between states completely antisymmetric in
space, spin, and isotopic-spin coordinates is reduced to
the evaluation of matrix elements of several ordinary
potentials between wave functions which are either
symmetric or antisymmetric in the space and spin
coordinates of the two nucleons, but which contain no
isotopic-spin variables.

We first transform matrix elements of the general
form (yTTrI'UIy'T'Tr), where y and y' represent all
the auxiliary quantum numbers.

(vTTrl UIv'T'Tr)= 2 (TTrl«1«2)(«1«2IT'Tr)
tt, ty

x(ptr, trsl'Uly tr, tr2). (8)

Defining Vz&' t' by the equation

(vTTrl Ulv'T'Tr) = h I
Vrr "—r) Iv')

we find for Vzz"( t~:
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1.~& +& being an associated I.aguerre polynomial. The
parameter v can be determined by using the relation
(r') =R' and the following values would be obtained:

11/6R'
12

13/6R'
16

9/4R'. (13)

In working in the 1p shell, however, we have found it
convenient to use just (1p~r'~ 1P)=R' giving i =5/2R'.
The uncertainties in other parts of the calculation (e.g. ,
energy denominators) does not justify concern over the
precise value of v. Having evaluated the I.5 matrix
elements of Vzz" & 3', we obtain the jj-coupling matrix
elements by use of the (1.5JM ~j ij &Jul) transformation
coefIIicients given by Racah, ' or less explicitly by a
formula due to Hope and quoted by Edmonds and
Flowers. ' Using these matrix elements and the energy
separations given by the oscillator wave functions for
i =5/2R', we have calculated the squared amplitude
of those neighboring jj states which are present in the
(1P;)' states of He', Li', and Be'. These impurities are
listed in Table I. The corresponding quantities for the
(ipse)' states of C'4, N'4, and 0'4 are given in Table II.
These figures are probably overestimates since the
energy separation of two states in different isotopic-
spin multiplets is probably larger than the separation
given by the extreme single-particle model.

The first observation we make about these Coulomb
matrix elements is that no mixing of different isotopic-
spin states of (1P;)' and (il, )s can occur. All mixing of
different isotopic-spin states must therefore occur
between states already separated by a large energy
( 20—30 Mev). The nucleon interaction vanishes for
T~=O components and can mix only T= 1 states. The
core interaction on the other hand can mix only states
of different isotopic spin. In doing this there is an addi-
tional selection rule, however, which arises from the
central force character of the interaction, Aj&= Aj&

——0.
The result of this selection rule on 'U is that the only
possible mixing of T=O and T=1 states is between
(1p;)' and 1pi 2pi or between (1pi)' and 1pi 2pi.

Although no mixing of diferent isotopic spin states
can occur when T~ ——~i, the matrix elements between
the T=1 states of different configurations have one
interesting feature. We see that mixing can occur to
configurations in which the angular momentum j of
one or both nucleons is different. The core interaction
does not play any role in these matrix elements, which
are expected for this reason to be somewhat smaller
than those matrix elements to the 1P; 2P; or ipse 2p;
configurations. These latter matrix elements are actu-
ally found to be larger by a factor of ~10—15 and this
predominance is not due just to the absence of the core
interaction. This result holds in fact for any spin inde-
pendent "long-range potential" for which the Slater
F('&&)F&~). Such a potential is approximately diagonal

4 G. Racah, Physica 16, 651 (1950).' A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A214, 515 (1952).

in the (lj) representation. It is reasonable that the
energy separation between states of the same spin J,
parity, and isotopic-spin T in (rsj) and (re, n+ij)
should not be more than two or three times the separa-
tion of the same state in (Ij)' and (nj', nj") T. he ex-
treme predominance of the matrix elements between
the former configurations then implies that the mixing
between these configurations will also predominate.

Two important conclusions have been drawn from
the results on the Coulomb mixing of excited states to
the ground state of a two-nucleon configuration: (1)
only the interaction with core nucleons (protons) intro-
duces isotopic-spin impurity into the two-nucleon
state, and this is from excitation of a single nucleon
without change of its orbital or total angular momen-
tum; (2) the Coulomb interaction of two nucleons in
an open shell has an effect like a central potential in
mixing principally to configurations having the same
orbital and total angular momenta for the individual
nucleons. Although the interaction of the two extra-core
nucleons introduces no isotopic-spin impurity into the
two-nucleon state, we shall see that such interactions
do introduce isotopic-spin impurity into configurstions
of three or more nucleons. The result (2) for two nucleon
interactions then will be seen to determine the excited
states which contribute principally to the isotopic-
spin impurity of the ground state for three or more
nucleons outside closed shells.

III. THREE NUCLEONS OUTSIDE CLOSED SHELLS

The results of the calculation of the mixing of the
states of two nucleons outside closed shells disclosed
certain interesting general features. The two-nucleon
configuration, however, was seen to have the special
property that no mixing of isotopic-spin states could
be produced by the interaction of the extra-core
nucleons. Consequently the efficiency of the particle
interaction in mixing states of different isotopic-spin is
first to be observed in the case of three nucleons outside
closed shells. In addition, in the two nucleon case
there was no mixing of different isotopic-spin states
belonging to the ground state configuration. Indeed,

TABLE II. Condguration interaction matrix elements between
(1pt)' and nearest configurations. The energy separation oi (1p)s
from ip if, (1d)', and 1p 2p is taken as 17.7 Mev.

Tr=0 (N'4).
M = p(1pt)'JT

i
'U

~
1pt 2pt JT'j J=0, T= 1, T' =0;

=0.403 Mev, J=1, T=O, T'=1.
p= M'(17.7 Mev)~=1.52)&10 '.

L(1Pt)'01Tr I
& le '01Trl= 7'�(Tr).

Eo Ei=17.7 Mev. p =Ms(T—r) (17.7 Mev) i.
jj' 3f(i) p ill( —1) p

(1dg) 0.03852 4.7&(10 ' —0.07707 1.9&(10 ~

(1dg2)' 0,01287 5.3)& 10 ' —0.02573 2.1)&10 '
1pg 2pg —0.4942 2.6)& 10 ' 0.4968 6.1+10 '
1pg 2pg 0.002476 1.9X10 ' 0.004953 7.9&(10 &
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there was not even a mixing of the ground state with a
diGerent isotopic-spin state in the nearest configura-
tion, e.g. , (1p»)' with 1p» 1p». In order to investigate
these aspects of the Coulomb mixing of diGerent iso-
topic-spin states we shall consider the isotopic-spin
impurity of the T= i states of the (1p»)' configuration,
this being the configuration to which the low excited
states of I i' and Be~ would belong in jj-coupling.

Matrix elements are needed of the Coulomb inter-
action 'U3 of the three extra-core nucleons with each
other and with the nucleons in closed shells.

V (10)+V (10)+V (20)

3

0V, "')= (Ze'/2Es)Q tr,~P,

sV (")= —e' Q (tr;+tr )r;

0V ' =e p (tr;tr, —st~" t)r
i&j

The matrix elements of 'U3 between three-nucleon states
are reduced by the use of coeKcients of fractional
parentages (c.f.p.) to the previously calculated matrix
elements of the Coulomb interaction between two
nucleon states. This reduction is complicated by the
fact that the perturbation is the sum of a vector and of
a second-rank tensor operator. '

One would expect the greatest impurity in the 7=-',
states of (1p»)' to arise from the low-lying states unless
unusually small matrix elements occur. The nearest
states of isotopic-spin T=-', should belong to (1p»)'.
Using the calculations of Kurath' for a Rosenfeld
potential, ' the separation of the T= —,

' and T=-,' states
of (1p;)' is found to be 10.3 Mev. This is in agreement
with the suggestion by Peaslee and Telegdi" that the
first T= -', level in Li' lies at 10.8 Mev. Prom a table of
(c.f.p.) for (1P»)' we find that the only T= as state of
(1p»)' has spin J= ss. We find, moreover, that the only
two-nucleon matrix elements which appear in the
expression for the three nucleon matrix elements
are L(1p )'01Tt~'Us( (1p»)'01Tr) and L(1p»)'21Tr~Vs~
(1p»)'21Trj for the states J, T=O, 1 and J, T=2, 1.
These matrix elements appear with coeS.cients which
are equal in magnitude but of opposite sign. Since the
matrix elements of ~V, &"& are independent of J, the
core interaction contributes nothing to the mixing of
these T= sr and T= ss states of (1P;)'. Furthermore the
only contributions from &V„&") and 2V„&"& are propor-
tional to the Slater integral F(')p(1p)', (1p)') in the
expansion for the matrix element of r» '. The reason
for this is that the F&" term arises from the part of

6 G. Racah, Phys. Rev. 63, 367 {1943).
7 G. Racah, Phys. Rev. 62, 438 {1942).
8 D. Kurath, Phys. Rev. 88, 804 {1952).
'L. Rosenfeld, Nectear Eorcei (Interscience Publishers, Inc. ,

Near York, 1948).
'0 D. C. Peaslee and V. L. Telegdi. Phvs. Rev. 92, 126 (1953l.

r» ' which can be represented by a central potential,
and the coe%cient of F&'& must vanish just as does the
matrix element 3V,&"'. Using an energy separation of
10 Mev, we find very little isotopic-spin impurity aris-
ing from the mixing of the T=-', and T=23 states of
(1p-:)'.

The mixing of the T= is states of (1P;)' and. the T= ss

states of (1P,*)' 1P» can actually occur for the J= sr, ss,

and 5/2 components of these configurations, and the
intermultiplet matrix elements for all these states are
given in Table III. The energy separation has been
taken as 10 Mev to obtain the estimates of the (maxi-
mum) isotopic-spin impurity which are given.

We have remarked that the experimental separation
of the T= —,

' and T=ss states of (1p*,)' is at least 10
Mev. Such a large multiplet separation means that the
separation of the T=-', states of (1p;)' from the T=-',
states of (1p;)'2p,*is probably no more than three or
four times the separation of these isotopic-spin states
in (1p;)'. Considering that the Coulomb matrix ele-
ments between (1p»)' and 1p,* 2p» were so large in the
two-nucleon case and that the matrix elements be-
tween the T= —,

' and T=s states of (1p»)' are propor-
tional only to F(0)((1p)'; (1p)'), we should expect that
the mixing of diferent isotopic-spin states between
(1p;)' and (1p,*)'2p» will be at least as large as the
mixing of these states within (1p;)'.

The matrix elements between the (J, T= —'„-,') states
of (1P )' and the two (J', T=-,', ss) states of (1P,*)' 2P»
are given in Table III. The isotopic-spin mixing has
been computed using an energy separation equal to the
1p, 2p separation of the harmonic oscillator states. A
value of Eo—E&——28 Mev has therefore been used. We
find that the matrix elements between the above states
in (1p,)' and (1p»)' 2p» exceed by a factor of 12—20
those between the same states in (1p;)'. The corre-
sponding isotopic-spin mixing of (1p,*)' and (1p;)' 2p;
also dominates by a factor of at least fifteen.

Impurities from configurations like (1p;)' 1f&/0 may
also appear and one would like to know the relative
magnitudes of the mixing to configurations like this
and. to (1p*,)' 2p». Using Racah's approach to complex
spectra, we can express the three-nucleon matrix ele-
ments as linear combinations of two-nucleon matrix
elements with coefficients of fractional parentage
(c.f.p.).' For configurations of nonequivalent particles
the c.f.p. have been discussed by Meshkov" and
Redlich. "Using Redlich's notation the c.f.p. have the
normalization

2 l(~)J)T))i.l)~JT) I'=1
aIJITI

where o.&, J~, T~ are quantum numbers of a two-nucleon
state to which a nucleon of spin j„ is being coupled.
The c.f.p. are always less than unity. Since for three

"S. Meshkov, Phys. Rev. 91, 8/1 {1953).
"M. G. Redlich, Phys. Rev. 99, 1427 (1955).
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nucleons the sum is distributed over not more than four
parent states and the c.f.p. vary among themselves by
no more than a factor of two, the relative magnitude of
corresponding matrix elements (same J,T) to diferent
con6gurations is determined mostly by the magnitudes
of the matrix elements between two-nucleon parent
states. Observing that matrix elements from

(ipse)s

to
1Pt 2PI are ~10-15 times larger than those to all other
configurations, one can conclude that the matrix ele-
ments from (1p,*)' to (1p,*)'2pi will also dominate
matrix elements to other three-nucleon con6gurations.
Consequently we can conclude that (ipse)'2p~ con-
tributes most of the isotopic spin impurity of (1Pi)s.

IV. ISOTOPIC SPIN IMPURITY OF CLOSED SHELLS

In the calculation of the isotopic-spin impurity of the
state of two or three nucleons in open shells, we have
neglected the excitation of the isotopic-spin T=O state
of the core. We have shown, however, that the isotopic-
spin impurity of the states for the extra-core nucleons is
even smaller than that indicated by the calculations of
Radicati' and are negligible compared to the estimate
made in (I) of the isotopic-spin impurity of the core.
We now purpose to study the excitation of the core
and the isotopic-spin impurity of nuclei having closed
shells in neutrons and protons.

The problem can be treated by two different methods
which illuminate two different aspects of the Coulomb
effect upon the isotopic-spin state of closed shells.
These two methods are (1) the reduction to two-
nucleon matrix elements, and (2) the use of the "equiva-
lent" potential produced by a closed shell. The 6rst
approach will show how one may regard the excitation
of the isotopic-spin state of the core as an extension of
the Coulomb mixing of the states of two nucleons. The
second approach leads to a rigorous derivation of the
method by which we have introduced the effect of the
interaction of the core on two- and three-nucleon states.
We shall also show how one can use the method to
estimate the impurity of closed shells.

J
1//2

((&Pt)' l s TrI'Ul (&pt)' l l Tr)=M
M For A =7 Nucleus p=10 2M'

0 ' 0 0

e'/R
1

1.11+10 '

((1Pt)' J $ Tr ~

'U
~
(1Pt)' 1P) 1 -', Tr) =M

Tg M For A =7 Nucleus P=10 'M2

0.0106 Mev

3/2

5/2

150 37I R

0

0

150 671 R

—0.00272 Mev 7.37+10

—0.00111 Mev 1.24&(10

0.00512 Mev 2.61+10 7

((1pt)' —', ~s Tr~ 'U~ (1pt)' 2pt-', -,'(J' T')T )r=M
For A =7 p=M'/

M Nucleus (28 Mev)'J' T' Tg

0 1

2 1

1
2

Z8 1

R 6+2
Ze 1 23 1 & e —0.233R 6/2 72 2s. R
Z8 1

R 6+10
Ze~ 1 31 5 & e'

R 6+10 360 2s R

—0.132 Mev 2.2&&10 '

6.9+10 ~

—0.0593 44+10 6

1.8+10 ~

states will vanish. We shall first calculate only the
impurities arising from states%'„corresponding to single-
nucleon excitation and shall neglect the effect of two-
nucleon excitation. This approximation will be checked
later by calculating the contributions to impurity from
states of two-nucleon excitation.

The Coulomb interaction is

V = e' Q (-', —tr~) (-', —tr;) r;, ' (16)

TAnr. z III. Matrix elements for isotopic-spin mixing with (Ipg)'.

A. Reduction to Two-Nucleon Interactions

In jj coupling the nuclear wave function is an anti-
symmetric linear combination of the single particle
wave functions $„=4&j„m (r,rr)Q(tr) The isotopic-s. pin
function N(tr) is an eigenfunction of tr with eigenvalues
~-,'. The nuclear wave function 40 for the ground state
can be written as a Slater determinant of these wave
functions with all the (2j„+1)values of m„appearing
for each shell with each isotopic-spin eigenfunction.
Excited states 0 „of this nucleus can also be written
as a Slater determinant, or a linear combination of
Slater determinants, in which one or more of the closed
shell wave functions have been replaced by states from
the un6lled shells. Since the Coulomb perturbation is a
two-particle operator, matrix elements to states +,
differing from 4'o by more than two single particle

and the decomposition into irreducible tensors may be

performed just as in (I). Since we are interested only
in the mixing of T= 1 states to the T=0 ground state,
we need retain only the vector component of V as our
perturbation operator

(17)

The selection rule 0-)+0 on 6 insures that all matrix
elements of between the T=O ground state and the
excited states 0'„will correspond to the addition of
isotopic-spin impurity from T= 1 states.

In +0 let a nucleon in the individual particle state of
angular momentum jsms(rss) be excited to the state of
momentum j srrss(res) to form an excited state. For the
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present we suppress the principal quantum numbers n2
and r44. If by P„we designate the state of the nucleon
which is excited to the state P„ the matrix element of
5 is

to42

(+,8+o) = ——Z «~«o(4"*(1)4-'(2)(«~+«o)r» '

x [4"(1)4-(2)-4"(2)4-(1)1} (18)

Performing the sum over the isotopic-spin states,
which are combined with each Pj~m~ to give two dif-
ferent P„, we get

8
(4'„,8%'o) =&—p [(jomojgmglf» I jQmQjgm~)

2 /1~1

—(jomoj&m&lr» 'I j&m& j&m&)]. (19)

The plus sign corresponds to the excitation of a proton;
the minus sign, to the excitation of a neutron from the
same state. The quantity in square brackets can be
interpreted as a matrix element between the isotopic-
spin triplet states in the (jm) representation.

(+.,8%o)= Q (r4ojomongj~m~TTr

X I
—T'r~/2r»

I e~j&mow~ j~m~TTr) (20)

We transform Eq. (19) to the J, M representation:

e' 2J+1
(+,8+o)=- E . [(~ojo«j~J lr» 'INojo~~j~J)

2 &,ii 2jg+1
—(—1) " "(r4&j&r4oj2J I r&o 'I r44 jor4&j&J)]. (21)

The conditions j&=j3, ns2=m3 which emerge from this
transformation can be understood by observing that
the excited state can be regarded as a shell with a single
hole in the state j2nz2 coupled, to a nucleon in the state
j3et3. But unless j2= j3 and nz2= ns3 the state 0, cannot
have spin J=O, and the matrix element (%„8%'o) must
vanish. The individual terms of Eq. (21) are not matrix
elements between properly antisymmetrized. jj-states,
but between individual jj-states coupled to a state of
total angular momentum J.

The principal contributions to isotopic-spin impurity
are seen from Eq. (21) to come from the excitation of a
neutron or a proton from the state e2j2 to the state
44&+1, j&. There are 2(2j&+1) equal matrix elements
(4'oo jo,8+4) corresponding to the perturbation of the
wave functions for nucleons in the shell j2. The total
isotopic-spin impurity which is introduced into the
ground state%'0 by mixing with excited states formed by
excitation of one nucleon is then just

P=Z 2(2jo+1) I
(+"»'o 8eo) I'LEo —E(44~j&)3 ' (22)
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where E—E(e&j&) is the appropriate energy de-
nominator for the nuclear matrix element (+n~o, 8+o).

Using the value v=5/2R' to calculate the impurity
in C", we find for the nuclear matrix elements

(4'iv*„8%'o)=&0.624e'/8,

(0'i"„8%'o)= &0.343e'/R. (23)

These matrix elements lead to an isotopic-spin impurity
for C" of

p =3.59(e'/R)'(Eo —E)—', (24)

B. Contributions to Impurities from
Doubly Excited Shells

The contributions to impurity from excited states
+„„formed by the excitation of two nucleons in states
P„and f„has been assumed to be much smaller than
contributions from states +„of single nucleon excita-
tion. We shall investigate this assumption by first
deriving a general expression for the impurity intro-
duced from states of two nucleon excitation. Analogous
to Eq. (15) we now have

g2

(0'„.,8+o)= —— «hydro(f, *(1)P„*(1)(«s+«o)r» '
2

xL4 (1)0"(2)—0"(2)4.(1)3) (26)

The only nonvanishing matrix elements are then

(+ .,8+4) =& (e'/2)[(4oo jomor44 j4m4lrio 'I r4i jÃzimo jomo)
—(r44jomom4j4m4lr» 'I r4&j&m&nj&&m&)5 (27).

This matrix element can be formed for all permissible
values of m&, m2, m3, and A&4. The total impurity due to

"Contributions from ip~ nucleons must be omitted.

where we have taken Eo—Eip~=EO —Els =ED—E. This
value for p can be compared with the result for the
Fermi gas model'

p= 9.0(e'/R)'(Eo —Eg) '. (25)

The agreement between Eqs. (24) and (25) is good,
but the numerical value found from Eq. (24) will be
somewhat lower than the upper limit on isotopic spin
impurity of C" given in (I). The Eo—E in Eq. (24) is
equal to the separation of the (1s;)'(1p,)' J, T=O
ground state of C" from a J, 7=0, l excited state be-
longing to (1s;)4(1P;)' 2P~ or to (1s;)'2s4(1P;)o. Where
we took Eo—E~ 15 Mev in (I), we shall use the energy
separation 19 Mev of the 1p and 2p orbits of the
harmonic oscillator and thus obtain an upper limit of
1.9)&10 ' on the impurity of C". This should be com-
pared with the previously estimated limit of 7.5&10—'.

The impurity of the alpha particle is very easily
found by using just (4'14„8@o)." If we use a 1s, 2s
separation for He' of 35 Mev, the 44pper limit on the
impurity of the ground state of He' emerges as p 1.3
)&10 '. Such a small impurity justifies considering the
alpha particle as having zero total isotopic spin for
most nuclear reactions involving emission or absorption
of an alpha particle.
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the excitation of nucleons from the shells e&j& and n2j2
to the shells n3j3 and e4j4 will be found by summing the
square of the nuclear matrix elements given by Eq.
(27) over all possible values of the magnetic quantum
numbers with appropriate energy denominators. If we
use the same average energy denominator for all terms
of the sum over magnetic quantum numbers, the total
isotopic-spin impurity of the nucleus arising from the
mixing with excited states formed by exciting two
nucleons is

TABLE IV. Matrix elements for isotopic-spin impurity
from two nucleon excitation.

M = (N&j &N2j &011)Trrg2 '(e&j&n4j4011)
Q]J1%2J2 '@3/3%4J4 M

(1P~)' (1p~)' 0.00425 Mev
(1P&)' 1Pk 2Pk 0.0166
(ts~)' (1P~)' —0.162
(1sy)' 1P) 2P& —0.463

open shells closed shells

Ps=2
23s94

s(j,j, ; j,,j)
XL&0—E(j&,j2, jsj4)j ', (28)

potential when j&m&/j2m2. The corresponding "ex-
change" integrals will be much smaller than the
"direct" integrals.

The equivalent potential is given by the sum

where

s(j„j,; &'„& )
= P I (%„„,6@0)

I

' (sum over magnetic

quantum numbers) (29)

—Q j(2J+1){(ns j&n4j4J I
e'/2r»

I
n& j&n2j&J)'

—2(nsisn4j& I
e'/2r» In~ jin2 j&)

X (n4 j4nsjsJ I
e /2r12I nljlnsjd') (—1) '~'4

+ (n4j 4nsj sJ I
e'/2r&2

I n&j znmj sJ) ) (30.)

Conservation of parity greatly limits the number of
excited states which contribute significantly to the
isotopic spin impurity. The matrix elements which
contribute principally to p& in C" are listed in Table IV.
In evaluating these matrix elements we again do not know
the relative energy separations of the ground state
from states of two-nucleon excitation. Accordingly we
shall use the separation of the individual harmonic-
oscillator states, neglecting the spin-orbit splittings.
Where matrix elements are between states degenerate
on this model, we use the T=O to T=1 multiplet
separation in C" of 15 Mev. We find p2 9.4X10 ',
a 5% correction to the isotopic-spin impurity from
mixing with states of single-nucleon excitation.

V@(rs)= e P ~dryly m*(1)r»'Q&'~(1) (31)

X «x.~" *(1)r -'x.&-'(1). (32)

Make a Slater-type expansion of the integral

d r,)t„p'(1)r gm

—'y„)"'(1)

=P 9R&»(l l)(lm&IP&, (cos&0&2) Ilm&), (33)

where

m&»(l, l) —=
2k+1 t.

R„,(1)R„&(1)rg2-'
2

over all closed shells in the nucleus. The integral in this
expression can be written in terms of the angular mo-
mentum eigenfunctions,

x."'=IR. ()/ j& "(e,~)

by the transformation

Vz(r&) = e Q Q (l-,' jm;I lm&~m, ) (lm&'- m~, I
l-,'jm, )

jmg' mg, mI{,ms

C. The Equivalent Potential COS&dys= COS(ry, rs).
Py(c ocosy )2d( csoM1 )2dlr,

(34)

If we return to Eq. (19) we can see that if the sum
over the states @~~m~ were performed, we should have
for the first term a matrix element for the excitation
of a single nucleon moving in the potential produced
by all the nucleons in the closed shells. The second
term, which we call the "exchange term, " is actually
equal to the first term when e&j&m&=e2j2m2 and re-
duces the sum over m& when j&——j2 by a factor 2j~/
(2j&+1). This means that if one wishes to calculate P
by neglecting the small contributions from true "ex-
change" integrals in the second term of Eq. (19), one
must reduce the sum over the j&

——j2 terms by this
factor, i.e., by 4 when j&=j2——1p; or by —,

' when j&=j&
= is;. This can be regarded as merely subtracting the
self-perturbation eBect. The terms of the second sum
have no simple interpretation in terms of an equivalent

Now choose the coordinate system so that 8&=0 and
cos&e»=cos8&. From Eqs. (42) and (52) of Racah'

(lm& I
Pg(cos&eg2) I imp)

= (—1)~~(2l+1)V(ilk 000)V(ilk; —m&m&0), (35)

where the V(abc;npy) are functions related to the
vector addition coefficients. With this expansion Ve(rs)
becomes

Vr(r2) = es Q 5K&"&(l l) (2l+1)V(ilk; 000) (2j+1)

XW(ljlj; ~~k)Z( —1)"~+1V(jjk; mms0), —(36)

with W(lj lj; —,k) a Racah coefficient. In summing over

j the l values also change. Only even k appear in the
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TAsT.E V. Coulomb potential produced for He4 and C'». and from this derive the result that

g = vr&/R2

0
0.2
0.4
0.6
0.8
1.0
1.4
1.8

$ = vr2/R2

3.00
2.96
2.84
2.64
2.36
2.00
1.43
1.11

Uniform sphere
potential )&e2/R

2.77
2.76
2.56
2.35
2.09
1.84
1.41
1.11

Clg

Oscillator model
potential &(e~/R

v =5/2R&

He4
Oscillator model

Uniform sphere potential )(e2/R
potential )&e&/R v =3/2R&

Oscillator model
potential &(e~/R

v =5/2R&

3.57
3.49
3.14
2.74
2.31
1.95
1.43
1.11

Ve(r) = e'(45K&'& (1P 1P)+2m' &Pi (1s,1s)} (39)

for C".The potential for He4 is clearly

Ve(r) =29K&"(1s,is). (40)

5R&"(1s,1s)= (e'/R) Erf(R(+v)/$,
DR&P& (1P,1P)= e'2 (v/pr) &L——', exp (—vR'P)

+ p (ir/v)'* Erf (Rggv)/gj,
r,/R. —

(41)

Performing the indicated integrations in Eq. (34) we
find

0
0.2
0.4
0.6
0.8
1.0
1.4
1.8

9.00
8.88
8.52
7.92
7.08
6.00
4.29
3.33

8.33
8.20
7.84
7.23
6.47
5.65
4.28
3.33

The sum over the V (PppP 2; —m; m; 0) in the second term
can be shown to vanish, so one has only terms in
which k=o. One can show that

(2l+1)V(llo; 000)W(ljlj; —', 0)

(—1)-+~V(jj0; —m; m; 0) =1, (3g)
Sly~g

sum since V(ilk;000) vanishes unless l+l'+0—=2g is
even.

The sum in Eq. (36) has been carried out over all the
states which protons (and neutrons) occupy in the
closed-shell nucleus and therefore Vs(r) is the electro-
static potential produced by protons in the nucleus.
We shall calculate now Ve(r) for the simple closed-
shell nuclei He4 and C" to compare this Ve(r) with the
electrostatic potential produced by a uniform sphere of
charge. In this way we shall justify the use of this
latter potential in the calculation of the perturbation
of the states of two or three nucleons outside a core
consisting of filled shells.

We shall derive Ve(r) for C" first and shall im-
mediately be able to give VE(r) for He' also. Since for
C" k can only be 0, 2 the sum in Kq. (36) reduces to

Ve(r)/ep 125K&p&(ip~ip) V(110& 000)W(1 pi 1 p
p~ pi 0

3

X P (-1)"~+&V(-', —,
' 0; -m, m, 0)

my'=k

+125K& &(ip, 1p) V(112; 000)W(1 -,'1 -'„-,'0)

X P (—1)-+~V(-P, —;2;—m, m, O)
mi—5

+23K&"(1s,is) V(000; 000) V(0 —,'0 -', ;
—', 0)

a

X P (—1)"~+'V(-', —', 0; —m, m, o). (37)

These values of DR&" (1s,1s) and 5lt&P&(1P, 1P) can be
inserted in Eqs. (39) and (40) to find the effective po-
tentials for C'2 and He4. The potentials are given in
Table V for v=5/2R' for the ip orbits and v=3/2R',
5/2R' for the 1s orbits.

The Coulomb potential produced by the core protons
is seen to be quite well represented by the potential
produced by a uniform sphere of charge. The agreement
of the two potentials is a justi6cation of the method
by which the interaction of the nucleons outside closed
shells with nucleons in the closed shells was included in
the calculation of the isotopic-spin mixing of two- and
three-nucleon states.

The potential given by Eq. (39) is that produced by
the protons in C". The equivalent potential which is
to be used in calculating (4&;,8+p), however, is derived
from Eq. (39) by subtracting the contribution of the
nucleon being excited, this subtraction arising from the
second term of Eq. (19) when ji, mi ——j&, m&. Conse-
quently to calculate (+ivy, 6%p) use

e
Ulv,*=——L30K&'&(1P,1P)+20K&'&(1$,1$)] (42)

2

while for (Vis~, 64'p)

g2

Ulsy= ——L4BR ' (ip, ip)+OR& &(1$,1$)j. (43)
2

The nuclear matrix elements then emerge as

(ei.;,ee,)= (2p[zi„( ip)
('klsi, 6+p) = (2$

~
U isy

~
1$). (44)

These equations can be combined with Kq. (22) to
calculate the approximate isotopic-spin impurity of a
nucleus having closed shells in neutrons and protons
much more easily than by the use of Eqs. (21) and
(22). The error in the isotopic-spin impurity p made by
neglecting the exchange integrals for which j&ns&~ j2ns2
in Eq (19) will .be less than 6%%uo for C'P. This is satis-
factory in view of the uncertainties in the energy
denominators.
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This approach of an equivalent potential has been
used to calculate the isotopic-spin impurity of O' with
the result that P 6.7&&10 s.

D. Impuxities fox Some Nuclei with Open She11s

Having discussed separately the isotopic-spin im-

purity for the ground states of two nucleons outside a
closed shell and of the ground state of a closed-shell
nucleus, we are now in a position to estimate the isoto-
pic-spin impurity in a nucleus with two extra nucleons
or two holes. We have so far shown that the principal
contribution to the isotopic-spin impurity of both the
core and an outside two- or three-nucleon state arises
from the promotion of the principal quantum number of
single nucleon states. We have further shown that the
nuclear matrix elements for such isotopic-spin impurity
can be approximately calculated as the matrix elements
of an equivalent central potential between the excited
and ground states for single nucleons. The equivalent
central potential can be very easily calculated for the
ground states of X=Z nuclei and the corresponding
isotopic-spin impurities immediately obtained. Using
some average energy denominator for all the excited
states formed by exciting a single nucleon from (ej) to
(n+1, j) we have derived. some upper limits on the
isotopic-spin impurity of I.i6 Be8 +10 and N14 The
energy denominator used for the upper limits is the
separation 2hv/3E of two harmonic oscillator states
differing by unity in the principal quantum number
with v= ssR' for He4 and v=5/2R' through the entire

p shell. All the estimates of isotopic-spin impurity
obtained from the shell model calculations of this paper
are then summarized in Table VI.

E. Summary

These numbers can be compared with the estimates
obtained from the Fermi gas model for the upper limit
on the isotopic spin impurity of the ground states of

' even-even S=Z nuclei. The isotopic-spin impurities
obtained from the shell model for the ground states of
Se and C" are approximately 5 the upper limits pro-
vided by the Fermi gas model. A factor of ~~ arises
from the use of the (nl) —(x+1, l) level separation
instead of the multiplet separation. A second factor of

ss arises from the decrease in the interaction of 1P
and is nucleons through the Coulomb potential. This
decrease corresponds to the decreased overlap of the
shell model wave functions relative to the free-particle
wave functions of the Fermi gas model.

It should be remarked that the estimates of im-
purities given in Table VI are probably still over-
estimates since, for example, the separation of the
T=O, J=O state of (is;)'(1p~)' from the T=1, J=O
state of (1sf)'(1pf)r2p; surely exceeds the separation of
the 1p and 2p harmonic oscillator states.

TABLE VI. Isotopic spin impurities from the shell model.

Nu-
cleus He' Lip Bes Blp Nl4 016

EP—g1
(Mev) 35 30.9 25 22 19.1 17.7 16.1

1.3)(10 5 1.0)(10 4 4.4X)0 4 1.0&(10~ 1.9X10~ 3.1X10 g 6.7)&10

The estimates of Table VI were only derived for
ground states. A simple consideration based on Eq.
(44) suggests that the matrix elements between low-

lying 7=0 states and excited isotopic spin T= 1 states
should not be greatly different from the matrix ele-
ments between the ground state and excited isotopic
spin states. The amount of isotopic spin impurity in
these excited states will then depend mostly on the
energy separation of states of different isotopic spin
which have the same total angular momentum parity.
Therefore we do not expect the impurity of states of a
few Mev excitation to be very different from the esti-
mates of Table VI. The isotopic spin impurity of states
of high excitation ()10 Mev), however, is probably
much larger.

The amount of mixing of different nuclear isotopic
spin eigenstates produced by the Coulomb interaction
can be compared with the amount of isotopic spin
impurity deduced from violations of the isotopic spin
selection rule. " The limits on isotopic spin impurity
which have been found in this way by D. H. Wilkinson
and collaborators are in agreement with the impurity
estimated to be introduced by the Coulomb interactions.

The electric dipole selection rule observed in self-
conjugate nuclei has also been shown to be a conse-
quence of charge parity. "The principal effect of the
Coulomb potential in such nuclei is the mixing of
T=O and T=1 states, which are states of different
charge parity. Consequently, the calculations of this
paper show that the violations of the charge parity
selection rule on E1 transitions can also be attributed
to the effects of the Coulomb interactions.
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