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It is natural to expect more collective behavior when
the deformation is appreciable. In the cases of the
double 0+—2+ series in Ne20 the deformations are
apparently not complete (not quite like lines). So, the
4+ levels may be found at lower energies than are
expected from the strong coupling-limit theory. In
general there will be more diGerent degrees of deforma-
tion, when the nucleus gets heavier, between the least

deformed ground state and the highest deformed state.
The spectrum of such 0+ states seems to depend on
where the nucleus is in the shell.
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The splittings of the S~ and So states of Li and the P doublet
states of Li' by the tensor force are calculated by a variational
method which includes the effect of configuration interaction.
Other forces which would contribute to the splitting, such as spin-
dependent central forces or vector spin-orbit forces, are not con-
sidered. The method of calculation is based on the use of a varia-
tional function of the form $=$0+X3'$0, where t' is essentially
the tensor force, treated as a perturbation on a central force
oscillator wave function, $0. The effect of the tensor force is shown
to be equivalent to a mixture of ordinary and spin-exchange
central forces plus a vector type spin-orbit force of rather com-
plicated structure. Using a Hu-Massey Gaussian shape tensor
potential, an S-state splitting of 1.4 Mev is found for Li' and an

inverted P-doublet splitting of 380 kev is found for Li7. A
Yukawa shape potential would give similar results. In view of the
approximations made in the analysis, these results are in reason-
able agreement with the experimental splittings of 3.5 Mev and
480 kev for Li6 and Liv respectively. The tensor force is found to
contribute about 12 Mev to the binding energy of these nuclei
and to introduce a 6 percent admixture of excited states into the
ground state. The importance of configuration interaction is
shown by a second-order perturbation calculation neglecting con-
figuration interaction which gives entirely diGerent results —a
negligible S-state splitting for Li' and a normal P doublet structure
for Liv. The effect of the tensor force on the P-doublet separation
in Be and the F doublet separation in Li is discussed brieQy.

I. INTRODUCTION AND SUMMARY
' /RIOR to the discovery of the quadrupole moment

of the deuteron' and its interpretation in terms of
a tensor force, ' many theoretical studies of the level
structure of light nuclei were made on the basis of
central forces alone. ' ' To allow for the observed 2.3-
Mev singlet-triplet splitting in the deuteron, central
spin-exchange forces were used. In view of the fact
that the tensor force can account for the entire amount
of the deuteron splitting, "it is clear that the level
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structure of other nuclei will also be considerably
aGected by the presence of the tensor force.

In recent years extensive calculations of the level
structure of light nuclei have been made by many
authors' " using the vector spin-orbit force of the
Mayer-Jensen shell model. "Qualitative agreement with
the observed leve1 structure of the p-she11 nuclei can be
obtained in this way. For Li' and Li' practically pure
I.S coupling seems indicated. ' "In the present work we
shall neglect the possible presence of vector-type spin-
orbit forces, and assume that the nuclear potential
consists solely of a mixture of charge- and spin-inde-

pendent central forces plus a tensor force.
Previous studies of the eGect of the tensor force

on light nuclei other than the deuteron have been
concerned mainly with its eGect on their binding
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energy. " One would expect the most spectacular evi-
dence of the tensor force to show up in the splitting
of levels which in its absence, assuming spin-inde-
pendent forces alone, would be degenerate. Such levels,
aside from the singlet-triplet states of the deuteron,
are, assuming the approximate validity of LS coupling,
the 'P' states of He', the "Sstates and the "D states
of Li and the 2P states and the 'F states of Liv. %e
shall primarily be concerned with the splitting of the
'P states of He' and Li~, and the "Sstate of Li' "as
these are expected to be the lowest levels in these nuclei
on the basis of central forces alone. '

DancoG" investigated the splitting of the 'P states
in He' using the Rarita-Schwinger' square well poten-
tial and concluded that the tensor force would produce
a normal P doublet, in contradiction with the experi-
mental level order, with a splitting that was negligible
in comparison with the large experimental value. We
shall see below in Sec. V that an improved calculation,
with a Gaussian or Yukawa potential, gives results
more in accord with experiment.

Calculations on the level structure of Li' including
the tensor potential have been made by Elliott, "
Ishidzu and Obi" and Morita and Tamura. ' These
studies neglected the possible eGects of configuration
interaction. Since the selection rules on the tensor force
are such that its first-order perturbation eGect vanishes
for doublet or S states, which are the states we are
concerned with, and very few, if any, states exist in the
ground state configuration which can interact with
these states in a second-order perturbation calculation,
we can expect that configuration interaction will be
decisive in estimating the eGect of the tensor force.
We shall see below that this is indeed the case.

The plan of this paper is as follows. In Sec. II the
level structure of Li' and Li~ is calculated by considering
the eGect of the tensor force as a perturbation of the
level structure due to the central force. Single-particle
harmonic oscillator wave functions' are used and only
interactions among the states of the lowest configura-
tion, s'p", are considered. Similar calculations have been
performed by Elliott, " Ishidzu and Obi, ' and Morita
and Tamura. " The results of this method are very
unsatisfactory, the calculated splitting of the 'S& and
Sp levels of Li being negligible, and the calculated

order of the 'P levels of Li' being the reverse of the
experimental order.

In Sec. III a perturbation method to take con-
figuration interaction into account is developed. The
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method is based on a variational procedure first con-
sidered by Lennard-Jones, '7 who suggested the use of a
variational function of the form lt p+XVlgp, where Pp is
the unperturbed wave function, that due to the central
force in our case, V is the perturbation potential, the
tensor force, and X is the variational parameter. ' We
shall use a modification of this method, replacing V by
a function with a more suitable radial dependence. "
The method is then applied to the deuteron as a test,
and the necessary formalism for applying the method
to other nuclei is developed along the lines used by
DancoG"

To gain further insight into the variational method,
it is applied in Sec. IV to the 0. particle to find the con-
tribution of the tensor force to its binding energy. The
splitting of the 'P states of He' is then calculated in
Sec. V, and it is now found that the 'P3i2 level lies below
the 'P3~2 state, with a level separation of 1.0 Mev, to
be compared with the observed splitting of at least 2.5
Mev."In Sec. VI and Sec. VII the variational method
is applied to the "Sstates of Li' and the 'P states of Li
respectively. In contrast to the results of Sec. II where
configuration interaction was neglected, qualitative
agreement with the experimental data is now obtained.
An inverted P doublet is now found for Li~ with a
splitting of the same magnitude as the experimental
value of 480 kev, while for Li a splitting of 1.4 Mev for
the S states is obtained, which, while less than one-half
the experimental value of 3.5 Mev, is some ten times
the value obtained in Sec. II.

Most of the calculations are performed using a
Gaussian potential for ease in computing matrix ele-
ments. The potential we shall use is one given by Hu
and Massey"

V12 Vials+/12 Vp exp( —P' 12 )
+TpS„exp(—r'r„'), (1)

where V~&2 and t~2 are the central and tensor potentials
respectively, Vp and Tp their respective strengths, P and
r their inverse characteristic ranges, and S~~ is the
tensor operator,
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where P and 7 are in units of @ac'/es. ss The central force
is further assumed to be of Majorana space-exchange
character, so that the lowest nuclear states will be those
having maximum spatial symmetry. '" Knowledge of
the shape and strength of the central potential will not
be necessary for most of the calculations except insofar
as it determines the shape of the wave functions (espe-
cially the nuclear radius), quantities which we shall
determine or assume from other considerations, or use
as adjustable parameters. The use of an exchange tensor
operator, S»P», where P» is the Majorana space-
exchange operator, "instead of S~2 in the tensor poten-
tial, will be shown below to give practically the same
results as a nonexchange tensor force. The results also
will be found to be largely independent of the sign of
the tensor potential.

II. P-SHELL CALCULATIONS

We 6rst calculate the level structure of Li' and Li',
conining ourselves to the states of the s'p" configura-
tion."We assume independent particle wave functions
with a Gaussian radial dependence of the form
exp( —n'r'), with a being the nuclear radius parameter. '
Since we are assuming here that the s shell is closed and
since we are interested only in the relative spacing of
the levels, we can neglect completely the particles in
the closed s shell.

An estimate of 0. can be made from the Coulomb
energy differences of the pairs He —Li and Be —Liv.
Using the formulas of Feenberg and Wigner, ' this leads
to the value 0.=1.0 for Li' and 0.=1.2 for Li'. If we
identify the root-mean-square value of the radius with
the value g=1.2~'~'X10 " cm," we hnd O, =1.2 for
both Li' and Li~. We therefore adopt the values n= 1.1
for Li' and o.=1.2 for Li~ as the best estimates for o..
Most of the results will be presented as a function of o, .

The Majorana central force matrix elements for Li

TABLE I. Majorana central force matrix elements for Lie and
Li' (Feenberg and Wigner). ' The energy of the lowest state has
been subtracted from all matrix elements.

04

0.5

0.2

00 0.2 0.4 0.6 0.8 1.0 1.2 1.4
7

FIG. 1. p-shell integrals as a function of y, the square of the
ratio of the range of the nuclear potential to the nuclear radius.
Based on a Gaussian shape for both the potential and the wave
function. The central force matrix elements are functions only of
E and Lo, while the tensor force matrix elements are functions
only of 3P and 2P.

and Li' have been given by Feenberg and signer' and
are reproduced in Table I. The 6rst column of Table I
lists the various states, the first superscript being the
spin multiplicity for the protons, the second superscript
the multiplicity for the neutrons; the second column
gives the position of the levels with respect to the
position of the lowest state; the last column gives the
partition of the symmetric group to which the spatial
wave function of the p particles belongs. The integrals
L and E are de6neds as L,= VsL', E= VoK', where

I.'=/, " xt'xs'R'(r&)R'(rs) J(rts)dnrdns,
J

Lj6 Li7 P=c' . . ' xrytxsysR'(rr)R'(rs) J'(rts)derdvs,

»P 2L+K (1+1)—
"D 3K (2)—
22S p (2)

2'S —6L,+7E (1+1+1)
»D —3L+E (2+1)
"D 3L+K (2+1)—
s'P 3L+3K (2+1)—
saP 3L+3K(2+1)— '

—5X (3)
Qlp p (3)

~ Unless specified otherwise, all lengths are given in units of
es/mc'=2. 82X10 "cm.
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formed which do not involve the nucleon momenta.

Similar calculations have been reported by Elliott, 0 Ishidzu
and Obi and Morita and Tamura 3
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where R(r) and J(r,s) are the radial dependences of the
single-particle wave function and the central potential
respectively, and c is the normalization constant for a
p-particle wave function. For the Gaussian choice of

R(r) and J(rrs), as we are assuming, the integrals L' and
E' are given by'
R'0 ~3/2/4(~pl)7/2 LO (472+4~+3)~3/2/4(~+])?/2

(8)

where p=n'/P', the square of the ratio of the central
force range to the nuclear radius. Graphs of E' and L,'
are given in Fig. 1.

The tensor force matrix elements for all p-shell
nuclei can also be expressed in terms of two integrals,
3E and X, and the pertinent tensor matrix elements for
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Li and Li' are listed in Table II for the case of an
exchange tensor force as well as for an ordinary tensor
force. As was mentioned earlier, the first-order tensor
matrix elements vanish for doublet or 5 states. Table II
contains for Li~ the matrix elements only for those
states that interact directly with the 'P or 'F states, as
the latter pairs of states are the ones we are interested
in. The integrals M and X are defined by 3f=TpM',
Ã= TpXP, with
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Ordinary Tensor

Lifi

—(1/2)M
(1/10)M
—(1/10) (7M—4N)
+ (1/10) (7M-4N )
—(1/35) (7M 4N)—
—(2/+5) (M—N)

Li7

(1/2+10) (3M—2N)
—(1/20}(3M—2N)
(3/10&2) (M—2N)
—(3/20) (M—2N )
I (21)s/70j(7M —8N)
(3/35) (7M—4N)
—(3/70v2) (7M—4N)
—(1/2)N
(2/5)N
—(1/10)N
(3/10)N
0
—(3/14)N
(3/35)N

Exchange Tensor

—3f
(1/2)M
—(1/10)M
same
same
same
same

same
same
same
same
same
same
same
(1/4) (3M—2N)
—(1/5) (3M—2N)
(1/20) (3M—2N)
—(3/20) &7M—2N)
0
(3/28) (7M—2N}
—(3/70) (7M 2N)—

(6)
C t

1P= —Lrr'rs' —3(rr rs)(rts rr)(rrs'ls)/r$? ]3J
X&'(rr)&'(rs)&(F12)deltfe2,

where J(rts) is now the radial dependence of the tensor
potential. For the case of Gaussian wave functions and
potential, the integrals are given by
Mo 2ys s/(y+ 1)on Xo (2y+7)ps to/2 (y+ .1)v n (7)

where now p =n'/r', the square of the ratio of the tensor
force range to the nuclear radius. If J(rrs) is the same
for both the central and tensor potentials, as they are
for the Hu-Massey potential, then it is easily seen that

Mo = 2 (I.o —3Eo) . (8)

Graphs of the functions 3P and 1P are given in Fig. 1.
For the value o.=1.1, we have for the Hu-Massey
potential

E=—0.68 Mev, M = —4.0 Mev,

I.= —5.4 Mev, Ã = —4.9 Mev.

TABLE II. Tensor force matrix elements for Li and I i .

S~a
I I I I I I I I I I I

0.4 0.6 0.8 i.O LP.

I I8—
(b)6—

cn 4—
o 2

I I0 04

I I I I I l I I

O.S 08 1A) 1.p

Fzo. 2. (a) position of the states of the ssps configuration of Lis
with respect to the position of the 'So state, as a function of a,
the nuclear radius parameter. Based on the Hu-Massey Gaussian
potential and neglecting con6guration interaction. The experi-
mental value of a is ~1.1. (b) The percent admixture of sDv state
introduced into the 'S& ground state by the tensor force.

'7 That the tensor force might account for the magnetic moment
of Li' has been pointed out by K. Komoda and M. Sasaki, Progr.
Theoret. Phys. Qapan) 8, 669 (1952)."N. A. Schuster and G. E. Pake, Phys. Rev. 81, 157 (1951).

By using the matrix elements of Tables I and II, the
level structure of Li6 can then be readily computed.
The tensor force mixes the 'SI and 'DI states, the other
states being left pure. The resultant level separations
for Li', assuming a nonexchange tensor force, are given
in Fig. 2(a) as a function of n. For an exchange tensor
potential, the P-state levels should be displaced an
equal amount below the position of the 'Pi state.

A comparison of Fig. 2(a) with the known level
structure" of Li' shows that, on this model, the tensor
force cannot account for the main features of Li'. The
calculated sSr —'So sPlitting is only 210 kev, 6% of the
experimental value, and the order of the D states is
incorrect. (Experimentally, the 'Ds state lies lowest. )
Only in the case of the magnetic moment is there im-
provement over the pure I.S coupling value. The ex-
perimental value of the magnetic moment, 0.822 nuclear
magnetons, indicates a D-state admixture of 10%,
which is in rough agreement with the calculated value
of 6.4%%uo as shown in Fig. 2(b).sv However, the calculated
quadrupole moment is —10)&10 ' cm', some 20 times
the experimental value of I0.5~ X10 "cm'.'

The calculated splittings of the 'P and 'Il states of
Li are also in strong disagreement with the experi-
mental values. Using the matrix elements of Table II
we hnd, for o.=1.2, a splitting of 82 kev for the 'P
states, with the 'PI~2 state below the 'Pa~2 state, in
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contrast to the experimental value of 480 kev with the
reverse order for the levels. The calculated result that
the 'P&~2 state should lie below the 'P@2 state results
from the fact that the only states in the s'Ps configura-
tion with which the tensor force permits the 'P' states
to interact are the 4P and 4D states, and in both cases
the Pj~2 state has larger matrix elements with these
states than does the 'Psts state (see Table II). Similar
results hold for the 'F states. The calculated splitting
of the 'F states is 98 kev with the 'F@2 state below the
'F7~2 state. If we identify the 4.6 Mev and 7.4-Mev
levels of Li with the 'F&&2 and 'F5~2 states, respectively,
then we have as striking a disagreement with the
calculated values as exists with the P states. The use
of an exchange tensor force leads to almost identical
results since the 'P and 'F states are symmetric in the
spatial coordinates of the three p-particles.

III. CONFIGURATION INTERACTION-
VARIATIONAL METHOD

A. Variational Method

To include con6guration interaction in computing
the eGect of the tensor force we shall use a variational
method. We use as the variational wave function

P=Pp+Xt'fp, (10)

~ Strictly speaking, the perturbation potential should also
include the difference between the central potential and the
"effective" oscillator potential for which the Gaussian functions
are the eigenfunctions. However, this central perturbation poten-
tial will be neglected as it a8ects the splitting of the levels only
in higher order.

30 The introduction of t' in place of t is similar to the frequently
used variational function tt=&OL1+XVf(r)7 where f(r) is a
function containing additional variational parameters Lsee, e.g. ,
references in footnote 197. Our choice of the form (10) has the
advantage that it is no more difFicult to compute with than the
poorer function fp+MPp.

where fs is our assumed independent particle oscillator
wave function, the same wave function used in Sec. II
to represent the effect of the central forces, but now
with the closed s-shell wave function included. The
function t' is given by

t'=s Q t;, t,,'=(nr, ;)"t;;, (11)
iwj

and I, is the variational parameter to be varied so as
to minimize the energy of P with respect to the total
Hamiltonian. If the factor (nr;;)" were omitted, then t'

would be just t, the total tensor potential, and (10)
would be of the form f=fs+XVPs, where V is the
perturbation potential, "a variational method that has
been much used in problems where configuration inter-
action is of importance. 5 ' ' The nondimensional factor
(nr;;)" is introduced so that by adjusting the integral
parameter rt, t'Ps in (10) will have approximately the
proper radial dependence to represent the eGect of the
perturbation potential, t."From the variational view-

point, fs need not be the solution of the unperturbed
Hamiltonian, and indeed it is best if the nuclear radius

parameter, o., be so chosen to represent the experimental
radius.

If the total Hamiltonian, 8, be written in the form
H=Hs+t, where Hs is the central part of H, i.e., the
kinetic energy plus the central potential, we have

(1 ol tilt'o&=(fol 1'Ifo&=0,
(12)

Q, IH,fly, &= Q, IH,t'lit, &=0,

if 4s is a pure S state or a doublet spin state, which are
the only states we are concerned with here. The triplet
D states of Li' require a modified treatment and will
not be considered further in this paper. "For X=O we
have the unperturbed energy

Eo= (it olHolgo&, (13)

( t't ) =-,' (t't+tt'),

e'= t'Hot'+t'tt' Eot't'. —
(16)

The value of X that minimizes hE(X) is then obtained
by differentiating (15), and is given by

(")
Xs= {1—(1+4k)'}, (18)

2((t't }&(t't'&
where

(19)k=—((t't l)'(t't'&/&")'

If we assume k(sr then the square root in (18) may be
expanded in a power series in k and we obtain

((t t ))
{1—k+2k' —5k'+ . }

=—(( t't I)/(e') (k small).

Substituting (19) into (15) we obtain

t) E—=AE(Xs) =As((t't I)
((1't'I&'

{1—k+2k' —5k'+. }(')

(20)

(20a)

=—(( t't ))'/(e') (k small). (21a)

The quantity AE32 represents the additional variational

"Note that in general t' does not commute with t. This can
be seen most easily from the fact that, e.g. , t» does not commute
with t~~. While t, t', (t't ) are Hermitian, t't is not.

"For the special case t'=t, Eq. (21) is identical with the per-
turbation expression given by Wigner, reference 18.

fs being assumed normalized. For another values of X,
we have

E())=g IHs+tly&/g Ig& (14)

The addition to the energy due to the introduction of
a nonzero X is then

AEP ) =E(X)—Es
= (»((t't t&+) '("&)/(1+) '(t't'&), (»)

where we have used the notation (A&=—QsIA lite& since

Ps is the only wave function appearing explicitly in the
matrix elements, and where"



LEVEL STRUCTVRE OF Li~ AND Li 263

energy contributed by the tensor force."The splitting
produced by the tensor force of a pair of central force
degenerate levels is then given by the difference
between their respective values of AE. We designate
this splitting by AAE. '4

The amount of excited state, Apt'fp, is then given by

0
1.25
1.60
1.25

(Hp)
Mev

0
1.8
3.1
1.8

Binding energy
Mev

0
0.1
1.9
0.5

TABLE III. Deuteron binding energy.

Percent D
state

0
0.3
3.7'

5.2
Xp (A )/(1+Xp (A ))=k(1—3k+10k —' ' ') (22)

=k (k small). (22a)

Thus the expansions in powers of k are justified provided
the tensor force does not introduce more than 25%
excited state into f Lsee Eq. (18)7.

Equation (21a) for AE is closely related to the usual
second-order perturbation formula

~&=Zs'I QsI&IA) I'/(&p —&p). (23)

Sy defining an E, an effective average energy for the
states fs, Eq. (23) can be rewritten as

»=8 o I
&'I 4)/(~p I). — (24)

To see more clearly the relation between Eqs. (21a)
and (24) we make the restriction 1'=t Equatio. n (21a)
is then exactly in the same form as (24) with E being
just the energy of the state hfp with respect to the total
Hamiltonian. In the general case where t'Wt, Eq. (21a)
may be put in the form

((1'1 I)'/(1'1')
AE=

jvo E
where E is now the energy of the state t'Pp.

B. Application to the Deutexon

As a test of the variational method we shall first
calculate the deuteron binding energy. We use a
Yukawa potential suggested by Pease and Feshbach"
which gives the correct binding energy, 2.23 Mev, when
the wave equation is solved exactly. The potential is"

Vrs —V@+1=Vpe ~"»/Prts+T+tse '"»/rr», (26)

Vp= —46.1 Mev, P=2.38,

To———24.9 Mev, v = 1.69.

For Pp we choose the simple function

Pp
——(n'/s. )&e- "amp, (27)

3 The additional binding energy due to the tensor force is
somewhat less than the magnitude of hE since if the tensor force
were absent the appropriate value of a for p0 would be somewhat
smaller than for p. This effect is particularly pronounced for the
deuteron Lace Sec. IH(b) j where all the binding energy comes
from the tensor force, but should be negligible for the lithium
nuclei. On the other hand, the contribution of the tensor force to
the energy of the state P, (p~t~g)/Q ~rp), can be shown to be
approximately 26K

~ It is perhaps worthwhile to point out that while the varia-
tional value of AE must be smaller in magnitude than the accurate
value (assuming that n is chosen properly) this need not be true
for b,hE, since the latter is an energy difference."R.L. Pease and H. Feshbach, Phys. Rev. Sl, 142 (1951).We
neglect a very small amount of spin-exchange force in this
potential.

where a~0,2 is a triplet spin function. The assumed vari-
ational function is then of the form

p =
I 1+)%.(nr) "t7lt p. (28)

The true D state part of P has a node at the origin, so
that we can expect that the optimum choice for the
exponent m to be at least 2 for the Yukawa potential.
The unperturbed Hamiltonian, IIo, is the sum of the
kinetic energy operator, E, plus U&. For a given choice
of m and n the various matrix elements are readily
computed since they involve only elementary integrals.
The maximum binding energy for various choices of n,
and the associated values of n, AE, and the percent D-
state admixture, are tabulated in Table III. We see
from Table III that for the choice v= 2 the associated
binding energy is 1.9 Mev, close to the experimental
value of 2.2 Mev. This is in spite of our poor choice for
its which has a sharp peak at the origin. 'P The value of
hE for n=1.6 is about twice the additional binding
energy contributed by the tensor force."The D-state
admixture is found to be 3.7% which agrees with
the magnetic moment data. Since the value o.=1.6
is much larger than the correct asymptotic value,
rr=0.65, f is too compact and hence the computed
quadrupole moment is found to be about one-half the
experimental value.

The various matrix elements for m=2 are given as a
function of o. in Table IV. We 6rst note that the energy
of the D-state part of P, 1'Pp, is very high, 142 Mev for
n= 1.6, thus indicating considerable configuration inter-
action. This is due both to the complicated angular
dependence of the tensor force and to the poor choice
for the shape of Pp. We also see that the value of (e')
Lsee Eq. (17)7 is determined almost completely by the
kinetic energy term. For this reason, in evaluating (e )
for other nuclei we shall make the approximation that

(29)

The kinetic energy operator, E, will be taken to be of
the form

E= —(h'/2M) P; 6;, (30)

where the sum extends over all X nucleons, and
M=Mp/(1 —1/E), where Mp is the mass of a nucleon,

s' A. Wilson LProc. Cambridge Phil. Soc. 34, 365 (1938)g has
shown that a trial function of the form P=e " gives a good
estimate of the binding energy of the deuteron when pure central
forces are used. Our value of a=1.6, while considerably di6erent
from the correct asymptotic value, o.=0.65, is approximately the
same value as found by Wilson. The large departure from the
asymptotic value is simply a reaction of the incorrect shape
assumed for $0.
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TABLE IV. Deuteron matrix elements for m=2.

(t'&t') (t'V t') (t'tt') (eg)
Binding Per-

|',t't') (t't') —d,B energy cent D
Mev Mev Mev Mev state

(Ho) (t't') (t't')
a Mev Mev Mev

1.25
1.50
1.60
1.75
2.00

1.79 105
2.68 125
3.14 132
3.96 144
5.63 166

—7.3—87—9.2—10.1—11.7

15 8 111 3 35
18.4 132 4.49
19.4 139 5.00
21.2 151 5.72
23.9 172 6.96

1.56 3.1
1.81 3.5
1.86 3.7
1.76 3.9
1.33 4.2

and the factor (1—1/Ã) allows approximately for the
spurious kinetic energy of the center-of-mass motion
resulting from our use of independent-particle wave
functions. ' 4

C. Operator Formalism

The matrix elements (I t't j), (t't'), and (t'Et') contain
many terms since t' and I, are sums of two-particle
operators. Thus (It't)), for example, contains three
distinct types of terms, (t; t,;), ((t; t;&+t,;t;&')/2), and
(t, t&t) where i, j, 0, l are different particle labels. Fol-
lowing DancofP' we refer to such terms as two-, three-,
or four-particle terms, respectively, and similarly for
the terms in (t't') and (t'Et'). sr The same nomenclature
will be used also for the respective operators them-
selves. It is also convenient' to resolve each operator
into parts which behave as pure scalars, vectors,
tensors, etc., under separate spatial or spin space
rotations, each part transforming as a scalar under
combined space and spin rotations. We shall call such
parts scalars, vectors, etc., respectively, and shall also
so designate their resultant matrix elements. For
doublet states, as occur in the lowest levels of He' and
Li', only the scalar and vector parts of the various
operators give nonzero contributions, while for S states,
which occur in He' and Li', only the scalar parts give
nonvanishing contributions.

The resolution of the various operators is readily
accomplished by standard group-theoretical tech-
niques, """and we find the following. The two-particle
terms in (t't I have the scalar part

(5t, t,s)=s2f(r, s)f'(r, s) (3+a, .a,), (31)
where

tls f(r12)512, tls —f (rrs)512 ~ (32)

The scalar part of the three-particle terms in It't) is
given by

5(( tis'trs )+I &rs'trs ))= Lf'(rrs) f(rrs)+ f'(rrs) f(r») j
XL3(r12'rls)'/r12 rls 1$(&2'as). (33)

The scalar parts of the corresponding terms of t'$' can
be obtained from Eqs. (31) and (33) by replacing f(r;;)
by f'(r;;). Because of the factor L3(r» r»)'/r&s'res 1$
the matrix element of (33) can be expected to be an

"The one-particle sum in the kinetic energy operator, E, is
kept intact in this connection."F.. Wigner, Grttpperttheoree (Friedrich Vieweg und Schn,
Braunschweig, 1931).

ee A. M. Feingold, Princeton thesis, 1952 (unpubhshed).

order of magnitude smaller than the matrix element of
(31).We shall therefore neglect all three-particle terms:
in computing the scalar matrix elements of It't) and
t't'. For a similar reason, the c'ontribution of the four-
particle terms in It'tf and t't' can be expected to be
even smaller and hence will also be neglected. The same
reasoning can be applied to the operator t'Et' and we
shall retain only its two-particle terms. For t'Et' we find

5(tls Etls ) (ti /M) (3+al' O2) jf (rls) gs As

+2f'(res)res A+2f'(rrs)rrs'V (Vr —Vs)
—gf'(r»)r» V —4Lf'(r»)'/r»'jr&s'(V& Vs)), (34)

where

Vrgf (r&s)/r&s j A ~1Lf'(r&s)/r&s j (35)

AI, and V~ being the Laplacian and gradient operators
respectively.

The vector part of t~2'Et~2' is"

V (t,s'Et»') = (9iVt'/fV) P'(r, s)'/ris'j
X(at+as) (rrsXLVr —Vsj)). (36)

We neglect the vector parts of the three- and four-
particle terms of t'Et'. To compute the vector parts of
( t't ) and t't' it is necessary to consider the three-particle
terms in these operators as their two particle terms do
not possess a vector part. "The vector part of the three-
particle terms of I t't 't is given by's

V(I t12 tls I+I tls t12))

(9/2)Lf ( lsr)f( l r)+sf (rls)f(rls) j
XL(rls' rls) (rrsXrrs)/rls rts j (asXas). (37)

For t't', replace f(r;,) by f'(r;, ) in Eq. (37).We neglect
the vector parts of the four-particle terms in (t't) and
3't'. In applying the above formulas we shall use the
abbreviated notation

5,= (5(( t't))), S,= (5(t'Et')), S,= (5(t't')),

V& ——(V(I A j)), Vs ——(V(t'Et')), Vs=(V(t't')).
(38)

The use of an exchange tensor, t;;I';;, instead of the
ordinary tensor force assumed above does not change
any of the above formulas for the two-particle operators,
since I',;I'„=1.Formula (37) will be changed, but for
the spatially symmetric wave functions we are con-
cerned with, it can be shown that the value of V» so
obtained is the same as for a nonexchange tensor
force. Thus within the approximations we are making,
all results obtained with the variational method are
independent of the exchange nature assumed for the
tensor force.

IV. BINDING ENERGY OF He'

As an additional test of the variational method we
shall calculate in this section the contribution of the
tensor force to the binding energy of He' and shall
compare the results with the more accurate calculations
of Irving. "The matrix elements for He4 also occur as
part of the later calculations on He', Li', and Li'.
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FzG. 3. Contribution of the tensor force to the binding energy
of He' as a function of e, the nuclear radius parameter. The experi-
mental radius is given by a=1.2. The solid curves are based on
the Hu-Massey Gaussian potential of Eqs. (1) and (3) for various
values of the shape parameter, n. The dashed curve is based on
the Pease-Feshbach Yukawa potential of Eq. (26) as ca1culated
by sterner. a

40 F. Werner, Masters thesis, University of Pennsylvania, 1954
(unpublished).

For fs we assume the wave function

Pe(He4) =cA(12)A (34) exp{—n' P; r '} (39)

where the particle labels 1, 2 refer, say, to the neutrons
and 3, 4 to the protons. The functions A (12) and A (34)
are the antisymmetric singlet spin functions, and c is
the appropriate normalization constant. The initial
wave function, fs, is a pure 'Ss state, and Qs is thus a
pure 'Ds state. The various matrix elements (jt'tI),
(t't'), and (3'Et') are readily evaluated subject to the
approximations given in Sec. III (only the scalar parts
of the matrix elements are nonzero). Some details of the
calculations together with final explicit formulas for the
matrix elements are given in the Appendix. The final
results for d E for three values of n, the integral param-
eter in the definition of t', which determines the radial
behavior of the D state Lsee Eq. (11)j, are shown in
Fig. 3 as a function of n, the radius parameter. We see
that the value n=i is the optimum choice, as might
have been anticipated from the previous deuteron
calculations since we are now using the Hu-Massey
Gaussian potential instead of the singular Yukawa
potential. For 0.= 1.2, which we assume gives the proper
radius for the o.-particle, we find AE= —7.9 Mev, with
a D-state admixture of 6 percent.

Figure 3 also includes the value of DE obtained by
Werner" using the same method as above but with the
Pease-Feshbach potential of Eq. (26) (with e= 2)
instead of the Hu-Massey potential. For 0,= 1.2,
Werner" finds AE= —10.7 Mev, with a D-state admix-
ture of 9 percent. These values can be compared with
the more elaborate variational calculations of Irving, "
who found, using the same Pease-Feshbach potential,
a D state admixture of 2.6% with the tensor force

V. He' P-DOUBLET SPLITTING

Although the ground state of He' is a virtual state,
we assume, following Dancofr', "a bound state form for
Ps. For the 'P@s state (m, =3/2) we take for Ps the
antisymmetrized form

as= CA (12)LA (34) sP(5)+A (45),P(3)
+A (53)n4P(4) j exp{—n' P r'} (40)

where the particle labels 1, 2 refer to the protons and
3, 4, 5, to the neutrons, and, e.g., P(5) = (xs+iys) Th.e
remainder of the notation is the same as in Eq. (39).
The 'P&~2 state need not be considered explicitly as the
scalar parts of its matrix elements are identical with
the corresponding ones for the 'PS~2 state, while the
vector parts of its matrix elements are twice (with a
change in sign) the corresponding 'Ps~s matrix elements
(the Lande interval rule).

The splitting, AhE, of the two P states is given by
the diGerence between the values of hE for the two
states. Using the approximation (21a) for d,E, an ap-
proximate formula for AAE in terms of the matrix
elements for the 'P3~2 state alone is then

dAE= —6Vt(St/Ss)+3Vs(St/Ss) p (41)

where we have assumed that Vt/Sr and Vs/Ss are small
quantities. A negative value for AAE corresponds to the
'P@2 state being below the 'P&~~ state. The average
(weighted) variational displacement of the levels, due
to the tensor force, is then given by

(~~)A„=—Sts/Ss.

The splitting DhE will in general be much smaller than
(~z).,

Some details of the calculations and the final for-
mulas for the matrix elements for the 'PS~2 state are
given in the Appendix. The resultant value of AE as a
function of n, for several choices of the parameter e,
is shown in Fig. 4(a). The choice n = 1 is again found to
minimize AE for the Gaussian tensor potential and thus
presumably gives also the most reliable value for the
level splitting. The calculated splitting for m=1 is
shown in Fig. 4(b). For n=1.2, which again we take
as the most appropriate value, we have a splitting of
1.0 Mev, with the 'P@2 state lying below the 'P~~2 state.
Figure 4 also includes the results of a similar calculation
using the Pease-Feshbach potential of Eq. (26) as
calculated by Werner. "Werner finds a splitting of 1.3
Mev, again with the 'P~g~ state below the 'P~~~2 state,
and a 9% excited state admixture in the 'P3/s state.

"This latter value is not given explicitly by Irving but is easily
deduced from his matrix elements.

[increasing the binding energy by 6.1 Mev. 4' Our larger
-'- value of the D-state admixture is undoubtedly due to

our poorer shape for Pe, and consequently also the
poorer form for t'fs as compared to Irving's more ac-
curate wave function.
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FIG. 4. (a) Contribution of the tensor force to the binding energy
of the 'I'3/2 ground state of He~ as a function of a, the nuclear
radius parameter. The experimental "radius" is given by o.=1.2.
The solid curves are based on the Hu-Massey Gaussian potential
for various values of the shape parameter, n. The dashed curve is
based on the Pease-Feshbach Yukawa potential as calculated by
Werner. ~ (b) The oFo/o Ff/o separation as a function of a. The
solid curve is based on the Hu-Massey potential with I= 1, while
the dashed curve is based on the Pease-Feshbach potential as
calculated by sterner. ~ A positive value of the separation cor-
responds to the 9'3q2 state being below the 2p'1/2 state.

4~ If the virtual nature of the levels were taken into account,
the predicted value of the splitting might difter considerably from
the values given above, but it does not seem likely that it would
be increased suKciently to agree with the very large experimental
value.

3 The results of Table V are based on the Gaussian potential
of Eq. (1) using the parameters of Zq. (3). To find the effects of
changing the parameters T0 and r we need only note that the
dependence of roE (and also roaE) on To and r is of the form
(Too/o )F(////r). The value of roE (or DroE) for a different choice,
T0', r', can then be obtained from Table V by using the formula,
DE(a, To', r') = (r/r')o(To'/To)oroE(nr/r', To,r)

While the order of the states agrees with experiment,
the calculated splittings are much smaller than the
experimental value of at 1east 2.6 Mev. 4'

The numerical results for the Gaussian potential,
with m=1, are given in more detail in Table V.4' The
second and third columns give the kinetic energy of the
states fo and f'Po, respectively. The great difference in
kinetic energy (over 100 Mev for rr=1.2) shows the
importance of states from highly excited configurations,
and also justifies the approximation of Eq. (29).
Because of this great energy diGerence the percent
excited state admixture into fo, given in column 6 of
Table V, is small even though the values of AE are
quite large. The last two columns of Table V illustrate
the fact that the splitting of the P states results from
two competing effectsis

t see Eq. (41)). The first term
on the righthand side of Eq. (41) favors the Po~o state
as the ground state and is due to the 'P3~~ state having

larger matrix elements with states of higher configura-
tions than does the 'P~~2 state. The second term of Eq.
(41) favors the 'Pt/s state as the ground state and is a
reQection of E being larger for the 'PS~2 state than for
the 'P&~s state /see Eq. (25)j.

The large discrepancy between our results and those
obtained by DancoG, " who found a normal doublet
structure with a small level sp1itting, seems to be due
to a number of factors. Firstly, the use of a variational
function oto+Xt'ot/o instead of ots+Xffo, which is what
DancoG essential1y used, increases the calculated eGect
of the tensor force considerably. (See Fig. 4(a) where
the curve for n= 0 corresponds to setting t'= t.)
Secondly, we have used a Gaussian shaped potential
and Gaussian wave function instead of the square well
potential and exponential wave function used by
DancoG. This has the same eGect as using a much
smaller nuclear radius, which, as we see from Table V
and Eq. (41), favors an inverted doublet structure and
a large level splitting.

VI. 8 STATES OF Xi'

To calculate the separation of the '50 and 'S~ states
of Li' due to the tensor force we calculate the value of
hE for each state separately, the diGerence between
the two value of AE then being the splitting, AAE, of
the states. The calculation of AE for each state is
similar to the He' calculation, as again only the scalar
parts of the operators give nonvanishing contributions
to the matrix elements, but the calculations are now
much more complicated since we have six nucleons to
deal with instead of four. For lt o we use the same wave
functions as in Sec. II, but now include the o. core.
Thus we take for fo,

TABLE V. He' P doublet states as effected by Gaussian tensor
force (calculated for n 1). =

«'Kt')b Per-
cent

(X)a (t't') —LLBe —hd Bd exc. 6 V1(S1/S2} 3 Vl(S1/S2) ~

a Mev Mev Mev Mev statee Mev Mev

0.6 13 98 2.7 —0.10
0.8 23 117 5.1 —0.08
1.0 36 139 7.9 0.27
1.2 51 165 10.6 1.04
1.4 67 194 12.7 2.10
1.6 90 226 14.2 3.16
1.8 110 264 15.7 4.57

2.6 0.05
4.1 0.35
5.1 1.15
5.7 2.46
5.7 4.12
5.6 5.68
5.3 7.00

0.16
0.44
0.85
1.30
1.70
2.05
2.27

a Kinetic energy of unperturbed initial state fL
b Kinetic energy of state t'Po admixed into 2Pg/2 state.
& Variational contribution of the tensor force to the binding energy of

the ~Ps/g state.
& Splitting between the ~P1/s and 2Pgls states. A positive value for —h&B

means that the ~P3/q state lies below the 2P11s state.
e Percent excited state admixed into the ftP3~& state by the tensor force.

lf o('5,)=c, exp( —u' g rjs)g, (r, r,)A (12)A (56)o,/i,

lf o('So) =cs exp{—o.' g r/s) (43)
Xg„(ro r4)A (12)A (34)A (56),

where P„means the proper sum over the separate
permutations of the neutron labels 1, 2, 3 and the
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TAaz.E VI. The 'S0 and S1 states of Lis as eftected by the tensor
force. Based on Hu-Massey Gaussian tensor potential.

(K)a
Mev

(t'Kt')b

(t't')
Mev

+go
Mev

-aaBd
Mev

Per-
cent
exc.

e

Magn.
mom. &

nm

Quad.
mom. g

10» cm~

0.6
0.8
1.0
1.2
1.4
1.6
1.8

17
31
48
69
93

122
155

96
113
135
161
192
226
267

3.8 0.65 3.6 0.896 7.0
7.0 1.03 5.5 0.908 9.4

10.3 1.31 6.6 0.918 9.9
13.3 1.48 7.1 0.926 9.3
15.8 1.57 7.0 0.931 8.1
17.7 1.62 6.7 0.933 6.9
19.0 1.63 6.2 0.933 5.7

a Kinetic energy of unperturbed initial state $0.
b Kinetic energy of t'$0 state admixed into 3S1 state.
e Contribution of the tensor force to the binding energy of the gS1 state.
d Splitting between the 3S& and 1So states. In all cases the gS1 state lies

below the 1Sn state.' Percent excited state admixed into the 3S1 state by the tensor force.
f Magnetic moment of the 'S1 state in nuclear magnetons including the

effect of the tensor force.
g Quadrupole moment of 3S1 state as effected by tensor force.

proton labels 4, 5, 6 so that the resultant wave functions
will be antisymmetrical with respect to the neutrons
and protons separately.

The resultant formulas for the matrix elements S1,
$2, and S3 are given in the Appendix. On the basis of
the He4 and He' results, the calculations have been
restricted to the value m=1. The numerical results are
summarized in Table VI and Fig. 5. For 0,=1.1, we
have a splitting of 1.4 Mev and a value of AZ= —11.9
Mev for the 'S~ state. While this value of the splitting
is less than half the experimental separation of 3.5 Mev,
it is some 7)( the value found in Sec. II where con-
6guration interaction was neglected. Figure 5 also
includes the results obtained by Lyons" using the
Pease-Feshbach potential of Eq. (26). Lyons finds for
+=1.1 a splitting of 1.9 Mev, with a AE for the 'Si
state of —13.3 Mev. With respect to the magnetic
moment, the calculations of Sec. II give better agree-
ment with the experimental value of 0.822 nm than the
variational method which yields a magnetic moment of
0.922 nm, a value which deviates in the wrong direction
from the pure 'S1 state value of 0.879 nm. This behavior
is due to the fact that the t'Ps state in P contains some
~D~ component which gives a large positive contribution
to the magnetic moment, while the 'D& component,
which is the only state mixed in with fs by the method
of Sec. II, gives a negative contribution. This indicates
that our variational method overemphasizes the role
of very highly excited configurations. Thus it appears
reasonable to accept the splitting given by the varia-
tional method while using the magnetic moment value
given by the low states alone, i.e., the value given by
the method of Sec. II. The quadrupole moment given

by the variational method is, for +=1.1, +10&&10 "
cm', in contrast to the value of —10&10 "cm' found
in Sec. II. These values are to be compared with the
experimental value of I0.5I &(10 "cm. Evidently a
reliable calculation of the quadrupole moment would

require an elaborate second-order perturbation calcu-
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Fio. S. (a) Contribution of the tensor force to the binding energy
of the 'S1 ground state of Li' as a function of 0,, the nuclear radius
parameter. The experimental radius is given by +=1.1.The solid
curve is based on the Hu-Massey Gaussian potential, while the
dashed curve is based on the Pease-Feshbach Yukawa potential
as calculated by Lyons. " (b) The 'S&-'Ss level separation for
the Hu-Massey potential (solid curve} and the Pease-Feshbach
potential (dashed curve) as calculated by Lyons.

lation taking states from many configurations into
account.

The calculations above use the full 6-particle wave
function for fs, and hence the variational function P
includes quintet states (and also septet states for the
'St level) which can only arise from configurations in
which the n-particle core is broken up. An alternative
procedure to the above is to use the variational method
but restrict the excited states in f to those that leave
the o. core intact. The variational calculation for this
"n-d" model~ is extremely simple to carry out as
only the two p-particles need be considered in forming
Ps, and the operators I t'l) and t'Kt' now consist of only
one term each. The results for the depression of the 'S~
state (which is now the same as the splitting between
the 'S& and 'So states since the 'So state is unaffected
by the tensor force in this model), the percent admixture
of 'D~ state introduced by the tensor force, and the
resultant magnetic moment, are given in Table VII.
The values of AE are of course now much smaller since
they do not include the eGect of the tensor force on the
n core, but the splitting is very similar to that obtained
using the full 6-particle wave functions. 4'

44 See J. Dabroswki and J. Sawicki, Phys. Rev. 97, 1002 (19SS)
for a discussion of the validity of the n-d model as a description
of Li'.

~' D. H. Lyons (reference 14}Gnds however that the n dmodel-
cannot explain the experimental structure of the D states of Li',
while the use of the full 6-particle wave function does give reason-
able agreement.
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YAp&E VII. The, ii~ g~ model for Li

0.6
0.8
1.0
1.2

1.6
1.8

—d,B
Mev

0.66
1.17
1.69
2.18
2.64
3.10
3.S4

Percent D
state

0.6
1.0
1.3
1.6
1.9
2.1
2.3

Magn. moment
nm

0.876
0.873
0.872
0.870
0.869
0.867
0.866

VII. P STATES OF Li'

The variational calculation for the Li' P states
proceeds in exact analogy with the He' calculations of
Sec. V. As in the case of He', the 'P~~2 wave function
need not be considered explicitly. For the 'P'y2 state
we take for fs the properly antisymmetrized and nor-
malized function. formed from

exp{—mrs P r s)P(123)A (12)nsA (45)A (67), (44)

where 1, 2, 6, 7 are the neutron labels, and 3, 4, 5, are
the proton labels, and where P(123) is the symmetric
spatial function P„(xi+iyi)(rs. rs), where P„means
the sum over the cyclic permutation of the labels 1, 2, 3.
If the n core be neglected, this is just the wave function
used in Sec. II.Formulas for the various matrix elements
for the 'Ps~s state (we take ti = 1 in the calculations) are
given in the Appendix. The corresponding matrix ele-

ments for the 'P~~~2 state can then be immediately
determined as in the case of He'.

Numerical results as a function of n, the nuclear
radius parameter, are given in Table VIII and in Fig. 6.
The last column of Table VIII gives the resultant
magnetic moment for the 'P@~ state, to be compared
with the experimental value of 3.257 nm, the value for

fs, the pure 'Ps~s state, being 3.126nm. The same general
remarks apply to this table as to Table V for He' (see
Sec. V). It is seen that the splitting of the P states is a

very sensitive function of the nuclear radius, as it also
was for He'. For a=1.2, which we assume gives the
proper radius for Li' (see Sec. II), we have the 'Ps~,
state below the 'P~~2 state, in agreement with experi-
ment, and a splitting of 380 kev, in good agreement with
the experimental value of 480 kev. The corresponding
value of AE is —11.6 Mev. Judging from the results
obtained for He', it can be expected that the use of the
Pease-Feshbach potential of Eq. (26) would have given
somewhat larger values for hE and the splitting.

If the above calculations are repeated using an
"0.—H3" model, i.e., neglecting the o. core of Li", a
normal doublet structure is found, with the 'P~~~2 state
80 kev below the 'P3~~ state, a result similar to that
found in Sec. II. Together with Lyons' results for the
D states of Li'" we can conclude that it is essential
to include the excitation of the o. core in evaluating the
e6'ect of the tensor force.

The results given in Table VIII (excluding the last
column) can be applied equally well to the mirror

TA'BLK VIII. Li' I doublet states as e6'ected by the tensor
force. Based on Hu-Massey Gaussian potential.

(t'Kt')b Per-
cent

(K)a (t't') -hQ& —AAPd exc. 6V1(S1/S2) 3Vg(S1/$2)2
a Mev Mev Mev Mev state+ Mev Mev

Magn.
mom. f

nm

06 22
08 39
1.0 60
12 87
1.4 120
1.6 156
1.8 196

101 3.1
127 5 8
160 8.8
200 11.6
248 14.1
305 16.0
370 17.3

—0.03—0.02'
0.11
0.38
0.74
1.11
1.45

2.9, 0.02
4.2 0.11
4.9 0.36
5.2 0.78
5.1 1.24
4.8 1.77
4.3 2.22

0.06 3.205
0.15 3.260
0.28 3.310
0.41 3.348
0.53 3.369
0.62 3.378
0.68 3.378

+ Kinetic energy of unperturbed $0 state.
b Kinetic energy of t'Po state admixed into ~Pg2 state.
& Contribution of' the tensor force to the binding energy of the 2P3g2 state.
d Splitting between the ~P1g2 and ~PIy2 states, A positive value of -d bB

means that the 2P3~g state lies below. the 2P1g2 state.
e Percent excited state admixed into the 2Pp~p state by the tensor force,
& Magnetic moment in nuclear magnetons of the ~P3yu state as e8ected

by the tensor force.

«See E. Feenberg, Phys. Rev. 81, 644 (1951), for a discussion
of the compressibility of these nuclei. A study of the difference
between the Be' and Li' E doublet splittings from the viewpoint
of a vector spin-orbit force has. been made by D. R. Inglis, Phys.
Rev. 82, 181 (1951).

4'ganglia (reference 9) finds a theoretical value of 7/3 for this
ratio, on the assumption that the splitting is due to a vector spin-
orbit force.

nucleus Be7, where the P state splitting is known to
be 434 kev, some 10% smaller than the Li' P-state
splitting. This reduced splitting could be explained on
our model by requiring the nuclear radius of Be' to
be 2% larger than the Li' radius, which is not
unreasonable in view of the larger Coulomb energy of
Bev 46

The variational method can also be applied to the
calculation of the splitting of the 'F states of Li'. A
rough calculation indicates that the separation of the
'F states is about 3)& the separation of the 'P states,
with the F7/2 state below the F5~2 state."If we identify
the 4.65 Mev and 7.4 Mev levels of Li with the F7~2
and Fs~s states respectively (the 7.4-Mev level is known
to have a spin of 5/2) we have an experimental value
of 6 for' the ratio of the F-state splitting to the P-state
split ting.

VIII. CONCLUSIONS

We have seen that the variational method of com-
puting the effect of the tensor force gives results in
qualitative agreement with the experimental data on
the separation of the '50 and '5~ states of Li' and the
separation of the P doublet states of He' and Li'. Quan-
titative agreement could not be expected due to the
crudeness of the variational method used to approxi-
mate the all-important eGect of configuration inter-
action. In addition to the uncertainty in shape and
strength of the nuclear potential and the uncertainty
in the choice of the nuclear radius (to which the He'
and Li' results are particularly sensitive), we have also
introduced a large error by neglecting many 3-particle
and all 4-particle terms in carrying out the variational
calculations. The most important term neglected in
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the He' and Li' calculations is probably the vector part
of the 3-particle terms of t'Et'. A crude calculation
indicates that inclusion of this term would reduce
the splitting found for He' by perhaps 15/o, with
possibly a larger effect for Li'. The most important
terms neglected in the Li' calculations are probably
the scalar parts of the 3-particle terms of (t't I and
t'Et'. Here a rough calculation indicates that inclusion
of these terms would increase the splitting by about
40% (for n=1.1, with a larger effect for larger values
of cr). The calculation of these terms is, however, so
complicated that it has not been carried to completion.
All in all, we estimate, taking the above eGects into
consideration, that the numerical results given in this
paper are probably reliable to within a factor of 2.
However, this is sufficiently accurate to conclude that
the tensor force is responsible for a considerable part,
if perhaps not all, of the experimentally observed
separations of the I' doublet states of He' and Liv and
the S states of Li'.

Perhaps the most striking result is the importance of
considering configuration interaction in calculating the
eGect of the tensor force. This has two main conse-
quences. Firstly, the eGect of the tensor force is largely
independent of the exchange nature and even the sign
of the tensor force. Secondly, in considering the eGect
of the tensor force on the splitting of singlet and triplet
states, the tensor force is equivalent to a mixture of
ordinary and spin-exchange forces

I
see Eq. (31) and

(33)), while its action on the splitting of doublet states
is similar to the eGect produced by a vector spin-orbit
force in first order. The equivalent vector spin-orbit

force is a mixture of both two- and three-particle forces
Lsee Eqs. 36) and (37)) and thus is much more com-
plicated in form than the vector spin-orbit force usually
taken as the basis of the shel1 model. awhile it is
attractive to speculate that the vector spin-orbit force
of the shell model may possibly be a manifestation of
the tensor force' ' the type of coupling introduced by
the tensor force seems to be of a far more complicated
nature than the simple and successful jj coupling
scheme of the shell model.
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APPENDIX

He4 Matrix Elements

To calculate S~ we first note that for He4 the operator
(t't) reduces to (t'tI=4tts'its if we neglect the three-
and four-particle terms. Using the scalar part of t~3'313

given in Eq. (31) we obtain for Sr, after integrating over
the spin variables and the coordinates of particles 2
and 4,

3X2sTo'crs
~c (nrtS)"

16

12
D"8

BIO

CI
I

i I j Ii I i I i I i

0.6 0.8 1.0 1.2 1A 1.6
a
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Fzo. 6. (a) Contribution of the tensor force to the binding energy
of the 2P3/2 ground state of Li'. The experimental radius is given
by a=1.2. Based on the Hu-Massey Gaussian potential. (b) The
splitting between the 'P3I2 and P1qf2 states. A positive value for
the separation corresponds to the P3/2 level being below the ~PL2
level.

Xexp{—2a'(r~'+rs') —2r'rts') detdss. (A1)

5,=48sr-ITs'p+sL~s(n+1)j! n odd
= 3X2 "Tp~P+s(n+ 1) !/(-', n) ! n even,

(A2)

where f's=n'/(n'+2r'). The evaluation of Ss and Ss
proceeds in the same manner, and we obtain

3X23—sn2' sf sn+s

S,=36(A'/M) 2,s~'f (3+@)
= 6(As/M) r,'~'f s(31+27' s)

= 4S(hs/m) r,'~sf.s(7+ 9l.s)

(A4)

4 E, P. Wigner, in Symposium oe 1Vew Research Techeigles in
Physics, July 15—29, 1952 (Academia Brasileira de CiSncias, Rio
de Janeiro, 1954). The results in this paper on the repulsion
between a nucleon and a half-filled shell due to the tensor force
interaction depend on the assumption of a nonexchange tensor
force. Otherwise there is an attraction. Dr. H. Horie has recently
con6rmed and extended these calculations (private communica-
tion from Professor %igner). This is in contrast to the results of
the present paper, which are essentially independent of the
exchange character of the tensor force.

The six-dimensional integral is readily evaluated by
switching to r~ and r~3 as the independent variables and
introducing polar coordinates. Ke find
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He~ Matrix Elements

The calculation of Sl, S2, and S3 proceeds in exactly
the same fashion as for He4. Ke obtain

S1=6T32i'(5+3i2) 23=0
=12v &T22$4(5+4{2) 23=1
=40T32i'3(1+i'2) 23= 2,

S3——6T32i3(5+3t2) 22=0

=40T32{3(1+i2) 23= 1
= (45/2) T32i'(5+ 7{2) I= 2,

S2= (3h'/M) T3'n'i (135+109{'+21t ) r3=0
= (3A2/2M) T32n2i 3(155+349{2+210t 4) as = 1 (A7)
= (22552/4M) T32n2i 3(7+29''2+ 14''4) r3= 2

5y35/2T 2 10

24

(k+2) (2k+3)!g4'

2-3 (4k'+18k+20)k!(k+1)!2"

135T 2g" ~ (k2+3k+2)g4"

82r' &~ (2k+5) 222

5X32~2T 217» g) (2k+3)!g4&

2' 2=2 k!(k+1)!242
1$2

p

(A12)

where g2=4n2/(4n2+3r2). Although (A11) can be
integrated exactly in closed form, it is convenient for
computational purposes to expand the exponentials in
power series before integrating. The Anal formulas thus
obtained for V1 and V3 are

The calculation of V2 is similar since we are retaining
only the two-particle terms in the operator. The for-
mulas are

V2=36(A'/M)T 'u't' 23=0
=54(A2/CV) T32n2i' 23= 1

= 135(02/3l) T22122{' 23= 2.
(A8)

The calculations of V1 and V3 are somewhat diGerent

since now we must use the 3-particle terms [see Eq.
(37)$. As an example, V, (23=1) becomes, after per-
forming the spin sum and integrating over the two

particles not involved in the potential,

5y 211/21 2~12

(r12+f13)(r» r13)
~9/2

X[(r»X r»)'/r12'r»'j exp{—2a'(r1'+r2'+r3')

5X32~2T229'2 [(k+2)!794"

2=o (2k+5)!k!

5 X32 "T32rP4 (2k+5)!g"

2" 2~ k!(k+2)!24'
2 t

Li' Matrix Elements

S1(1S3)=2' ~T32t4(3+4i2)

S1('S1)=42. 'T 2|'4(23+16{2+8{4),

S ('S.) =3T 'i'(3+5{-'),

S3('S1)= T 'g'(69+60''+35/')/6,

(A13)

(A15)

—r2(r122+r»2) }dv1dv2dv3. (A9) S ('S ) = (3i32/M) T '12'i'(93+300|'+255t'),

Integrating over r1 by switching to r1, r», and r» as the S2( S1)= (~ / ~) 3 & ( +
independent variables, we obtain +1335''4+525/3)

(A16)

5X24T02o,9

V1
~

(r2+r3) (r2' r3)[(r2X r3)'/r2 r3 ]
34'

Xexp{—(4/3)n'[r2 +r3 (r2'r3) )

Li' Matrix Elements

S,= (2/152r&) T 2{4(525+760' 2+264/4),

S3——(3/2) Tv'i'(35+ 38{'+11/4),

(A17)

(A18)

This can be reduced to a two-dimensional integral by
using polar coordinates and integrating over the angles:

V2 ——(652/M) T32122{3(3+2i 2) (A20)
5X3'T32 t I

exp[—(r2'+r3')/q')
V1= (3/56002r &) T32ri11 (4088+1232g2+2670g4

+90(hP+1225)3+ .), (A21)

r2(r22+r32) }dv2dv3. (A—10)
S2= (02/4M) T3'n'i'(75+4450{'+4257)'+1484{ 3)

!'A19)

X [(r22r32 —3r2r3+3)e"2"3

—(r2'r3'+3r2r3+3)e "2"'jdr2dr3, (A11)
V3 ——(13/45) V3 (He')+ (4/525) T3'g" (14+42''

+27)'+362I'+20)3+ ~ ). (A22)


