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The model of Lane, Thomas, and Wigner, for the excited states of nuclei, is generalized by the introduction
of a variable amount of nucleon-core polarization into the states of the independent-particle model. The
mixing of each of the polarized states, by configuration interaction, into a small neighborhood near the
initial energy of the state forms the basis of our model. The energy moments of the strength function are
calculated. The second moment of the strength function, which may be roughly equal to the square of the
full width at half-maximum of the strength function, is calculated approximately using a two-body Yukawa
potential without exchange. By the choice of a suitable amount of core polarization the large value obtained
by Lane, Thomas, and Wigner for the second moment [ (22 Mev)?] is reduced by a factor of 23 to the

reasonably small value of (4.8 Mev)2.

1. INTRODUCTION

N the recent work of Lane, Thomas, and Wigner!

the behavior of the excited states of nuclei was con-
sidered to be intermediate between the behavior of
the states of the independent-particle model and the
states of the uniform model.? In their model the single-
particle states of the independent-particle model were
mixed, by configuration interaction, into the many
other states of the independent-particle model. The
configuration interaction is due to the difference be-
tween the actual nucleon-core potential, V7, and the
average potential, ¥, used in the definition of the shell
model. The basic assumption of the aforementioned
model was that the mixing of the single-particle states
occurred, principally, into a relatively small neighbor-
hood near the initial energy of these states. A direct
consequence of this assumption is a resonance-like
behavior of the average reduced widths, (y»2): that is,
(7> has maxima near the positions of the single-
particle levels of the independent-particle model. The
giant resonances of the average total neutron cross
sections® can be described in terms of the average
behavior of the reduced widths.

The average total neutron cross sections had been
described with considerable success by the cloudy
crystal ball model.* This model assumed that the aver-
age neutron cross sections could be described in terms
of the scattering of neutrons by a complex potential
well, Vo(14-4¢). The success of the cloudy crystal ball
model in describing the average neutron cross sections
can be understood in terms of the average behavior of
the excited states of nuclei. Thomas® showed that the
average total cross sections obtained with the model

* This work is part of a dissertation presented by the author
to the faculty of Princeton University in partial fulfillment of
the requirements for the Ph.D. degree.

1 Now at Birmingham University, Birmingham, England.

! Lane, Thomas, and Wigner, Phys. Rev. 98, 693 (1955).

2 A similar picture was proposed by J. M. C. Scott, Phil. Mag.
45, 1322 (1954), and E. P. Wigner, Science 120, 790 (1954).

3 H. H. Barschall, Phys. Rev. 86, 431 (1952), and subsequent
papers.

4 Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).

5 R. G. Thomas, Phys. Rev. 97, 224 (1955).

of Lane, Thomas, and Wigner are identical to those of
the cloudy crystal ball model if the strength function,
s(E,), (the average reduced width divided by the
average level spacing) is assumed to be

S(En) =25 (E))
7R, (a) 1

=l.p ) 1
z mmiVo 14+[(E—8,)/3V o] 2

where R,(a) is the pth radial wave function in the real
part of the complex potential well, evaluated at the
nuclear radius ¢, and &, is the position of the pth
single-particle level in V. The partial strength function
s is the contribution of the pth single-particle level
to the strength function. The strength function refers
to a given orbital angular momentum of the channel
under consideration (a nucleon and the corresponding
target nucleus in its ground state).

Lane, Thomas, and Wigner assumed that the square
root of the second moment of the partial strength
function of their model was approximately equal to
the full width at half-maximum of this function. They
calculated the second moment to be the expectation
value, taken in the ground-state channel, of the square
of the configuration mixing potential, V—V. This
expectation value was evaluated by them using a sum
of two-body Yukawa potentials, without exchange,
for V. The result they obtained. Mo~ (22 Mev)?, was
much too large. If the square root of the second mo-
ment is approximately equal to the full width at half-
maximum of the partial strength function, their result
implied that the various maxima of the strength func-
tion overlapped hopelessly. (The spacing of the single-
particle levels in the shell model is of the order of
10 Mev.)

If the model of Lane, Thomas, and Wigner is gen-
eralized by including nucleon-core polarization in the
initial shell-model wave functions, the value of the
second moment may be reduced. Such a calculation is
carried out in the succeeding sections of this paper.
The nucleon-core polarization is brought about by
introducing an adjustable amount of the actual nucleon-
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core potential into the definition of the core states.®
The resulting first-order states are a closer approxima-
tion to the actual states, so that one would expect the
configuration interaction to be smaller. If the square
root of the second moment is approximately equal
to the full width at half-maximum of the partial
strength function, then the second moment calculated
using the polarized single-particle wave functions
should, in general, be smaller than the second moment
calculated by Lane, Thomas, and Wigner.

The detailed relation of the second moment to the
width of the partial strength function, s, depends
on the form of s, Let us assume that s(») may be
written as

s(P) == ¢ y (2)
1+O£1(E—gp)2+a22(E'—gp)4+ b

where ¢, ai, as, etc. are constants. Then the square root
of the second moment of s will be approximately
equal to its full width at half-maximum unless the
constants a, satisfy the following inequality:

ar>astastast- .. 3)

If this inequality is satisfied the asymptotic behavior of
the partial strength function, at large energies, may
be proportional to 1/E\% Then the second moment
becomes, principally, a measure of how far the 1/E,?
behavior of the partial strength function extends as
we increase E,. Thus the partial strength functions (1),
corresponding to the cloudy crystal ball model, have
infinite second moments. As far as our model is con-
cerned, there is, at present, no reason why the strength
functions should have the particular form corresponding
to the cloudy crystal ball model.”

2. CORE POLARIZATION IN THE MODEL OF LANE,
THOMAS, AND WIGNER

In constructing the wave functions to be used in
generalization of the model of references 1 and 2, two
requirements are to be kept in mind. First of all, the
position of the maxima in the observed total neutron
cross sections correspond, roughly, to the position of
the single-particle levels in the shell model. Therefore
the traces of the shell model must be retained—the
wave functions to be constructed must contain a factor
corresponding to an extra nucleon wave function whose
eigenvalues are roughly those given by the shell model.
The other requirement that we impose on the generaliza-

6 A core polarization of this kind has been discussed by K. M.
Watson, Phys. Rev. 89, 575 (1953); N. C. Francis and K. M.
Watson, Phys. Rev. 92, 291 (1953); Brueckner, Levinson, and
Mahmoud, Phys. Rev. 95, 655 (1954); G. Takeda and K. M.
Watson, Phys. Rev. 97, 1336 (1955).

7 Various forms of the strength function and the corresponding
total cross sections, for a typical case, are discussed in a Ph.D.
thesis by Erich Vogt, Princeton University, 1955 (unpublished).
It was found that the form of the strength function (for a given
half-width) could be varied considerably without changing the
total cross sections by a great amount.
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tion is that the expressions for the reduced widths
remain simple. In constructing the wave functions of
the generalized model we shall take polarization into
account by assuming that the core functions depend
parametrically on the position of the extra nucleon.
The total wave function will be the product of a
polarized core function, ¥.(xi, - -, X4—1; X4), and a
single-nucleon wave function #%.,(x4) which satisfy, re-
spectively, the following equations:

[g - (hE/Zm)AH-g glv(]xi—xj])

A-1

+8% v(lxi“XA[)]‘I’c(Xl, “re,Xao1;5 Xa)
i=1

=e€.(Xa)Wo(Xy, * -+, X415 Xa), (4)

and

[— (#/2m)A 4+ (1—B)V (x4)+ec(x4)]
Xucp(XA)=Eﬂpqu(xA)) (5)

where 8 is an adjustable parameter whose value lies
between 0 and 1; A; is the Laplacian with respect to
the coordinates of the ith nucleon, and V(x4) is an
average of >_ ;141 v(|x;—x4|) with regard to the un-
polarized (8=0) ground state (¢=0) core function
Yo ©@: that is, '

Peo= [ 1Ol E olxmxbir,  ©

where d7'=dX1' . 'dXA_1.

The wave functions ¥, contain the coordinates of the
Ath nucleon parametrically, inasmuch as no derivatives
with regard to the coordinates of this nucleon occur
in the definition of ¥,. Therefore, for every value of x4,
the set of functions ¥, can be made orthonormal with
regard to all the coordinates of the other 4 —1 nucleons.
That is, we can require,

f U0 * dr="0,0. @)

Similarly we can choose

fucp(xfi)“cp’* (XA)dXA =0pp, (8)

where the integral over the coordinates of the Ath
nucleon is chosen to extend over the volume occupied
by the core nucleons. Together, (7) and (8) yield

f WV ¥t o o pr ¥ ATAX 4 =066/0 pypr, ©)

where the integral now extends over the coordinates of
all the nucleons. The wave functions ¥, form a
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complete orthonormal set of functions in the space
given by the coordinates of the 4 nucleons.

The potential 8> ;141 o(|x;—x4]) in (4) will in-
fluence the wave function ¥,.(xy, - - -, X4—1; X4) only if
one of the xy, -+, x4—1 is in the neighborhood of x4.
Similarly, e.(x4) will depend on x4 only if x4 is close
to the boundary of the nucleus. One can think of the
nucleon 4 as immersed in a sea of nuclear matter; the
energy of this sea will be the same no matter where
the perturbation is located as long as it is further from
the nuclear surface than the range of nuclear forces.
Hence the potential e,(x4) will be constant over most
of the nucleus and change (increase) only near its
surface; it will have the general shape of a nuclear
“well” potential. The E.,, as far as their dependence
on p is concerned, are characteristic values of a single-
particle Eq. (5) in which the potential e.(x4)
4+ (1—B)V (x4) is of the usual well type. Hence E.,
will be, apart from a constant which is the binding
energy of the core, equal to the energy of a single
particle in a suitable potential well.

The shell-model wave functions, whose mixing formed
the basis of the model of Lane, Thomas, and Wigner,
correspond to B8=0. The maximum amount of core
polarization is obtained by including all of V in the
definition of the core states. For this case, 8 has its
maximum value, 3=1.

In order to obtain the reduced widths in terms of
our ¥, and #,.,, we have to define the functions X of
the compound nucleus which satisfy the equation

HX\=E\X), (10)

where H is the entire Hamiltonian for the A nucleons.
Certain fixed boundary conditions are imposed on the
states X, at the nuclear surface.® Since both the set
X, and the set V.., are complete orthonormal sets,
we have the following real orthogonal transformation:

Xn=2c,2Cxcp¥ cthep, (11)
with
Z)‘C)\;cpck; o' =0cc'Oppr, (12)
and
2oe 200 enCniep=Ornr. (13)

The square root of the reduced width is given by

ao= (1) 2m)} f Xy, - -, Xae; 0)

Xitep*(a)drdQ, (14)

where the integral extends over the coordinates of the
core nucleons and the angular coordinates of the extra
nucleon at the surface of the core, |x4|=a. When the
extra nucleon, A4, is at the surface of the core, ¥, is
independent of x4 and is assumed to be equal to the
unpolarized core wave function.

The core is assumed to be spherically symmetric

8 1. Eisenbud and E. P. Wigner, Phys. Rev. 72, 29 (1947).
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so that the potential (1—8)V+e.(x4) is spherically
symmetric. We may therefore write #., as a product of
a radial function and a spherical harmonic,

ucp<xA)=ch(]xA])Yczz(gd)~ (15)
Using (15) and (11) in (14) we obtain
"I’Xc=2p7)\;cm (16)
where
Yriep™ (hz/ma)%ck:chcp(a)- 17)

The basis of the model which underlies the present
article is the assumption that for each A one term in the
expansion (16) is much larger than the others. The
reduced width, v,2, of the compound state X thus
arises from the “nearest” single-particle state, #,,, of
the shell model. This is possible if vy;¢p, considered as
a function of A, has a maximum near E., and falls
rapidly to a very small value in a distance which is
small compared to the spacing of the single-particle
levels (~10 Mev) but large compared to the spacing
of nuclear resonance lines. It is this assumption which
allows us to decompose the strength function into partial
strength functions as was done in (1).

The energy moments of Cy;.,? can be obtained from
the formal decomposition, (11), of the compound states.
Let us write

H=H+(1-p)(V-7),
which defines H,. We obtain, from (11),

ExX\= Z Cx 017[H0+ (1 _B) (V_ V)]\I’cucp- (19)

(18)

However, AsV (X1, *-*,Xa—1;X4) does not vanish
identically so that the functions ¥, are not eigen-
functions of the operator H,. In fact,

HoV ttop=EpV tt6y— 21/ 2m)V 4V V athep

) — (72/2m) (A4 Y )usp.  (20)
If we multiply each side of (19) by ¥ ., and integrate
over the coordinates of all the nucleons, using the de-

composition (11) on the left-hand side of (19) and
the expression (20) on the right-hand side, we obtain

ExCriep=EpChriopt2cr, Chicr
X{(‘I’cucm (1-8) (V—V)‘I’c“c’p’)
— 202/ 2m) (¥ oy V 4V o1V 4lher )
— (32 2m) (¥ thep, horrAaT )}, (21)
Multiplication by Cy;., and summation over A yields
for the first moment, by means of the orthogonality
properties (12) and (13),
M= 0F\Chiept
=E oyt P othep, (1—8)(V—=V)¥1.,)
— 2052/ 2m) (¥ thop, V 4V o+ V 4tb5p)
— (% 2m) (¥ e, HepAa¥e). (22)

One can see that the third term on the right-hand side
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vanishes by taking the gradient of the normalization
condition (7). The sum of the second and the fourth
terms on the right-hand side is the correlation energy,
Ecorr, that is, the contribution of the core polarization
to the first energy moment of the strength function,

Eeore=M1—Ecp= Y thep, (1—8)(V— V)q’c“cp)

— 7%/ 2m) (¥ thep, UepAa¥e). (23)

The correlation energy, Ecorr, Will be calculated in the
next section and compared to a similar calculation by
Wigner.?

The higher moments, M,, will be defined in terms of
the average position of the giant resonance as given
by M. Thus we define

Mv=2)\c)\;cp2(E)\—M1)y- (24)

If the inverse of the real orthogonal transformation (11)
is used in calculating the expectation value of the
operator (H—M)” taken in the state ¥qu.,, it follows
at once that M, is given by

M,= Y thep, (H—M1)"V 01,5). (25)

Since the operator H—M; is Hermitian, a simple
expression may be obtained for the second moment, M;

M= (Ho+ (1—6)(V——V)—M1]
X\I,Cuvpy I:HU+ (1 _B) (V—— V) - Ml]‘I,cucp)

~ [10-0) =T ¥atey=202/2m)
XV 4V V athopy— (B2 2m)1hepA 4V,
— Eeorr¥ othop| *drdx 4
= f [ (1=B) (V=V)¥ e — 2 (h?/2m)

XV a4V W athop— (B2/2m)thopA 4V ;| 2d7dX 4

—Eeor?. (26)

The moments higher than M, will involve higher order
derivatives of ¥, and #,, with regard to x4. The general
expression for the second moment, (26), is considerably
more complicated than the special case (8=0) of Lane,
Thomas, and Wigner. In the limit of 3=0, (26) reduces
to their expression:

M2=f](V—T7)\I/cuc,,|2drdxA, B=0). (27

The second moment with core polarization contains,
in addition to the potential energy, (V—V), a number
of “kinetic energy” terms. By varying the amount of
core polarization we can vary the relative magnitudes
of the potential energy and the kinetic energy terms

9 E. P. Wigner, “On the Shell Model for Nuclei,” L. Farkas
Memorial Volume, Research Council of Israel special publication,
No. 1, Jerusalem (1952).
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in the square root of the integrand of (26). Thus we
can vary, to some extent, the value of M.

The moments of Ch;.,? bear a simple relation to the
moments of the strength function. Using (15) and (17)
in the definition, (24), of M,, we obtain,

Mv:Zk(l/fpz)"/)\;opz(E)\_Ml)py

§'= (#/2m)Ro,*(a). (29)

In (28) and (29) the particular channel corresponding
to the ground state of the core (¢=0) has been chosen.
The sum in (28) may be changed to an integral,

(28)
where

M=/t f SO (B (Ba— Ma)dEs,  (30)

in which the integral extends from the ground-state
energy to infinity.

3. THE VALUE OF THE SECOND MOMENT

_An expression for the second moment with core
polarization [given by (26)] was calculated in the
preceding section. In this section we shall evaluate
this expression approximately. We assume at the outset
that the extra nucleon 4 is at the center of the core, or
rather, calculate the integral dr, of (26), for x4=0 and
consider this an average of the integrand with respect
to x4. The validity of this approximation will be dis-
cussed at the end of this section. We choose ., to be
an s-state in order that it not vanish at the center of
the core. In this case, however, the terms of (26) in-
volving V 4%, vanish.

Using the approximations just made, M, may be
written

Ma= f | (1—B) (V= T,

— (B 2m)A 1V 0| 27— Eoors?,  (31)
where we have chosen that core function (¢=0) corre-
sponding to the ground state of the core. We shall
calculate (31) by obtaining approximate expressions
for ¥,. To obtain the approximate ground-state cere
function we shall treat the nucleon-core potential, 3V,
as a perturbation. We assume that the unperturbed
core function, ¥,®, can be written as a determinant of
single-particle wave functions,

1 wi(X1) - wi(Xa-1)
Vo = : (32)

m wA_zl(XO . 'wA—l('xA—l) .

If these single-particle wave functions belong to a
square well of radius a, with the boundary condition
that the wave functions vanish at the radius e, then
the normalized s-wave single-particle wave functions
are

w,(x;)= (2ra)~¥(1/7;) sin(swri/a). (33)
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The subscript s on w,(x;) will be used to indicate that
(33) is an s-wave function.
The perturbing potential,
A-1

gV=g ;1 W(lxi—xAD»

is chosen to be a sum of two-body Yukawa potentials
without exchange. That is,!

e—*lxi—x4l
—%Ceﬁ————l,

s (34)
X;i—X4

o(|xi—x4])=

with C=~40 and x=2.5mc*/e? cm—1, We may write the
perturbed single-particle wave function, w,(X;X4), up
to first order, as

wn(X5,X4) = Wn (Xo)Fwn® (X;,X4), (35)

where the first-order term w,® (x;,X4) is

Vn
( )(XHXA) 6 Z/ _‘_—"'wn (X) (36)
with e

_ler“XAl

U =—3Cé? f fw,;w,,f dxi. @3N
Xi—Xa4|

The first-order term, ¥, in the perturbation calcu-
lation for ¥, may therefore be written as

\I/o(l) [ S —
[A-D!]
A—1 wl(}h) cee W (3(1‘,XA) ce w1(?{A—1)
Xz : : : (38)
i=1 wA—-l(xl) .« 'wA—l(l) (xi,xA) .. 'wA—-l(XA—l)

Each determinant of this sum contains one column of
first-order single-particle wave functions.
Since ¥ does not depend on the coordinates x4,
AA‘I/Q(O)':O, Whlle
1 A—1

[(A—1)1T Z

AAwI(l) (xi’xA) v

AgVo= A T V=

wi(x) - w1(Xa-1)

X (39

wA—;(xl) .. 'AAwA~1(1)(xi,XA) .. ‘wA—l(XA—I)

The coordinates of the Ath nucleon occur in w,® (x;,X4)
only in the matrix element v,,. Aqvpnr iS

AAvnn'=K2'vnn’+ chezwn(xA)wn' (XA)- (40)

The correlation energy, Eeorr, IS given approxi-
mately by

Ecorr= (l_ﬁ)(\yﬁ(o), (V"‘ V)‘I’o(l))
— %/ 2m) (W, A T,W).  (41)
0 This potential was also used by Lane, Thomas, and Wigner
in their calculation of the second moment. It is taken from the

work of H. Feshbach and J. Schwinger, Phys. Rev. 84, 194
(1951) and H. H. Hall and J. L. Powell, Phys. Rev. 90,912 (1953).

VOGT

This expression will be evaluated below. As will be
shown there, E:.? contributes a negligible amount to
the second moment.

Keeping only highest order terms in M, we may
approximate (31) by

M= f | (1= B) (V= V) e ® — (3 2m) A 4T |2dr

=f! (1=B) V¥ @ — (h2/2m) A 1T ® |2dr

—(1—p)2  (42)
Using (32) in (6) we obtain '
=
= Z Viie (43)
i=1

Using the expressions (32) and (38) for ¥, and ¥,®
respectively, the second moment (42) can be written
in terms of one- and two-nucleon integrals in the
following way:

=—(1- L3)2(Ai1 vu)2

+§ | (1) (| xa—x| i)

- (h2/2m)AAw,~“) (XA,X) lzdx

A—1 A—-1
-Z
i=1 j=1
]

{ (1= B (o' — 2012/ 2m) (1~ B)os;

2
X f WA 4w;Vdx+- (B 2m)2( f WA 4w j(l)dx)
— (1=B)%viw;+2(R/2m) 1—B)vs

Xf‘w,‘Aij(l)dX— (ﬁZ/ZWI)2

X( f w,rAAwi“)dx) ( f 'w,-AAw,-(‘)dx) ] (44)

The first and the last three terms in the curly bracket
are, respectively, the exchange and the direct integrals.
The last two direct integrals vanish identically. All of
the remaining terms on the right-hand side of (44)
combine in the following way:

Aqvi;f?
(1—B)vi;—B(H*/2m) — . . (45)

b j

M2=Ail i

i=1 j=A

We note that, thus far, the only way in which we
have used the assumption that the extra nucleon is at
the center of the core is in the neglect of the terms in-
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volving V a%.,. We now set x4=0 in v;; and Aav,;. If
the potential (| x—o0]) is large only for distances which
are small compared to the radius ¢ of the core, then
v;; and A4v;; are large only if 2 and j both refer to
s-wave states. We can therefore write

M2=4Z Z

8 8/

Apvgsr |2
(1—=B)vss —B(h2/2m)g ‘ , (46)

where s refers to an occupied s-wave state and s’ to an

unoccupied s-wave state. The factor 4 arises from the

fact that there are four nucleons in each occupied s-state.
From (33), v, is found to be

(ka/m)*+ (s—s')?

which is obviously always negative. Similarly, in terms
of (40) and (33)

v59r=— (1/4) (Cé?/a) ln[

Cé¥/a

AA'Dss’
— (h%/2m) =—

8 8’

82—5,2

(ka/m)*+(s+5')
_ . (48
(:ca/-/r)?-}—(s—-s')z]; (48)

Since the first term of the curly bracket is always
larger than the second, (48) is obviously always positive.

The quantities vssr and (#2/2m)A 4055/ (85— 847), for
a given s, may be regarded, respectively, as the com-
ponents of two vectors in the Hilbert space whose basis
is given by the s-wave states. If these vectors are
parallel it is possible to choose 8 so that the contribution
of the occupied core state s to the second moment
vanishes. The condition that each term in the sum over
occupied states, in (46), must be larger than or equal
to zero, for all values of 3, is equivalent to Schwarz’s
inequality.

The second moment (46) was calculated assuming
a radius of 9.0X10~%¥ cm for the core. This radius
(a=1.454%X 108 cm) corresponds to a very heavy
nucleus (4~240). For such a nucleus the first three
s-states are occupied.!!

The result obtained for the square root of the second
moment is shown on Fig. 1 as a function of the amount
of core polarization. The square roots of the separate
contributions of the 1s, 2s, and 3s states to M, are also
shown. The value of My} for =0, (M*=22.3 Mev)
agrees very well with the result obtained by Lane,
Thomas, and Wigner (M,=22.5 Mev) although these
latter authors used a different approximation for the
core functions in evaluating M, and a smaller radius.
If the larger radius of the present article is used in the
second moment calculated by Lane, Thomas, and

X { ss'— (xa/2m)? ln[

11 This is consistent with the fact that the 4s state lies at an
energy of 40.5 Meyv, that is, at an energy which is higher than the
depth of the potentlal V as calculated by Lane, Thomas, and
Wigner for this choice of the radius.

1797
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Mev
2%

20

F16. 1. The second moment of the strength function in terms
of the amount of core polarization. The curve labeled (M2)? is
the square root of the second moment. The curves labeled 1s, 2s,
and 3s are, respectively, the square roots of the contributions of
the 1s, 25, and 3s states to the second moment. The curve labeled
— Eorr is the negative of the correlation energy given by (50).

ngner their result for M4} is reduced to 18.8 Mev.
The minimum value®? of (M) (M)i=4.75 Mev]
differs only by a factor of two or three from the result
obtained with complex square wells* for the half-width
of the strength function. This relatively small difference
may well lie in the crudeness of the present calculation
or in the relation between the width of the strength
function and the square root of the second moment.

The correlation energy Ecorr, (41), can be calculated
in a similar way to be

(7’88’)2
Ecorr—'gg ﬁ(l—ﬂ)g,—é’,,
0/ )} (50)

where s and s again refer to occupied and unoccupied
states, respectively. The term Y53 s (0550)2/ (85— 8,) Of
(50) corresponds to a quantity calculated by Wigner,”
that is, the second approximation to the energy ob-
tained by treating the potential ' —V as a perturbation
to the wave functions of the shell model. The result
obtained by Wigner for this quantity, (2.3 Mev),"

12 The maximum amount by which the result obtained by Lane,
Thomas, and Wigner for M, can be reduced is a factor of 23.
Previously, A. M. Lane and L. Verlet as well as the present
author reported a reduction of only a factor of 3 [Phys. Rev. 100,
956(A) (1955)]. The former authors obtained this smaller re-
duction in an entirely different calculation of the core polarization.
The result reported at that time by the present author was due
to a mistake in the present calculation:

13 Tn order to correspond with the present calculation equation
(12) in the appendix of reference 9 must be divided by 4 because
of the difference between the two-nucleon potentials used in
reference 9 and the present article. As prescribed in reference 9,
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agrees very well with the (3.1 Mev) obtained in our
calculation. E.; is also shown on Fig. 1. It has a zero
near the minimum of the second moment. Since Ecors®
is never greater than three percent of M, the neglect
of Ecr? in the calculation of the second moment was
justified. This small value of E. ensures, further,
that the maxima of our partial strength functions occur
near the energies, ¢,, of the single-particle levels in the
shell model.

The approximation methods used in the above calcu-
lation of the second moment are crude and can certainly
be improved. The perturbation calculation for the core
functions should be fairly accurate since the square
integral, N2, of the first-order wave functions, ¥, is
small. N is

'Dss’2

N1 =2 y
Lz (8s—84)

s &

(D)

where s and s’ refer to occupied and unoccupied states
respectively. NV1? is found to be 0.013 8% so that ¥® is
at least an order of magnitude smaller than ¥y ©,

the reduced mass 7/2 instead of the total mass of the nucleon,
m, should be used in this calculation. Because of this Eq. (12) in
the appendix of reference 9 must be divided by a further factor
of 2.

ERICH VOGT

The approximation involved in placing the extra
nucleon, 4, at the center of the core could be justified
if the contributions of the various core nucleons to the
second moment were proportional to their densities at
the center of the core. The argument for this justifica-
tion would be similar to that which was used in the
preceding sections to show that e.(x4) was constant
over most of the volume of the core. At the center of
the core the relative densities of the 1s, 2s, and 3s
nucleons are, respectively, 1, 4, and 9. As seen on Fig. 1,
the contributions of these nucleons to the second
moment have these relative values for 3=0. For other
values of 8 the 3s nucleons contribute a greater portion
of the second moment. The extent to which this effect
impairs the validity of the approximation used in the
above calculation has not been investigated.
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The angular distributions of the neutrons produced in the D(d,»)He? reaction have been investigated
experimentally in the deuteron energy range of 0.25 to 0.825 Mev. A two-crystal neutron spectrometer
providing discrimination against gamma radiation was used as the detector. It is noted that the experimental

data can be fitted by the deuteron stripping theory.

INTRODUCTION

LTHOUGH the angular distributions of the
neutrons from the reaction D-+D—He?+#» are
of the greatest importance from both a theoretical and
experimental standpoint, there is still some uncertainty
in the experimental data. Konopinski et al.! have shown
that the energy-dependence of the angular distribution
coefficients can be accounted for by the differences in
centrifugal barriers corresponding to the different
components of the incident deuteron waves, provided
that spin-orbit coupling is introduced. Conversely, the
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