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The wave functions for the singlet and triplet states of a two-
electron system in a given nuclear framework are investigated as
superpositions of con6gurations and are shown to be transforma-
tionally equivalent to quadratic forms having certain ranks and
signatures. By introducing the "natural orbitals" diagonalizing the
generalized 6rst-order density matrix, the total wave functions
may also be brought to principal form. If the basis contains M one-
electron functions, the singlet and triplet wave functions contain
respectively hf'(hf'+1)/2 and 3f (3f —1)/2 configurations, but the
transformation to natural orbitals reduces the number of terms to
M and Pl/2$, respectively. The natural expansion having the

best convergence is also characterized by another important
extremum property. The approximate wave function of rank r
having the smallest quadratic deviation from the exact eigenfunc-
tion is obtained by interrupting the natural expansion of the
eigenfunction after r terms and renormalizing the result. For the
singlet state, the wave function of rank two and signature zero has
a special importance as giving a simple extension of the visual one-
electron picture to include a large part of the correlation effects.
The theory is illustrated by, some results. on helium obtained by
using radial configuration interaction.

%'0—ELECTRON systems occur commonly in
nature and are of great importance. The series of

helium-like ions: H, He, Li+, Be+', . 0+', etc., is of
considerable interest in physics and astrophysics and
has been studied by several authors. The homopolar
chemical bond is another example of a two-electron
system of fundamental meaning for chemistry, and the
electronic structure of the hydrogen molecule as well as
the m electrons of ethylene, etc., have been investigated
in great detail.

In the quantum theory of the electronic structure of
matter, the two-electron systems provide a valuable
bridge between the comparatively simple one-electron
systems and the systems containing many electrons.
The structure of an electronic system within a given
nuclear framework depends not only on the balance be-
tween the kinetic energy of the electrons and their
attraction to the nuclei, but also on the mutual elec-
tronic repulsion. The last eGect causes considerable
difhculties in the theory, since it may not be treated
within the conventional "one-electron approximation. "
The accurate solution of the many-electron Schrodinger
equation therefore demands other methods, and the
results for two-electron systems are then also of guiding
importance in treating systems containing many elec-
trons. Two types of solutions of the two-electron
Schrodinger equation have been discussed, namely an
eigenfunction in the form of a "superposition of con-
6gurations" and a form containing the interelectronic
distance as a variable. Both types were fjLrst investigated

by Hylleraas in his pioneer works on the helium

problem. ' Hylleraas found that the series of con6gura-
tions converged rather slowly and that a much quicker
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convergence could be obtained by introducing rl2 ex-
plicitly in the solution. Wave functions containing r~2
have later been treated for the Hs molecule by James
and Coolidge, ' for the H ion by Henrich, ' and for the
He series by Eriksson, 4 by Saber and Hasse, ' and by
Chandrasekhar and Herzberg. ' The wave functions
containing r~2 have the disadvantage that it seems im-
possible to give them an interpretation of simple
physical visuality, and it is further difFicult to generalize
the approach to many-electron systems. '

The success of the r~2 method was so large that, for a
rather long time, it was almost generally believed in the
literature' that "electronic correlation" could be taken
into account only by introducing the interelectronic
distances r;; explicitly into the wave function. However,
it was already known in the early days of quantum
mechanics that the wave function for a many-electron
system could be expressed as a superposition of con-
figurations built up from one-electron functions, pro-
vided that the one-electron set was complete. The erst
eigenfunction of this type was derived for helium by
Hylleraas, ' but it seems as if less attention to this paper
has been paid in the literature than to his r~2 work. It

s H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933);
see also A. A. Frost and J. S. Braunstein, J. Chem. Phys. 19, 1133
(1951).

'L. R. Henrich, Astrophys J. 99& 59. (1944); see also S.
Chandrasekhar, Astrophys. J. 100, 1'16 (1944).

4H. A. S. Eriksson, Z. Physik 109, 762 (1938); Nova Acta
Regiae Soc. Sci. Upsaliensis IV, ll, No. 9 (1940); Arkiv Mat.
Astron. Fysik B30, No. 6 (1944); Nature 161, 393 (1948}.

~ T. D. H. Baber and H. R. Hassb, Proc. Cambridge Phil. Soc.
33, 253 (1937).

6S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).' Compare K. Wigner, Phys. Rev. 46, 1002 (1934); Trans.
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See, e.g., C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204
(1938).' An antisymmetric wave function may be expressed as a sum
of Slater determinants over all "ordered" con6gurations; for a
simple proof, see, e.g., P.-O. Lowdin, Phys. Rev. 97, 1474 (1955),
p. 1477.
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QUANTUM THEORY OF 2-ELECTRON SYSTEMS 1731

has now also been shown by Green et eL" how the r»
forms may be transformed into "superpositions of
configurations. "

The method of "configuration interaction" has the
great advantage that it may be directly generalized to
many-electron systems. However, since the basic one-
electron set f& may be chosen quite arbitrarily, the
coeKcients in the series of configurations cannot have
any simple physical importance, and it is therefore
dificult to give usable interpretations of the original
wave functions presented in this way. In order to try to
tackle this problem, it was shown in a previous paper'
that, for each wave function, there exists a certain set of
one-electron functions having such characteristic prop-
erties that it naturally seems to belong to the system
and state under consideration. These rsatssral spin
orbitals x~ are defined as forming the set which di-
agonalizes the generalized first-order density matrix

y(xt'~xt) =X +*(xl xs' ' 'xN)
4

The simplifications of the general theory obtainable in
this case are of an instructive nature. Let us assume
that the functions fs(r) form a comp/etc set of orbitals
depending only on the one-electron space coordinate r
and that n(s) and P(s) are the two spin functions. The
most general antisymmetric two-electron wave func-
tions which may be constructed by superposition of
configurations of the spin orbitals Psn and fsP have
then the form

+(x„xs)=2—
& Ps( As( detg sn; fgP). (2)

This function has S,=O and is the sum of a singlet
component and a triplet component. The two triplets
having 5,=+1 and 5,=—1 are built up similarly from
the pairs Psrr, f&n and P&P, P&P, respectively.

(a) Sing1et Wave Function

In order to select the singlet component of (2), we

apply the projection operator" '0=1—-', S'=-', (1—P»~)
and obtain

X'k(xlxs xst')Zxs~xs ' 'dxN, (1)
'e(xr, xs) =2-& Ps( Cs( det{4 ~;AP), (3)

where Cs~ ———,'(As~+Ats). The singlet is hence charac-
terized by the symmetry property C&&= C&&. The Slater
determinants in (3) with the factor 2 & form an ortho-
normal set, and the singlet wave function (3) is hence
normalized if

where + is the antisymmetric wave function, x; (r;,s~)
is the space-spin coordinate of electron i, and F the
number of electrons. It was shown that, if the wave
function + is expressed in terms of configurations built
up from the natural spin orbitals, this rsatnra1 expansion
of 4' is distinguished as the superposition of configura-
tions of most rapid convergence. "The use of the natural
spin orbitals gives a nice interpretation of the generalized
first-order density matrix, and it also simplifies greatly
the treatment of the higher order density matrices. In
order to start a more detailed investigation of the
"natural expansion" of a wave function of a many-
electron system, we will study in this paper the particu-
lar properties of two-electron systems. The results are of
importance for all the fundamental two-electron sys-
tems occurring in nature, and it is also hoped that they
may give some guidance concerning the more compli-
cated many-electron case. From the very beginning, we

will therefore assume that the exact solution of the two-
electron Schrodinger equation really exists" and that it
is given as an infinite sum of configurations of a com-

plete one-electron set.

1. TREATMENT OF THE SINGLET STATE

In a two-electron system, the spins of the electrons
may combine to form either a singlet or a triplet state.

'0 Green, Mulder, Milner, Lewis, Moll, Kolchin, and Mace
Phys. Rev. 96, 319 (1954).

"See also P.-O. Lowdin, Advances in Phys. 5, 1 (1956),
particularly p. 150.

's Bartlett, Gibbons, and Dunn, Phys. Rev. 47, 679 (1935);A. S.
Coolidge and H. M. James, Phys. Rev. 51, 855 (1937);T. Kato,
Trans. Am. Math. Soc. 70, 212 (1951);J. H. Bartlett, Phys. Rev.
88, 525 (1952); 98, 1067 (1955); V. Fock, Izvest. Akad. Nauk.
S. S. S. R. 18, (2), 161 (1954); E. A. Hylleraas, Svensk Kem.
Tidskr. 67, 372 (1955).

This relation may be condensed in the form Tr(CCt) = 1,
where Tr(=trace) means formation of the diagonal
sum. By expanding the determinants, the wave function
(3) may also be written in the form

rr A-crsat
'@(xr,xs) = @(rt,rs), (4)

O(rt, rs) =Ps) Cs)(lt s,4 )),

where (P&pP&) is an abbreviation for the "symmetrized
product":

(lt sA i) = st(rl)4'l(rs)+A(rr)A(rs)g.
The singlet wave function may therefore be factorized
into a pure spin part and a pure space function. This
result, which is strictly limited to /&2, greatly simpli-
fies the treatment of the two-electron problem and has
been of essential importance for the development of the
whole theory. In using (6), it should be observed that
this quantity is normalized for k=l but that the
normalization integral has the value -', for k~l.

The coefficients CI, & in the symmetric space function
(5) may be found by the variational principle corre-
sponding to the Schrodinger equation, which leads to a
certain secular equation. '4 The numerical solution is

"P.-O. Lowdin, Phys. Rev. 97, 1509 (1955).
'4 For a short description of this procedure, see, e.g., reference 9

p. 1482.
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with the normalization condition

&IC»l'+ & ICk~l'=1 (g)
Ic k&E

A comparison between (5), (6), and (7) then gives the
connection formulas

Ckk=Ckk,

for the formation of the fundamental matrix C.

(9)

(b) Natural Spin Orbitals

The generalized first-order density matrix y(x&' l xi) is
defined by (1), and, by using (4) and (5), we obtain

y(xl'lxi) = (nl'nl+pl'P1)pkl /k*(rl')yl(rl)ylk, (10)

where
Vik=Z 4 C. *, V=CC'. (ll)

The matrix y is therefore a Hermitean matrix, which

may be brought to diagonal form n by the unitary
transformation U:

UtyU=n. (12)

The Natmral orbitals x (r) are then defined' by the matrix
relation g= gU or

and the natural spin orbitals are represented by the
functions Xkn and Xkp. Introducing the relations g= @Ut

and /*=Up* into (10), we obtain

y(xl lxi) = (nl ni+Pl Pl)pk ~kXk (rl )Xk(ri), (14)

where the coefficients e~, i.e., the eigenvalues of the
matrix y, may be interpreted as the occupatiort numbers

of the natural orbitals x&. They satisfy here the relation

Pq rtk ——Tr(y) =Tr(CCt) =1, (15)

which corresponds to the condition J'y(xi
l xi)dhi ——2. In

the general theory' "it was shown that the introduction
of the natural spin orbitals into the total wave function
would lead to a "natural expansion" of this function,
which was characterized by having the most rapid
convergence of all superpositions of configure. ations repre-
senting the same solution. In the two-electron case, this
natural expansion has particularly simple properties, as
we now will show.

Let us consider the fundamental case when the basic
Hamiltonian is not only Hermitean but also real so that
IJ p H p II p The energy eigenfunctions may then
also be represented in real form and this implies that, if
the basic set pk is chosen real, the coeKcients Ck~ will

also turn out to be real. In this important case, the
matrix C is Hermitean and may be brought to diagonal

then often presented in the form

@(ri,r2) =Qk Ckgkk(1)pk(2)

+ Q CktL1t k(1)f((2)+Pi(1)fk(2)+~2, (7)

form c by the unitary transformation V, so that
VtCV= c. By using (11),we then obtain

VtyV= VtC'V= c'= diagonal matrix. (16)

This means that, unless the matrix y is degenerate and
two or more occupation numbers are equal, the trans-
formation V must be identical with the transformation
U. The eigenvalues ck of c are apparently the square
roots of the occupation numbers:

CI,
——ac),&, (17)

(c) Equivalence of the Total Wave Function and
a Quadratic Form. Rank and Signature

of the Wave Function

The natural expansion (18) does not contain any
cross products (xk,x~) for kWl, and this result depends
essentially on the fact that, in the two-electron case, the
total singlet wave function is equivalent to a real
quadratic form. In order to prove this we observe that
the "symmetrized product" (6) is symmetric in k and l
and that, under a linear transformationfk ——p p 'a k,
it transforms like an ordinary product:

(4'kA'&) =Z (4' 4' )a

Hence we obtain

(19)

Zkl Ckl(AA ~) =E-C-'(4-', 4-'), (20)

where C „'=pk~ Ck~a~ka„t This relation .implies that
the space function transforms just like a real quadratic
form.

Let us for a moment consider an approximate wave
function, which is built up of configurations of a basic

and the signs are uniquely determined by the coefFi-
cients CI, & of the original wave function; the physical
meaning of these signs will be discussed later. In the
nondegenerate and real case, the introduction of the
natural orbitals g into the total wave function (4) by the
substitution Q=gUt=Ug will lead to a natural ex-
pansion of the form

+(xi,x2) =2 '*(nlpk n2pi)pk ckXk(ri)yk(r2). (1&)

We observe here" that the series p k ck' is term-by-term
more rapidly convergent than the series gk(pi Ckp)
for any other superposition of configurations.

The simplification rendered by the natural expansion
is perhaps still more striking for the approximate wave
functions. If the basic set pk contains only M orbitals
(k = 1, 2, M), the wave function (7) contains
M(M'+1)/2 different terms, but, by the introduction of
the corresponding approximate natural orbitals, this
expansion is reduced to only M terms. It should be
emphasized that, in the many-electron case, we cannot
expect such a drastic simplification of the total wave
function which, in the two-electron case, seems to
depend on particular properties of the wave function
itself.
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set f2 of finite order M, such that when M—+~ the
approximate solution tends to the exact eigenfunction. "
A quadratic form of finite order is now characterized by
two integers, its rank and its siglatlre, which are
invariant against nonsingular linear transformations. "
The rank of the quadratic form is defined as the rank r
of the determinant of its coefficients, det(Csi}, and,
according to an elementary theorem, the quadratic form
is then reducible by a nonsingular linear transformation
to a sum of "squares, " which contains just r terms. If
the linear transformation is kept real, the coefFicients of
the squares may be positive or negative. The number p
of positive terms minus the number q of negative terms
is called the signature s of the quadratic form, and the
quantities

+(ri, r2) = (e,v), (21)

which means a state where one electron is occupying the
orbital N(r) and the other the orbital v(r). Since

are then the fundamental invariants of the form. The
equivalence theorem then implies that each approxi-
mate wave function of finite order has a definite rank
and signature and that it may be reduced to a sum of
"squares"; this gives the explanation of the simple
form (18).

The equivalence theorem is a valuable tool for dis-
cussing the properties of the wave function. L'et us, for
instance, investigate in which cases the space function
(5) is reducible to a single symmetrized product

Island Conference in 1951.The form (22,N) of the wave
function corresponds to the conventional "closed-shell"
structure of the two-electron system. This function,
which has rank r = 1 and signature s= 1, may be con-
sidered as a degenerate form of (21) for e= v. Mulliken
characterized the (u, v) function (21) for eWv as an
"open-shell" form and pointed out that this function
would contain an improved electronic correlation by
letting the two electrons move in considerably diferent
orbitals, thus increasing their mean distance. Re-
markably good results for helium had previously been
obtained by Hylleraas' and by Eckart" by using the
simple form (21). It seems to us as if the (e,v) form is of
great value for describing the structure of a. two-
electron system in a simple way to a rather high degree
of accuracy, and further investigations are in progress
here.

(d) Extremum Properties of the Natural
Expansion Taken Term by Term

The "natural expansion" (18) is characterized by the
general property of having the most rapid convergence
of all superpositions of con6gurations describing the
same wave function. We will now show that, for a two-
electron system, the natural expansion has an additional
extremum property. Let + be the exact eigenfunction
and let 0'„be an arbitrary wave function of rank r. In
order to determine the "best" approximation of 4 of
rank r, we will then try to minimize the total quadratic
deviation

ev =-', (22+v) 2—-'(u —v)' (22) e„~'dx,dx, =—2] 1— ' ~„dxidx2 [, (24)
the right-hand member of (21) has for ePv the rank
v=2 and the signature s=0. This implies that only
wave functions (5) of this rank and signature may be
reduced to the (N, v)-form. We note further that every
function (5) having r =2 and s=0 may be expressed in
the form (21),for, after reducing it to a sum of "squares, "
we obtain

cl(X1&X1) ~2(X2pX2) (Cl Xl+C2 X21 Cl Xl C2 X2)1 (23)

where c~)0 and c2)0. A special case of this theorem
was 6rst found by Coulson and Fischer" who pointed
out that, in the hydrogen molecule, the molecular-
orbital method using semilocalized orbitals leads to a
wave function which was equivalent to a superposition
of two configurations consisting of doubly occupied
orbitals. The best (N, v) form for the H, molecule has
further been studied by Kotani. "

Other special results for functions of rank r=2 were
derived by Mulliken" in connection with the Shelter

'5 See, for instance, G. Kowalewski, Determinanteetheorie
(Walter de Gruyter and Company, Berlin and Leipzig, 1925),
second edition, pp. 172—200.

'6 C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949)."M. Kotani, Proceedings of the Shelter Island Conference on
Quantum Mechanical Methods in Valence Theory, 1951 (un-
published), p. 139.

' R, S. Mulliken, Proc. Natl. Acad. Sci. U, S. 38, 160 (1952).

i.e., to maximize the overlap integral

r
5=) ~„dxrdx2.

The "best" function +„ofrank r is then obtained simply
by interrupting the natural expansion (18) after the
first r terms and renormalizing the finite series to unity.

In order to prove this theorem, we observe that an
arbitrary space function of rank r may be written in the
form

r

(rl r2) Q ek(Nk Qk) ~

k=1
(26)

+k 2 X~ami& (27)

'2 c. Ecksrt, Phys. Rev. 36, 878 (1930l.

If the functions u~, 02, - Nl, are assumed to form an
arbitrary linearly independent but not necessarily
orthonormal set, the coefficients e& may be restricted to
have 6xed values, e.g. , ej, =&1. Each function u~ is
expandable in the complete orthonormal set yk of
natural orbitals:
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and the coefficients a & may here be varied completely Since A is a symmetric matrix, the same is true for A

arbitrarily. Substituting (27) into (26), we obtain and, according to (36), this leads to (cA) „=(cA)„
=), '(A') „and

+,(r&,r2)= Q &m. (X~,X.))
m, n 1

where the coeKcients

+ma g &kamkank
k=1

(28)

(29)

(c —c„)A„=0. (38)

This implies that, if c A c„,all the nondiagonal elements
A „vanish. In the nondegenerate case, the matrix A
of rank r consists therefore of just r diagonal elements,
A kk, which fulfill the relation A kk' —XckA kk =0, or

P Z„.'=Tr(A')=1.
m, n=l

(30)

form a symmetric matrix of rank r. The normalization
condition gives

A kk=&ck. (39)

(r)
+,(ri, r2) =& Q c~(X~,X~), (40)

According to (28), the optimum wave functions of rank
r may then be written

Introducing (18) and (28) into the overlap integral (25),
we obtain further

5= P c„A =Tr(cA),
m=1 (~) (~)

X '=5= {+cg'}l={Pni}'
k k

(41)
where c is the diagonal matrix formed by the elements
Cm

In order to maximize the overlap integral Sby putting
85=0, we cannot vary the elements A „ in (30) and
(31) iridepeedeetly since they are subject to the condi-
tion of forming a matrix A of definite rank r. However,
since the coeKcients a i, in (27) may be varied arbi-
trarily, we obtain from (31) and (30)

and, since the function (40) hence turns out to be
normalized, the solution of the variation problem is
consistent. In order to obtain a maximum overlap, we
have now only to select the r largest occupation num-
bers nk. If the natural orbitals xk are numbered in order
of decreasing occupation numbers, the "best" wave
function of rank r has consequently the form

where the symbol (r) indicates that k is to be summed
over r selected indices. Substitution of (39) into (31)

(31) leads to the formula

85=2 P P c Ega yea i=0,
m~1 k=1

(32)

r

+„(r,,r&) = P c&(X&,X&)/(P N&)l.
k=1 k=1

(42)

4 Q QA „eI,a„ala g 0.
m, n=l k=1

Introducing a Lagrangian multiplier X on the 6rst rela-
tion formally changed to a double sum, we get further

00 1'

Q (A „lic 8 )e—pa„Iha g 0, ——
m, n=l k=1

(33)

P (A„„—Xc„8 „)ega„i.——0.
n=l

In order to solve this system of equations, we will

multiply (34) by a» and sum over k from 1 to r, which
leads to

P (A„„—l~c 8 .)A.,=0,
n=l

or the matrix relation

(A—Xc)A=0.

(35)

(36)

By forming the trace of (36) and using (30) and (31),we
obtain easily the value of the multiplier X:

1=Tr(A')=) Tr(cA) =AS; X=S '. (37)

+r 1= (XlpX1) y' (43)

where xl is the erst natural orbital associated with the
exact solution and having the largest occupation number
n i. By using (41), we obtain for the overlap integral that
S=nl'.

Let us now consider the relation between the form
(43) and the Hartree-Fock form. For a two-electron
system, the Hartree-Fock solution (NHp, NHF) is defined
as the function of rank one having the best value of the
total energy. This extreme value condition leads to a
nonlinear process of the erst order for the orbital uHF,

This proves our theorem.
We have treated here the expansion of the exact

solution, but we observe that the same theorem-holds
also for the expansions of approximate wave functions
of rank higher than r. The approximations of low rank
are of particular interest and will be considered some-
what more in detail.

Rank one.—A total wave function of rank r = 1 may be
written in the form %(ri,r2)= (e,u), and this "closed-
shell" form therefore corresponds physically to a state
containing a doubly occupied orbital n(r). According to
(42), the function of rank one which has maximum
overlap with the exact eigenfunction is simply
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whereas the first natural orbital X1 is defined by a linear
process of infinite order. The two functions X1 and mHp

are therefore not identical, but the examples investi-
gated so far have indicated that they are extremely
lcosely related; see also Table IV for r = 1. Of practical
importance is that the linear process leading to the first
and higher natural orbitals seems to be considerably
simpler than the nonlinear "self-consistent-field"
method.

Ruck tm o.—The total wave function of rank r = 2 has
either signature s=0 or s=2. According to (42), the
function of rank two which has the smallest total
quadratic deviation from the exact eigenfunction has a
space function of the form

+r 2 L&1(Xi&iXi)+~& (Xs&Xs)]/(I i+&s) '. (44)

In the case when s=0, this function may be written in
(ep)-form with the orbitals

si= (er'Xi+vs'Xs)/(er+tis) l,
(45)

('+t Xl +2 X2)/(Ni+Ns)'

The increase of the rank of the wave function gives rise
here to a "correlation splitting" of the closed-shell form
(43) into an open-shell form, where at least part of the
eBect of the inter-electronic repulsion is taken into
account.

In the case when in (44) the coefhcients cr and cs are
both found to be positive (s=2), the orbitals e and e

turn out to be complex and such that N~=v. This
implies that both particles have the same orbital dis-
tribution

(
u

~

'=
~

v
~

' in ordinary space but different
probability distributions in momentum space. It seems
likely, therefore, that this case will occur only when one
has reason to expect that a "correlation splitting" in
momentum space will be energetically more favorable
than an orbital splitting in ordinary space. So far, no
example of r=2 and s=2 has been found in the simple
two-electron systems.

Recently the Hartree-Fock scheme has been gener-
alized to include at least part of the electronic correla-
tion by introducing diGerent orbitals for different spins. "
For two-electron systems this implies that, instead of
the (u,g)-form, one is interested in the (e,e)-form having
the best energy. Since the extended Hartree-Fock
equations have a nonlinear character and are com-
paratively hard to solve, it is of practical importance to
observe that the functions (45), formed from the first
two natural orbitals and X1 and X2 found by a linear
process, seem to give an approximate solution of excel-
lent accuracy of the energy problem, too. Further
calculations on this point are in progress.

(e) Example: Some Results for the Ground
State of Helium

The method of "superposition of con6gurations" has
already been successfully applied to the problem of the
ground state of helium by Hylleraas in his first paper. '

(2n)'
L~ts(2gr)e "".

(4 )& (ted+1)![n(m+1)]l

In the general theory, ' a "measure of convergence" 8
was defined with the property that the natural ex-
pansion had the smallest 8 value possible of all super-
positions of configurations of one and the same wave
function. Eliminating the spin, the quantity 8 is here
defined by

M
+=1—Z ass',

k=1
(47)

where y» may be evaluated according to (11). The
quantities 0 for the original superposition of configura-
tions and for the natural expansion are given in Table I.
These quantities should be compared with the total

TAm. E l. Ground state of helium. Comparison between the
original superposition of con6gurations and the natural expansion
in order to show the reduction of the number of essential terms.

Number of terms Measure of convergence =8
1 2 3 4 1 2 3

Original form 1 3 6 10 0 0,032907 0.070987 0.073251
Natural 1 2 3 4 0 0.004976 0.008643 0.008729

expansion

~ G. R. Taylor and R. G. Parr, Proc. Natl. Acad. Sci. U. S. 38,
154 (1952l. This paper was also presented at the Shelter Is!and
Conference (reference 17) in 1951.

2' H. Shull and P. O. Lowdin, J. Chem. Phys. 23, 1362 (1955)."A preliminary report was given by H. Shull and P.-O. Lowdin,
J. Chem. Phys. 23, 1565 (1955).

Recently Taylor and Parr" re-examined the same
problem and, using configurations built up from hydro-
gen-like orbitals, they obtained the discouraging result
that the series of radial configurations Ied to an ex-
tremely poor convergence for the energy towards the
limit to be expected. A closer investigation shows,
however, that this failure of the method depends es-
sentially on the fact that Taylor and Parr neglected the
contribution from the continuum. "

UVe have now repeated and extended Hylleraas' first
calculation on helium by using the complete orthogonal
set

(2') l{(ti+ 3+1)!) '*{(ts —l—1)!}&

&( (2t!r) 'L~~i"+'(2rir)e "'Yi(8,y),'(46)
where I.are the Laguerre polynomials, q is an adjustable
effective charge, and F& are the ordinary spherical
harmonics. Since this set is entirely discrete, one can
thus avoid the treatment of the otherwise rather
annoying continuum wave functions. %e will here dis-
cuss the results of the radial configurational interaction
in order to exemplify the use of natural orbitals and to
show the convergence properties of a natural ex-
pansion.

The calculations were based on a finite set of (ns)-
orbitals of order 3I of the form
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TABLE II. Occupation numbers e& for the natural orbitals X& for
different values of M.

1.000000 0.9975561
0.0024439

0.9956599
0.0042652
0.0000748

0.9956166
0.0043114
0.0000655
0.0000065

'+1*(X1Xl) '+2'(X2 X2) ' ' '+ (X g )+.(ri, r2) = . (48)

numbers of terms in 0', which has decreased from
M(&+1)/2 in the original form to M in the natural
expansion. It should perhaps be emphasized that the
quantity 6 cannot be used for estimating the energy
accuracy of diferent wave functions. For each wave
function, only the lowest value 8„,t, is uniquely defined,
and B„,t, increases with M towards a certain limit from
its lowest value 8,~=0 for the Hartree-Fock approxi-
mation (M = 1),at the same time as the energy accuracy
is also increasing. Other "measures of convergence" are
also easily constructed.

In Tables II and III, the occupation numbers eI, and
the natural orbitals x A, for M = 1, 2, 3, 4 are listed, and it
is remarkable how rapidly these quantities converge
towards a definite limit when 3f increases. The total
wave functions may then be found by using formulas
(17) and (42), where it should be observed that, for the
ground state of helium, we have hitherto found only the
first coefficient c~ to be positive, whereas all the others
have turned out to be negative. The signature of a wave
function of rank r is therefore s=2 —r, and the wave
function may be presented in the form

renormalized function of rank r=3 containing only
three terms has the energy —2.87850. The natural spin
orbitals seem therefore to provide a useful tool for
simplifying the total wave functions.

The series of energy values for a fixed rank r are of
interest since, for M—&~, they converge towards a limit
which is closely related to (but not identical with) the
best energy value which is obtainable for functions of
rank r by an extension of the Hartree-Pock method. In
fact, our function (xi)' has for &=3 and &=4 the
energy values —2.861335 and —2.861415, respectively,
whereas the self-consistent field (SCF) energy reported
by Wilson" is —2.8615; it should also be noted that the
function y~ ~ does not di8er from Wilson's numerical
SCF function in any part of space by more than
&0.0056 for %=3 and ~0.0061 for &=4. Recently
Green et a/. '4 have reported a somewhat better SCF
energy, —2.86167, for an analytic SCF function; the
value of the overlap integral between xi ~ and this
function is 0.9999724 for M =3 and 0.9999754 for 3f=4,
showing a slight improvement in the convergence of
y~, ~ with increasing 3f.

For the rank r =2, no SCF results seem to exist so far,
but it would probably be comparatively easy to solve
the extended Hartree-Fock equations" in this case by
starting from the first two natural orbitals, x~ and y2,
obtained. However, the optimum energy will probably
not be much better than our value —2.87769 for &=4
and r = 2. The result already obtained is remarkable, for,
if the radial limit is estimated to be about —2.879 or
—2.880, it implies that between 84% and 89% of the
radial correlation energy is actually taken into account
in the simple (u, v)-form, which may be constructed
from xi and x2 by using (45).

In Table IV, the energy values of the wave func-
tions (48) are given in the modified atomic unit
e'/ao, H (=2hc Rya, ); only radial configurations are here
taken into account. We observe how quickly the energy
converges towards the radial limit to be expected. The
original wave function for M =4 contains tee terms and
is rather clumsy to handle, but, after the transformation
to natural spin-orbitals, it is reduced to only four terms;
in both cases the energy is —2.87860. The last term is
here relatively unimportant, and, if it is omitted, the

2. TREATMENT OF THE TRIPLET STATE

In order to select the triplet component of the total
wave function (2), we will apply the projection operator"
'0=-', S'=-', (1+Pi~') and obtain

'4(xi, x2) =2 '* Pi i —,'(A~i —A iq) detgm; PiP). (49)

The triplet is hence characterized by the antisymmetry
property of the matrix of the coefficients -', (A&&—A &I,)
and is normalized to unity, if g» ~i(A&&—A&&)'=1.
The triplet wave function (49) may also be factorized in

TABLE III. Approximate natural orbitals X& for the ground state of helium for different values of 3f; g =2.

kI= 1 2 3

1s 1.000000 +0.992794 +0.983545
2$ —0.119833 —0.168992
3$ +0.063880
4s

4 2

+0.982955 +0.119833—0.170083 +0.992794
+0.069537—0.005955

3 4 3

+0.178369 +0.179264 +0.028690 +0.037891
+0.964488 +0.968000 —0.202991 —0.181235—0.194800 —0.170104 —0.978760 —0.982029—0.043657 —0.036555

+0.015090
+0.034679—0.042981
+0.998360

~ W. S. Wilson, Phys. Rev. 48, 536 (1935); W. S. Wilson and R. B. Lindsay, Phys. Rev. 47, 681 (1935).
~ Green, Mulder, Lewis, and Woll, Phys. Rev. 93, 757 (1954).
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TAM.E IV. Ground state of helium. Total energy in modiled
atomic units (=c /op, n =2hc Ryu, ) for the interrupted natural
expansion (42) of rank r = 1, 2, ~ ~ M', vvhen only radial con6gura-
tions are included; q =2.

carrying out the transformation

we obtain
@site}=E {0-'A.'}a sa ~*,

(57)

(58)

r=1
r=2
r —3

—2.750000 —2.837638—2.850225
—2.861335—2.877236—2.878116

—2.8614151—2.8776857—2.8785000—2.8785973

which gives

%(rr,rs)=Ps(Cs(gp, it)}=Q „C „'{P 'pP„'}, (59)

with

the form

where

%(xt,xs) =2 &(nrPs+asP$)+(rr, rs),

+(rr, rs) =Qw Csi{gspg~},

Cw = si(~ w ~ ia),

(50)

(51)

(52)

C~~ =~at +~rcl Ãt»

C'= aCat. (60)

Let us choose a = Ut, where U is the unitary transforma-
tion which brings the Hermitean matrix C to diagonal
form c=UtCU, with the eigenvalues cq. Introducing a
new set of basic orbitals p& by the relation

and g &pP &} is an abbreviation for the "antisymmetrized
product" q=&U', vt, =g f &s ', (61)

{f f } li[$~(r))fp(rs) p (sr)sf/( r)t] (53) we then obtain

Here we have introduced the quantities f&*(=f& for
real orbitals) in order to facilitate the later use of
complex orbitals. We note that (50) corresponds to a
triplet state with S,=O, whereas the wave functions for
the triplet states with 5,=+1 a'nd S,= —1 may be
obtained by replacing the spin factor in (50) by the
functions n&ns and p&ps, respectively.

The coeKcients C» in (51) may be found by the
variational principle" corresponding to the Schrodinger
equation, which leads to a certain secular equation. The
numerical solution is often presented in the form

+(rr, rs) = 2 C.~[A(rr)A(rs) —4.(rs)k~(rr) j/~2, (54)

@(rj,rs) =g ~ eI {q s, q s}, (62)

which gives the "diagonal representation" of the total
space function. Ke note that, in the odd case, the orbital
q ~ belonging to the vanishing eigenvalue c~——0 will not
occur in this expansion. Because of the special properties
of the eigenvalues cA, the signature of the form (62) will

always vanish: s=0.
Since C*=—C, we can conclude from CUs=csUs

that CUs* —— csUs .—This implies that, if the function
yA,. is associated with the eigenvalue +c~, the function
cp~* will be associated with the eigenvalue —c~. In the
sum in (62), the contribution from a negative eigenvalue
will therefore be identical with the contribution from
the corresponding positive eigenvalue:

which gives

Cs ~= —C ~a = i2 'Cs i

cs{ps*—,ps*}=+cs{q s, p~}.
55)

Hence we may write (62) in the form

(63)

The normalization condition for the total space function
may then be written in the form P&«l C&&l'=1 or t M/2]

@(rt,rs)= g 2cs{ps,ps}, (64)
»(CtC) =Zs~lCs~l'=1. (56)

(a) Triplet Wave Function as a Hermitean
Quadratic Form. Diagonal Representation

By introducing the factor i in the definition (52) of
the quantities CI, ~, we have ensured that the elements
C&& form a Hermitean matrix C having only real
eigenvalues. However, this matrix with vanishing di-
agonal elements and purely imaginary elements has
rather peculiar properties. The secular equation for the
eigenvalues c contains either only odd or only even
powers of c, and this implies that the eigenvalues occur
in pairs, &os, and that a matrix C of odd order has
always an additional eigenvalue c&——0.

Since the "antisymrnetrized product" (53) fulfils the
relation {f~pPs}= {Ps/ ~}*, the total space function (51)
must be equivalent to a Herwziteae qtcadrafic form. In

where we sum only over the positive eigenvalues c&, the
number of terms is [M/2$, i.e., the integer equal to or
nearest lower than M/2. The normalization of the total
space function may then be expressed in the form:

[M/2]
2cs' ——g cs'= Tr(ctc) =Tr(CtC) = 1. (65)

After the reduction to diagonal form, we can now
easily go back to a real representation of the total space
function. Putting

U= R+iS,
66

u=v2QR, v=v2QS,

we obtain q =2 &(u —iv) and

{y.,ps}=-:[N.(rr)" (rs) —~.(rs)»(rr) ). (6&)
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Since q~ and cpI, are associated with diferent eigen-
values, +c~ and —cs (ciWO), they are orthogonal, i e.
I'iosq I dv= 0, and this implies that the functions us and
v~ must be mutually orthogonal and have the same
normalization integral, which is here chosen to be unity.
In general, the functions N1, v1, N2, v2, m~, vt„~
therefore form an orthonormal set, or may be brought
into this form in case of degenerate eigenvalues cj,.
Substituting (67) into (64), we get then the real ex-
pansion

[msi us(ri) us(rs)
4'(ri, rs)= P cs

vs(ri) vs(rs)
(68)

It should be noted that the functions Nq and vt, are
here undetermined with respect to a linear trans-
formation:

us'=us cos8+vs sin8,
(69)vi'= —us sin8+vi, cos8,

which corresponds to a multiplication of the unitary
transformation U by a phase factor exp( i8) —In.
treating the eigenvalue equation CU= Uc, we will some-
times separate it into its real and imaginary parts:

and ej, may thus be interpreted as the occupation
number for the natural orbitais ie~(r) and y~*(r), which
are always simultaneously occupied.

According to (64) and (53), the total space function
has the natural expansion

t M/23

+(ri,rs)=2 Z cu{v s, vs)

t ~/23

~kg'p& (ri) v &(r&) 9 s ( r)s'pk( r)i) (75)

showing that, in the triplet state, two electrons with
antiparallel or parallel spins may be considered as
placed in pairs of conjugate complex orbitals q I, and
yI, , which have the same charge distribution in space
but which still are orthogonal to each other. The
antisymmetry property in r& and r2 is here sufIj.cient to
take account of the main part of the electronic correla-
tion even when only one term in (75) is included. In the
form (68), the quantity n&=cps may be considered as
the probability for the simultaneous occupation of the
pair N~, vt, .

CR= iSc; CS= iRc— (70) (c) Example: Lowest Triplet State of Helium

These relations show that both Rs and Ss are eigen-
vectors to the symmetric Hermitean matrix C' having
the eigenvalues ci, . Numerically, it is often convenient
to solve the eigenvalue problem CU& ——c&U& by an
iteration procedure based on (70).

(b) Natural Orbitals for the Triplet State

It is immediately clear that the complex functions

pi(r) form the natural orbitals of the triplet state under
consideration. Using (1), (50), and, (51), we obtain

where
yu=+„Ci„Cs *, y=CCt=Cs. p2)

If U is the unitary transformation which brings C to
diagonal form, it will bring also the matrix y to diagonal
form with the eigenvalues eI, =cI,', i.e.,

The theory outlined above will be exempli6ed by an
investigation of the lowest triplet state of helium. The
total space function (54) was first derived by using
configurations built up from the basic set (46), but only
the results of the radial configurational interaction mill

be reported here. Starting from the s-functions
(1s,2s, ~ Ms), we get M(M —1)/2 diGerent configura-
tions and a secular equation of the same order. After
having obtained the M(M —1)/2 coef5cients Cii for the
lowest triplet, we can easily form the antisymmetric
Hermitean matrix C of order M according to (55). The
eigenvalues of C form a maximum of PII/2j non-
vanishing pairs & t, ~, and the normalization gives further
ps cps= i.

In the case M=3, the matrix C has the three eigen-
values 0, &2 &, determined by the general properties of
the matrix. The natural expansion (68) for the total
space function consists then of a single term:

UtyU= n= c'. (73) 4(ri, rs) =2 *'tu(ri)v(rs) u(rs)v(r, )$— (76)

Qy carrying out the transformation (61), the first-order
density matrix may then be expressed in the following
forms:

y(xi ~xi) = (~i'ai+pi'Pl)gsns'PL (ri)q s(ri)
t ~/23

(rri +i+Pl Pl) Z njt'Lpk (ri )pk(ri)

For the best value of the adjustable eGective charge,
g = 1.133, this wave function gives an energy of
—2.12906, which is to be compared with the experi-
mental value —2.1750 (see Table V).

TABLE V. Lowest triplet state of helium. Total energy in modi-
Ged atomic units (=s'/cs, ir, =2hc Ryir, ) for the interrupted
natural expansion (68). Experimental value= —2.1750.

+~~(ri') ~s'(ri) 3
[2III/23

= (ai &i+Pi Pi) Z ns$us(ri )us(ri)
k=1

+vt, (ri') vs(ri) j, (74)

Number
of terms

M=3
g =1.133

—2.12906

M=4
vl =1.11141

—2.167620
-2.167636
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In the case %=4, the total space function may be
expressed in the form

T~aLE VII. Overlap integrals between the natural orbitals for the
lowest triplet and singlet states.

&1(rl) vol(r2) +2(rl) vi2(r2)
4 (ri, rv) = cr +Cv (77)

vl(rl) vl(r2) v2(rl) v2(r2)

J'u~x~d v ~0.941976
J'vgxgdv=0. 967796
J'm2x~dv=0. 93684
J'vpx4dv =0.97310

(maximum overlap)
~ ~ ~

(maximum overlap)

and, for the best value of the adjustable e6ective charge,
vi= 1.11141,the matrix C has the four eigenvalues

c~, I =&0.707105, c2, 2
——&0.001519. (78)

The energy of (77) is then —2.167636, which should be
compared with the above-mentioned experimental value
—2.1750. The functions ei, vi, u2, vv are given in
Table VI; the angles gi and 02 in (69) have been de-

TABLE VI. The natural orbitals of the lowest triplet of helium in
a real representation.

is
2s
3$
4s

+0.920687—0.059257
+0.385358—0.018002

+0.181063
+0.924828—0.281968
+0.180011

—0.34569
+0.32263
+0.87863
+0.06646

+0.00709—0.19260—0;00071
+0.98125

termined so that m~ and N2 have maximum overlap with
the natural orbitals x& and z3, respectively, for the
singlet ground state (for M=4). Table VII gives a
survey of the overlap integrals between the triplet
orbitals n J„vI, and the corresponding natural orbitals x~
for the singlet; we observe that the orbital x~ occurring
in the conventional closed-shell structure (xi)' for the
ground state does not occur with any higher degree of
accuracy in the description of the lowest triplet state,
and this implies that one has to be careful in using the
naive orbital picture of a single excitation as obtained by
an electronic jump from one orbital to another, whereas
the others are left unchanged. An excitation is instead a
transition of the system as a whole from one state to
another and may imply changes for all the electrons—
there may be a certain orbital correspondence, "but the
accuracy is usually rather limited.

In conclusion, it should be observed that the second
term in (77) has only a small importance; if it is dropped
and the expansion renormalized by putting c&

——2 ', the
energy is changed from —2.167636 to —2.167620. This
value is probably rather close to the best energy
obtainable by a Le,vj wave function, which should

strictly be calculated by a Hartree-Fock procedure. We
note that the angular correlation energy does not
amount to 0.0075, which is only half the value in the
singlet case, and that most of the radial correlation is
apparently taken into account already in the fe,vJ
form.

"See, e.g. , P.-O. Lowdin, Phys. Rev. 97, 1490 (1955), particu-
Iarly p. 1506,

3. DISCUSSION

In the general quantum theory of many-particle
systems, ' " it was shown that the total wave function
may be expressed as a superposition of configurations
built up from a basic set of one-particle functions. By
introducing the natural spin orbitals diagonalizing the
first-order density matrix (1), the corresponding "natu-
ral expansion" of the total wave function may be
obtained, and this series of configurations has then
certain properties of maximum convergency.

In this paper, the case of /=2 has been investigated
in greater detail. It has been shown that the total space
function is equivalent with a quadratic form having a
certain rank and signature and that the natural ex-
pansion of the wave function corresponds to the diagonal
representation of this form. For the singlet, it has
further been shown that the approximate wave function
obtained by interrupting the natural expansion after r
terms and renormalizing the series represents the best

approximation of rank r, i.e., the function of rank r
having the smallest total quadratic deviation from the
exact wave function. A corresponding theorem holds
also for the triplet. The case of /=2 is, of course, of
particular simplicity, but the possibility of generalizing
the results to many-electron systems is now being
further investigated.

The theory has been exemplified by some results con-
cerning the lowest singlet and triplet of the helium
atom. Applications to the hydrogen molecule are now
also in progress, but the results will be published
elsewhere.

ACKNOWLEDGMENTS

The authors would like to express their sincere grati-
tude for generous support from "King Gustaf VI Adolf's
70-Year Fund for Swedish Culture. "We are also greatly
indebted to Knut and Alice Wallenberg's Foundation
and to the Swedish Natural Science Research Council
for valuable financial assistance.

One of us (H. S.) wishes further to express his deep
gratitude to the John Simon Guggenheim Memorial
Foundation and to the Fulbright Award Committee for
generous grants which have made this international
exchange possible.

The authors also wish to thank Fil.kand. Klaus Appel
for carrying out many of the numerical computations in
this paper. We are further indebted to Professor Ivar
Wailer for the great hospitality we have enjoyed at the
Institute for Theoretical Physics in Uppsala.


