
AVERAGE NUMBER OF NEUTRONS PER FISSION

The F values for the various nuclides calculated from
the relative f 's in Table I are based on values for Cf252

and Cm~' of 3.53&0.15 and 2.60&0.12 respectively. ' '
All these values are on the average about 7% lower
than those determined by Hicks et a/. ,4' who used the
v value of Pu"' to determine the counting efficiency

4 Hicks, Ise, and Pyle, Phys. Rev. 98, 1521 (1955).' Hicks, Ise, and Pyle (to be published).
e Diven, Taschek, Terrel, and Martin (to be published).

of their neutron detector. This discrepancy arises from
the difference in neutron counting standardization, and
since Pu~' was determined relative to the f for the
thermal fission of U23', the discrepancy indicates a
difference in the Bureau of Standards neutron source
measurement and the U"' f measurement.

Figure 1 is a graphic presentation of these data, and
it is interesting to note the regular variation of v with
mass number.
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A semiempirical investigation of neutron and proton densities in nuclei is made. Experimental values are
assumed for the nuclear radius, binding energy, surface energy, surface thickness, and symmetry energy.
It is found that the neutron and proton densities extend to approximately the same radius; these results
do not depend sensitively on the input data. The nuclear potential extends ~0.7)&10 cm further than
the material radius. An estimate of &100A Mev is given for nuclear compressibility.

I. INTRODUCTIOÃ

'HK excellent experiments on electron scattering'
and on mu-meson spectroscopy' indicate for the

charge distribution a surface thickness of 2.2—2.5
)& 10 "cm and an "equivalent" radius of 1.2A't')& 10-ts

cm. (An "equivalent" radius is the radius of a uniform
distribution which leads to the same energy for the
2p-+1s transition in mu-mesonic atoms. The point
where the charge density falls to half its central density
is more like 1.1A't')&10 " cm. ) Other experiments'
which depend upon the nuclear charge distribution do
not appear to be in disagreement with these results.
Experiments which measure the nuclear potential, '
however, quite generally lead to larger values for the
radius. Attempts to measure the neutron distribution'
(as opposed to the charge distribution) are hopeful,
but as yet inconclusive.

In a previous paper, 4 density distributions in nuclei
were calculated neglecting the Coulomb potential.
Assuming experimental values for the nuclear radius,
binding energy, surface energy, and surface thickness,

*Work supported by the U. S. Atomic Energy Commission.
' R. Hofstadter er, ct., Phys. Rev. 95, 512 (1954}.For analyses

of the data, see Yennie, Ravenhall, and Wilson, Phys. Rev. 95,
500 (1954); D. G. Ravenhall and D. R. Vennie, Phys. Rev. 76,
239 (1954). See also reference 3.' V. F. Fitch and J. Rainwater, Phys. Rev. 92, 801 (1953). For
analyses of the data, see L. N. Cooper and E. M. Henley, Phys.
Rev. 92, 789; D. L. Hill and K. W. Ford, Phys. Rev. 94, 1617
(1954). See also reference 3.

3An excellent summary and analysis of the experiments on
nuclear density and potential distribution is given by K. W. Ford
and D. L. Hill, Ann. Rev. Nuc. Sci. 5 (1955). Further references
to original literature will be found there.' R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956), hehce-
forth referred to as I.

the calculations yielded the following conclusions: (1)
The nuclear potential (at half-maximum) extends
~0.7)(10 " cm beyond the nuclear density. (2) The
nuclear compressibility is estimated to be & IOOA Mev.

The present investigation is designed to examine
eBects arising from the Coulomb potential. The primary
eGect of the Coulomb potential is to increase the number
of neutrons relative to protons, through beta decay.
The variation in the potential through the nucleus is
also of consequence in teedieg to increase the relative
number of protons at the surface.

Johnson and Teller~ have proposed that the distri-
bution of protons in the nucleus may lie within the
neutron distribution by as much as 1/3 to 1/2 of the
nuclear surface thickness. Their arguments are based
on two consequences of the Coulomb potential: (1)
Owing to the larger number of neutrons than protons,
the neutrons have, on the average, greater kinetic en-

ergy and will extend further than the protons. (2) The
Coulomb potential forms a barrier which inhibits
penetration of the proton wave functions into the
forbidden region. The e6'ectiveness of these arguments
depends upon the approximate equality of the nuclear
potential for both neutrons and protons.

There are also factors which tend to counter the
Johnson-Teller effect. The nuclear symmetry energy
tends to resist separation of neutrons and protons, and
the decrease in the Coulomb potential toward the edge
of the nucleus tends to move protons closer to the
surface. The present investigation indicates that the

' M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).
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net result is that there exists no appreciable separation
of neutrons and protons.

The technique used here for determining nuclear
densities is semiemperical and statistical in nature. No
basic assumptions about the nature of nuclear forces are
made, but extensive use is made of the experimental
properties of nuclei. The method is a generalization of
that used in I, where further details are to be found.
Other papers on the statistical method for nuclei have
also been published. 6

II. FORMULATION

It is assumed that the expression for the energy
density of the system can be written in the following
form~:

@(P. P )+~(p )(&P ) +~(P )(~p ) ~ (1)

The first term represents the energy density of a uniform
medium. It includes both kinetic and interaction
energies, which are not immediately separated, and
could include many-body forces, particle correlations,
etc. The latter terms represent corrections, under
conditions of varying density, to (1) the kinetic energy
and (2) the interaction energy, due to the finite range
of nuclear forces.

The correction to the kinetic energy can be written
in the form

(2)

This "inhomogeneity term" was 6rst proposed by
Weizsacker' (with )=1).Although Weizsacker's origi-
nal arguments are not valid, ' Eq. (2) does have the
proper form, and it has been shown for certain nuclear-

type potentials' that the exact quantum-mechanical
densities and energies can be rather well reproduced
by 1/8&/& 1/2, the precise value of $ depending on
the shape of potential. For convenience we express the
finite-range correction in the same form as Eq. (2);
this is not critical since the range correction appears
to be rather smaller than the kinetic energy correction.

The energy of the nucleus can then be written

(
I IE=

~
@(p- pp)+t

8M p.

where t (which we expect to be less than unity) includes
both the kinetic-energy and finite-range corrections.
YVe seek the functions p„and p„which make the energy
a minimum, subject to condition that

A = (p„+p„)de,

6 W. J. Swiatecki, Proc. Phys. Soc. (London) A63, 1208 (1950).
P. Gombas, Acta Phys. Hung. 1, 239; 2, 224 (1952); 3, 105, 127
(1953).K. I"eenberg, Phys. Rev. 59, 593 (1941).' The quantity s(p) used here is the same as s(p)+zpp'is used
ln I.

s C. F. von Weizsacker, Z. Physik 96, 431 (1935).
OR. A. Berg and L. Wilets, Proc. Phys. Soc., (London) A68,

229 (1955).

be a constant. This variational problem leads to the
coupled nonlinear differential equations:

ii'
~ clhy

&'I,+
~

~si, =&su„,
2M (r)p„&

(5)

III. CONSTANT COULOMB POTENTIAL

In order to gain insight into the relative importance
of the difference in numbers of neutrons and protons
on the one hand, and the variation in Coulomb potential
through the nucleus on the other, the Coulomb po-
tential was first set equal to a constant in Eq. (6). This
problem is further simplified by considering a semi-
infinite nucleus with a plane surface. Such an approxi-
mation is justified to the extent that the surface thick-
ness' (2.5&(10 "cm) is small compared with the radius
(~7.5&&10 " cm). Equation (6) then becomes an
ordinary nonlinear differential equation in the distance
variable x,

( cih)
g„"+

i il„=Epu„,
2M i Bp„)

subject to the boundary conditions

, Qpq QI4 ) QI4 ~ as X~ )

Q„~„,p and Q„, Q„—+ as s—+—
r

(»)
(Sb)

'0 A. E. S. Green, Phys. Rev. 95, 1006 (1954).
uk(p —p„)' is not the most general form for the symmetry

energy, although this is suggested by the semiempirical mass
formula for p„=p, o and p~=p~, o. In the surface region the
neutron-proton separation is not so great and so the sensitivity
of the results on the form of the symmetry energy term is reduced.
The primary efkct of variation in the form of this term is on the
surface energy which is reflected in the estimates of nuclear com-
pressibility (Sec. III. 3).

where e„=gp„.The index p, indicates either neutrons
(I) or protons (p). Es is a Lagrangian multiplier which
has the physical meaning of being the binding energy
of the last particle.

To fit the experimental data, we have available the
constant f and the function h(p, p„). We write h in
the form:

~(P P )=f(p)+&(P P )'+I .P,
with p =p„+pp. The function f(p)/p (energy per
nucleon) must have a minimum at the observed nuclear
density and at a value corresponding to the coefBcient
of the term linear in A in the semiempirical mass
formula"; the curvature at the minimum is related to
compressibility (see I). The second term on the right-
hand side of Eq. (6) represents the symmetry energy;
the constant k is determined" from the observed ratios
of X to Z (or from the semiempirical mass formula).
V, is the Coulomb potential. For small values of the
density, the diGerential equation is governed more by
the Laplacian term than by the r)8/c)p„ term. It is
indeed found that the solutions are insensitive to details
of f(p) beyond those already mentioned.
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FIG. 1. Semi-infinite nucleus
with constant Coulomb po-
tential V, =17.34 Mev. The
energy density function used
in this example is given by

8= —91.8psf3+ 134.3p ~

+183(p —p )'+ ~.p,
in units of 10" Mev cm ', and
g was chosen to be 0.7. The
nuclear compressibihty Ey
=125A Mev. Since the unit
of distance varies as t'~', the
length scale may be altered by
changing p. The density scale
may also be changed by read-
justing the constants so as'to
leave S/p invariant. The inset
shows the neutron density
(solid line) and proton densities
(dashed line) separately scaled
to the same asymptotic values.
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where the prime denotes derivative. This gives the at the surface; for this reason, discussion of these
integrability conditions: quantities will be deferred until Sec. IV.

8 (Bq
-~p, & p& .~, o).,, o

-~pp- pn, o)uy, 0

(9b)

The solution requires an eigenvalue search with, say,
one boundary condition (for some finite x) acting as
an eigenvalue. The constant i plays the role of a scale
factor in Eq. (7). Both the unit of length and the
surface energy [I,Eq. (14)j vary as i'~2. In the solutions
described below, f has been adjusted so that the proton
surface thickness is 2.5&10 "cm.

A. Density Distributions

The shape and relative separation of the neutron and
proton density distributions are found to be quite
insensitive to the nuclear compressibility. In a wide
variety of cases calculated, the mean proton radius
was found to lie inside the neutron radius by a distance
only 20% of the proton surface thickness. Figure 1

gives a typical result; other cases calculated are prac-
tically indistinguishable.

C. Nuclear Potential

In order to discuss the nuclear potential, it is neces-
sary to make further assumptions about the nature of
nuclear interactions. The assumptions which will be
made now are only for the purpose of obtaining the
potential, and are not used in obtaining the density
distributions or the surface energy.

Brueckner" has shown that a nucleon within a
nucleus can be described by the equations of motion
of an independent particle if the nucleonic mass 3f is
replaced by an eGective mass M*=0.6'. The intro-
duction of an eGective mass accounts for the velocity
dependence of the interaction which arises from inter-
particle correlations. (Brueckner assumes velocity-
independent two-body forces. )

To the extent that the Thomas-Fermi approximation
is valid, the wave function of the "last" particle is that
of one at the top of a Fermi sea of particles of mass M~.
The "effective kinetic energy" of such a particle is
giVen by 2(32r2)2~2(A2/M*)p„212, While the tatal energy
of the particle is Bb/Bp„Neglecti. ng the Coulomb po-
tential, this permits the identification of the nuclear
potential experienced by the last neutron or proton as

B. Surface Energy and Compressibility

The surface energy depends sensitively on the nuclear
compressibility and thus provides a means of deter-
mining this important but elusive quantity. The surface
energy also depends upon the neutron-proton separation

2 (3~2)2II ($2/~a) ~ 2/I

Bpp,
(10)

~K. A. Brueckner, Phys. Rve. 97, 1353 (1955}.The intro-
duction of an effective mass in the inhomogeneity correction term,
which one might also con. ider, would result merely in a re-
definition of g.
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Fzo. 2. Spherical nucleus
with "realistic" Coulomb po-
tential. A =225, Z=93. The
energy density function used
in this example (differing some-
what from the example in Fig.
1) is given by 8= —67.4p i"
+72.5p ~'+170(p„—p ) +V&p»
in units of 10"Mev cm ', with
U, given by (12) for 2=7.11
)&10 " crn and Z=82. g was
chosen to be 0.7. The nuclear
compressibility is Ev = 125A
Mev. The scale of length is no
longer free because of the
spherical geometry and the
Coulomb energy. The surface
thickness is reduced in this
example {2.15&(10 "cm) rela-
tive to Fig. 1 (2.5)&10 ' cm)
by the Coulomb potential. It
still possible to scale the den-
sity by readjusting the con-
stants so as to leave s/p
invariant. Thus this is also a
solution for A = 198, Z =82.
The inset shows the neutron
density (solid line) and proton
density (dashed line) sepa-
rately scaled to the same
central values.

In the analysis of scattering experiments, the true
nucleonic mass M is generally used. Schrodinger's
equation is invariant with respect to changes in mass
so long as the quantity M(V —E) is also invariant.
For comparison with current calculations, the quantity

V„= (M*/M) V„*,

is plotted in Figs. 1 and 2 (i.e., zero-energy scattering
potentials). The potential is not drawn for low densities,
since the approximations involved in Eqs. (6) and (10)
may not be valid there. The depth of the potentials are
sensitive to the assumed nuclear density.

The potentials for both neutrons and protons are
seen to be quite similar in depth and extent. This would

not be the case for a different value of M*. In fact, for
M*=M, the proton potential would lie about 10 Mev
lower than the neutron potential. In the example
discussed in Sec. IV (Fig. 2) the proton potential lies

about 4 Mev deeper than the neutron potential even

with M*=0.6M.
In the analysis of proton scattering experiments,

Melkanoff, Moszkowski, Nodvik, and Saxon" report
that the energy dependence of the real part of the
potential is consistent with an effective mass about
half the nucleonic mass. Their extrapolated zero-energy
potential seems to lie signiicantly deeper than the
zero-energy potential obtained by Feshbach, Porter,
and %eisskopf' for neutrons. One possible cause for
the discrepancy may lie in the difference in the shapes

'3 Melkanoff, Moszkowski, Nodvik, and Saxon, Phys. Rev. 101,
507 (1956).

'~ Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).

of the potential wells used in the analysis of the neutron
and proton data. It should be noted, however, that the
discrepancy is decreased appreciably if the zero-energy
neutron potential is compared with the proton potential
at an energy corresponding to the Coulomb potential
inside the nucleus. At 17 Mev, for example, they give
for the proton potential 47 Mev, or only 5 Mev deeper
than the zero-energy neutron potential.

The potentials are also seen to extend about 0.7
X 10 "cm further than the densities (Fig. 1).This can
be understood as follows (see I): Near maximum

density, the potential falls off less rapidly than the
density owing to saturation of nuclear forces; at
intermediate densities, the Thomas-Fermi relation
V p'" again leads to a less rapid falloff of the potential
relative to the density.

While in the right direction, the distance 0.7)&10 "
cm may not be alone sufhcient to account for the greater
radii observed for nuclear potential, although it appears
to be a substantial contribution. The potentials given
here neglect the range of nuclear forces and polarization
of the nucleus by the scattered particle. "

This treatment differs from that given in I, where an
effective mass was not used.

IV. "REALISTIC" COULOMB POTENTIAL,
SPHERICAL NUCLEI

For V, we choose the Coulomb potential of a uniform
charge distribution (it is not important to make the
potential self-consistent with the resultant charge

'~ See S. D. DreH, Phys. Rev. 100, 97 (1955).
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distribution): pressibility parameter (I.12):

Ey= p 2~3 A
g (p

—1/3)2
(14)

This introduces an absolute scale of length into the
problem, and so i' was adjusted according to the value
obtained in the case V,= constant.

The differential equations for the case of spherical
symmetry are given by

A' 2 88
(s~ +~p )+ @~=Ep'//~.

2M f Bpp
(13)

B. Surface Energy Compressibility

In paper I, where the densities of neutrons and
protons were taken as equal, the surface energy was
found to arise from equal contributions of (i) the
inhomogeneity correction term (Ph'/SM) J'p '(p')'dv,
and (ii) the loss of binding (interaction) energy of the
nucleons in the surface region. When the neutron and
proton distributions are unequal, there arises a con-
tribution to the surface energy from the integral of
k(p„—p~)2 in the surface region. Comparison of the
surface energy obtained in the present case with that
obtained for equal neutron and proton distributions,
indicate that the symmetry energy increases the surface
energy by about 40%.

The free parameter which is available for 6tting the
surface energy is the nuclear compressibility. The
surface energy is an increasing function of the com-

The boundary conditions as r—+~ are the same as
those of Eq. (Sa) (for x~~), but for r=0 the require-
ment is I'(0) =0. The Lagrangian multiplier Eo cannot
be fixed beforehand, but must be varied as an eigen-
value. The solution thus requires a double eigenvalue
search. A,n example is shown in Fig. 2 with the param-
eters given in the caption. The results on the density
and potential distribution appear to be insensitive to
the details of 8—that is, various values of the com-
pressibility lead to substantially indistinguishable
results.

A. Density Distributions

The variation in Coulomb potential through the
nucleus tends to push protons toward the surface of the
nucleus. The actual rise in proton density is slight, in
general agreement with the analysis of Ford and Hill, '
who Gnd that the electron scattering data is best 6tted,
within experimental error, with no rise. The mean
proton radius is seen to extend about as far as the mean
neutron radius, thus eGectively canceling the rather
small Johnson-Teller' effect discussed in Sec. III. The
neutrons do exhibit a longer tail, however.

The example which is illustrated in Fig. 2 leads to a
value of 1.4X10" Mev cm ' for the surface energy
compared. with 1)&10" Mev cm ' from the semi-
empirical mass formula, " if one uses 1.1A'"X10 "cm
for the nuclear radius rather than Green's" value
1.2A'I'X10 " cm, which was used in I. The value of
E& in the example is 125 Mev, and this is clearly too
large. From the dependence of the surface energy on
E~ deduced from the examples in I, an estimate for the
compressibility of & 100A Mev seems reasonable. This
is to be compared with Brueckner's theoretica1 value
of 67A Mev or the empirical value obtained from
isotope shifts of ~50A Mev. These are not serious
discrepancies considering the diKculty in isolating the
eQ'ect experimentally, or the general sensitivity of the
eGect to the theoretical assumptions. Furthermore,
the surface energy and compressibility probably vary
rather widely with mass number, reaching maximum
values near closed shells. The surface energy given by
the semiempirical mass formula is only a particular
average.

C. Nuclear Potential

The nuclear potential shows the same characteristics
discussed in Sec. III.

V. CONCLUSIONS

The neutron and proton densities are found to extend
to approximately the same mean radii. There is a slight
rise in the proton density at the surface, while the
neutron distribution has a longer tail and surface
thickness. The nuclear potential for protons and
neutrons extend to the same radius, which is about
0.7X10 " cm further than the density distributions.
These results appear to be insensitive to be insitive to
details of the function h(p„,p~), apart from the position
and value of the minimum h/p which are taken em-
pirically from the observed values of nuclear density
and binding energies. The interpretation of the nuclear
potential does require the separation of 8 into kinetic
and potential terms; this procedure is somewhat
arbitrary, so that the potentials deduced are somewhat
less plausible than the densities.

An estimate of &100A Mev is given for the nuclear
compressibility.
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