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Results are obtained for the photomagnetoelectric (PME) effect that are more general and exact than
those of earlier theory. Through an ambipolar treatment, the underlying general theory for current carrier
transport with magnetic field, which can provide similarly unrestricted results for the Hall, Suhl, and
magnetic rectifier effects, is first developed. The PME effect is considered in detail for the infinite slab
with strongly absorbed steady radiation on one surface and parallel, steady, uniform magnetic field. Small
Hall angles and constant surface recombination velocities and lifetime are assumed. Small-signal theory
is given as well as nonlinear theory for arbitrary light intensity. The latter provides methods for determining
lifetime that require only negligible dark-surface concentration of added carriers, as well as a method for
determining surface recombination velocity; curves for these are given for germanium. Expressed in terms
of conductance increase, PME current or voltage does not depend explicitly on light intensity nor on
recombination velocity for the illuminated surface. Distance along the slab between equipotential probes
on opposite surfaces as obtained from a nul measurement in which Dember and PME potentials cancel
determines directly the sum of the magnitudes of the Hall angles, upon which the PME effect depends.

1. INTRODUCTION

HE photomagnetoelectric effect, or PME effect,
may be described as a Hall effect associated with
the diffusion of optically injected current carriers. It
was first observed in cuprous oxide at low temperature,’
shortly following which Frenkel provided a theoretical
explanation based on the concept of the optical exci-
tation of electron-hole pairs.? It was observed com-
paratively recently in germanium at room temperature,
and, notably through the work of Aigrain and Bulliard?+
and Moss and Pincherle,> has been used to study
recombination in the volume and on surfaces of ger-
manium®# and other semiconductors.**

The detailed theory of the present paper for the
PME effect involves fewer restrictive assumptions and
approximations than have previously been employed.
In Sec. 2, the underlying general theory for the trans-
port of current carriers with magnetic field is developed.
This can provide similarly unrestricted results for the
Hall,’® Suhl* and magnetic rectifier? effects; with

1T. K. Kikoin and M. M. Noskov, Physik. Z. Sowjetunion §,
586 (1934); I. K. Kikoin, Physik Z. Sowjetunion 6, 478 (1934);
G. Groetzinger, Physik. Z. 36, 169 (1935).

2 J. Frenkel, Physik. Z. Sowjetunion 5, 597 (1934), 8, 185 (1935).

3 P. Aigrain and H. Bulliard, Compt. rend. 236, 595, 672 (1953).
H. Bulliard, Ann. phys. 15, 52 (1954); P. Aigrain, Ann. radioélec.
Compagn. Gén. de T. S. F. 9, 219 (1954). The term ‘“photo-
magnetoelectric” is in accord with the usage of these authors.

4H. Bulliard, Phys. Rev. 94, 1564 (1954).

5 Moss, Pincherle, and Woodward, Proc. Phys. Soc. (London)
66B, 743 (1953); T. S. Moss, Physica 20, 989 (1954); L. Pincherle,
Proceedings of the Atlantic City Conference on Photoconduc-
tivity, November 4, 1954.

6J. J. Oberly, Phys. Rev. 93, 911 (1954).

7T. M. Buck and W. H. Brattain, J. Electrochem. Soc. 102,
636 (1955).

(1; (;_1) Grosvalet, Ann. radioglec. Compagn. Gén.de T. S. F. 9,360
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9 Kurnick, Strauss, and Zitter, Phys. Rev. 94, 1791 (1954);

'(I‘.QSé)Moss, reference 5; Proc. Phys. Soc. (London) 66B, 993
1953).

0 R. H. Fowler, Statistical Mechanics (Cambridge University
Press, Cambridge, 1936), p. 428; H. Welker, Z. Naturforsch. 6a,
184 (1951); R. Landauer and J. Swanson, Phys. Rev. 91, 555
(1953). These treatments take added carriers into account, in

added carriers (in concentrations which may be negative
as well as positive), these effects present a unified
aspect. Under the assumptions often made for homo-
geneous semiconductors, an ambipolar treatment®
furnishes partial differential equations and other equa-
tions which, provided Boltzmann statistics remain
valid, are applicable for unrestricted added carrier
concentration and whatever be the #- or p-type con-
ductivity at thermal equilibrium. These are applied, in
Sec. 3, to the PME effect in an infinite slab with
strongly absorbed steady radiation incident on one
surface and steady parallel magnetic field. Constant
surface recombination velocities and lifetime are as-
sumed, as well as small Hall angles for which magneto-
resistance is negligible.'

In this theory, phenomenological distinction is made
between Hall and drift mobilities, scattering models!s
not being considered. An extension to the case of slow
and fast holes is given which shows that relatively few
fast holes can make a relatively large contribution to
PME current or voltage. The same equations still
apply, however, in which the Hall and drift mobilities

contrast to ‘““classical” ones which apply to zero lifetime; see O.
Madelung, Z. Naturforsch. 9a, 667 (1954).

1t H, Suhl and W. Shockley, Phys. Rev. 75, 1617; 76, 180 (1949);
W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc., New York, 1950), pp. 71-75, 325 ff.
See also H. Suhl, Bell System Tech. J. 32, 647 (1953).

12 H. Welker, Z. Naturforsch. 6a, 184 (1951); E. Weisshaar and
H. Welker, Z. Naturforsch. 8a, 681 (1953); Lehovec, Marcus, and
Schoeni, Phys. Rev. 98, 229 (1955); O. Madelung, Naturwiss. 14,
406 (1955); Madelung, Tewordt, and Welker, Z. Naturforsch.
10a, 476 (1955); E. Weisshaar, Z. Naturforsch. 10a, 488 (1955).

3'W. van Roosbroeck, Phys. Rev. 91, 282 (1953).

14 For less than 19, magnetoresistance in germanium or silicon,
Hall angles should in general not exceed 0.1 to 0.2 radian or
about 5to 10 degrees: G. L. Pearson and H. Suhl, Phys. Rev.
83, 768 (1951); G. L. Pearson and C. Herring, Physica 20, 975
(1954). A similar restriction applies also to InSb: G. L. Pearson
and M. Tanenbaum, Phys. Rev. 90, 153 (1953); Tanenbaum,
Pearson, and Feldman, Phys. Rev. 93, 912 (1954); H. J.
Hrostowski (private communication).

15 See O. Madelung, reference 10. Theory for the large-magnetic-
field PME effect has been given by I. I. Ansel’m, Zhur. Tekh. Fiz.
24, 2064 (1954).
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F1G. 1. The PME effect in an infinite semiconductor slab.

for holes are certain weighted averages that correspond
to the apparent values determined by measurements at
given temperature of Hall effect at given magnetic
field and of drift velocity or conductivity. It is indicated
briefly how the theory for arbitrary Hall angles can be
developed in a straightforward manner for semicon-
ductors like InSb and InAs, whose mobility ratios are
large'® and whose magnetoresistive behavior is com-
paratively simple if they are not degenerate.l” Magneto-
resistance in these materials, negligible only for small
Hall angles,* can perhaps to advantage be taken into
account semiempirically on the basis of measurements
without added carriers.

The condition that the curl of the electrostatic field
must vanish requires a constant (depth-independent)
PME field along the infinite slab and a nonvanishing
curl of local total current density I. Thus, PME open-
circuit voltage is the same on both surfaces, and the
associated I constitutes a circulating current. As
previously indicated,'® neglect of this circulating current
by the otherwise plausible assumption that the open-
circuit I is everywhere zero—valid only if there is no
magnetic field—has led to some theoretical results
that are inconsistent and also at variance with the
experimental observation® of PME open-circuit volt-
ages substantially the same on both surfaces.

In advance of the proper derivation, it may be well
to enlarge upon this aspect of the theory in descriptive
terms. With reference to Fig. 1, consider first the short-
circuit condition with field £, along the slab zero, as if
the ends of the infinite slab were joined. Optically
injected electrons and holes are deflected respectively
to the right and left by the applied magnetic field H,
and their corresponding flow densities make the Hall
angles 6, and 6, with the negative of the concentration
gradient of added carriers. As indicated in the figure,
the electron and hole currents along the slab add to
give a total PME short-circuit current density 7,9

16 H. Welker, Z. Naturforsch. 7a, 744 (1952), 8a, 248 (1953);
Physica 20, 893 (1954); M. Tanenbaum and J. P. Maita, Phys.
Rev. 91, 1009 (1953); O. Madelung and H. Weiss, Z. Naturforsch.
9a, 527 (1954); H. J. Hrostowski and M. Tanenbaum, Physica
20, 1065 (1954).

17 E. Burstein, Phys. Rev. 93, 632 (1954).

18 W. van Roosbroeck, Phys. Rev. 98, 1533 (1955).

1 T, M. Buck (unpublished); Moss, Pincherle, and Woodward,
reference 5.

to the left. Since the total current density across the
slab is zero, I,(*9 is proportional to the sum of the
tangents of the Hall angles.

In general, and in particular for the open-circuit
condition, the field along the slab is constant. The field
across the slab is the field of the Dember effect®: Since
the diffusion constant for electrons exceeds that for
holes, zero-current diffusion involves a field opposite
to the concentration gradient which assists the transport
of holes and retards that of electrons. This field is
proportional to the concentration gradient and is thus
largest near the illuminated surface. The open-circuit
equipotentials, orthogonal to the resultant field, are
accordingly parallel curved surfaces, as indicated in
the figure by the dashed lines. For Hall angles not so
large that magnetoresistance occurs, the Dember effect
predominates and the equipotentials are inclined mostly
along the slab. It is shown in Sec. 3.5 that the distance
Ax along the slab between the intersections of an
equipotential with the surfaces of the slab is a measure
of the sum @ of the magnitudes of the (small) Hall
angles, upon which the PME effect depends. For the
distance measurement, directly opposite points on the
slab might first be found, say, as points for which there
is no change in the Dember potential measured under
the magnetic field upon reversal in direction of this field.
The value of 8 found by this proposed nul method, in
which the PME and Dember potentials cancel, may be
compared with that computed from the Hall mobilities,
if the latter are known for the particular sample and
magnetic field.

If 7,9 were substantially uniform across the slab,
then, under open circuit, it would just be canceled by
the drift current density to the right associated with
the PME open-circuit field, £;(°9. Because of recombi-
nation, however, 7,09 decreases with depth into the
slab, being largest at the illuminated surface, where the
concentration gradient of added carriers is largest. The
sum of 7,09 and the drift current density is the open-
circuit circulating current density, 1,(°9; its integral
across the slab is zero. As shown qualitatively in Fig. 2

2 H. Dember, Physik. Z. 32, 554, 856 (1931); 33, 207 (1932).
The effect was first observed in cuprous oxide and later measured
by many other workers in this material and other materials as
well. Its theory was given by J. Frenkel, Nature 132, 312 (1933);
Physik. Z. Sowjetunion 8, 185 (1935).



PHOTOMAGNETOELECTRIC EFFECT IN SEMICONDUCTORS

for a slab of finite length with no electrodes, the open-
circuit current is principally photomagnetoelectric and
to the left near the illuminated surface over a minor
fraction of the thickness, and principally a drift current
to the right of smaller average density over a major
fraction of the thickness.

In a slab with high-conductivity electrodes, the
current flows between the electrodes in paths which are
straight but otherwise similar to the ones in the figure;
and the corresponding electrostatic field E and equi-
potentials are qualitatively as shown in the lower
diagram. It is clear from this diagram that end effects
result in principle in some difference between the PME
open-circuit voltages between directly opposite pairs of
probes on the illuminated and dark surfaces. This
difference is minimized if the probes are located sym-
metrically about the center. However, the condition of
constant PME open-circuit field that applies to the
infinite slab is in principle not correct for a slab with
perpendicular end electrodes. Also, if the electrodes are
maintained at the same potential, as in measurements
of PME short-circuit current, then E nevertheless has
components along the slab. These are directed towards
the electrodes; only at the center of the slab, about
which E is symmetrical, is E simply the Dember field.
While the general equations given in Sec. 2 are appli-
cable to two-dimensional boundary-value problems for
the slab with electrodes, specific results are obtained in
Sec. 3 only for the infinite slab. The use of relatively
long slabs is accordingly always a necessary experi-
mental precaution.

Linear calculations given in Sec. 3 readily provide
PME short-circuit current and open-circuit field for the
limiting small-signal and large-signal cases. Included
also is theory for the general nonlinear case of arbitrary
light intensity which takes into account the concen-
tration dependence of added carrier diffusivity. In
conjunction with experiment, appropriate cases of this
theory can serve to determine lifetime = or surface
recombination velocity with good accuracy, after having
provided a critical check of the validity of the under-
lying assumptions. It is shown that by simultaneous
measurement of photoconductance a useful simplifi-
cation can be effected: Expressed in terms of conduc-
tance increase, PME current or voltage does not depend
explicitly on light intensity nor on the recombination
velocity s; for the illuminated surface. If absorbed light
intensity is known, then s; can also be determined, in
addition to 7 or to the recombination velocity s for
the dark surface.

In particular, a method is developed for determining
7 in a thick slab in which no added carriers reach the
dark surface. For applying this method to germanium
Fig. 6 gives theoretical curves that serve to determine
the number 2¥ of diffusion lengths in the slab thickness
from measured quantities or quantities otherwise known
with good accuracy, namely a dimensionless PME
short-circuit current 9 and the relative conductance
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F16. 2. The PME effect in a semiconductor slab of finite length:
I—Open-circuit current, without electrodes; II—open-circuit field
and equipotentials, with electrodes.

increase AG/Gy. A more widely applicable method for r
in a slab of any thickness is also developed which
depends on negligible added carrier concentration at
the dark surface, as may be realized by sandblasting
this surface. This method appears to be well suited for
accurate determination of lifetime, even in slabs only
of the order of a diffusion length in thickness; it can
serve to check whether volume recombination is negli-
gible within experimental error in a particular sample.
Figure 7 gives families of curves for #- and p-type
germanium that specify 2¥, according to this method
in terms of 9/(AG/G,), with g as parameter. The small-
and large-signal asymptotes for infinite 2¥, shown in
this figure indicate that the thick-slab approximation
applies only for thicknesses of at least several diffusion
lengths. For negligible volume recombination, Fig. 8
and Fig. 9 illustrate for »- and p-type germanium a
method developed for the determination of surface
recombination velocity which is based on curves of
9/(AG/G,) versus AG/Gy with a dimensionless form of
the recombination velocity s; as (unknown) parameter.
These curves show that PME open-circuit voltage
generally saturates slowly with increasing light in-
tensity, the large-signal approximation applying only
at large conductance increases that are not readily
obtained in practice.

Time dependence is not considered in detail. The
PME current or voltage following suddenly applied
illumination, the steady state for which is established
about as quickly as that for the photoconductance,
does not at present seem well suited for quantitative
studies.? It may, on the other hand, be desirable to
extend the theory that has been given for the depend-
ence of the relative amplitude and phase of PME and
photoconductive response on the frequency of ac
illumination.?

2 Reference 4 and L. H. Hall, Phys. Rev. 97, 1471 (1955).
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2. GENERAL THEORY?

2.1 Fundamental Equations

With the hole and electron currents I, and I, suitably
specified, the fundamental equations for steady mag-
netic fields are

p—po=Ap=An=n—ny; (1)
divi=0, I=I,+I1,; (2)
curlE=0, E=—gradV; 3)

p/dt=0n/9t=0Ap/dt=—e ' divI,—Ap/T
=etdivl,—Ap/r. (4)

The continuity equations for holes and electrons, Egs.
(4), are the general equations simplified by use of the
condition of local electrical neutrality, Eq. (1), and by
introduction of the lifetime function = for added carrier
concentration.®

If Boltzmann statistics apply, then the hole and
electron currents in a homogeneous semiconductor
under steady magnetic field may be expressed by use
of tensors (of the second rank) as

I,=0,-E—eD,-gradp=0,-[ E— (kT /e) grad Inp],
IL.=0,-E+¢eD, gradn=e,-[ E+ (kT /e) grad Inn],

the conductivity and diffusivity tensors being related
to mobility tensors by

D,= (kT/e)u,,
D= (kT/e)un.

= epUyp, ©)

0n= €Ny,

The form of the current equations and the proportion-
ality of the diffusivity and mobility tensors in accord-
ance with Einstein’s relation obtain since steady mag-
netic field does not change the statistics: It affects
neither the distribution in velocity, which remains
Maxwellian, nor the Boltzmann density distribution.®

6p 6nh<0

F1G. 3. The Hall
I angles.
n

(OH

E

22 The notation employed is consistent with that of reference 13.

% S, Chapman and T. G. Cowling, Tke Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, Cambridge,
1939), pp. 322 ff.; W. Shockley, reference 11, pp. 301-302.

vaN ROOSBROECK

The tensors may be separated into symmetric and
antisymmetric parts, and the terms involving the
antisymmetric tensors written as vector products, so
that

I,=0,-8,+S,X§&,, e

I,,=0'n(8) * 8n+snx 811,. )
Here ¢, and ¢, are the symmetric conductivity
tensors, and &, and &, (which may be written as
negative gradients of electrochemical potentials) are
the vectors in brackets in Egs. (5). The vectors S, and
S, may be referred to as Hall vectors.? It follows from
the principle of microscopic reversibility that® the
components of the symmetric tensors are even functions
of H=|H]|, while those of the Hall vectors are odd
functions of H.

By specializing Egs. (7), which are applicable to the
general case of the normally anisotropic semiconductor
with magnetoresistance, explicit dependence of the
tensors on magnetic field can be exhibited. If principal
axes of the tensor ellipsoids of ¢, and ¢, are
collinear with the Hall vector, then “forces” &, and &,
perpendicular to the Hall vector will give currents I,
and I, which are also perpendicular. The angles between
these forces and the corresponding currents may be
identified with the Hall angles if the tensor ellipsoids
are ellipsoids of rotation about the Hall vector, so that
the angles are independent of orientation in the trans-
verse plane and the Hall vectors are collinear with the
magnetic field H. These conditions may be realized in
cubic crystals by H in, say, the 100 or 111 direction.
The Hall angles 8, and 8, for holes and electrons are
shown in Fig. 3 for drift (in uniform concentrations)
under perpendicular fields.?¢ Equations of definition,

tanf,= R0 pH = ¢ upuH,

(8)

—tand,=R,onH=cunuH,

relate these angles to Hall coefficients R, and R, and,
in context with theoretical considerations, to Hall
mobilities p,x and . Here o, and o, are the trans-
verse conductivities and, with cgs units, ¢ is the speed
of light. In this paper, only Hall angles, as the most
directly phenomenological quantities, will be employed;
R, and u,x may, for example, depend on H even for
comparatively small H if holes of differing mobilities
are actually present.?”

Consistently with these considerations, the hole and
electron currents for the case of the isotropic semi-
conductor with conductivities ¢, and ¢, independent

% This terminology is here more convenient than that resulting
from the definition of a Hall vector in terms of the antisymmetric
resistivity tensor: S. R. de Groot, Thermodynamics of Irreversible
Processes (Interscience Publishers, Inc., New York, 1951), p. 51.

25 J. Meixner, Ann. Physik 40, 165 (1941); S. R. de Groot,
reference 24, pp. 8, 15-17, 50-51.

26 W. Shockley, reference 11, pp. 204 ff. The angle 0, for elec-
trons is negative by convention.

#7 Willardson, Harman, and Beer, Phys. Rev. 96, 1512 (1954).
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of H are given by
I,— (I,Xk) tanf,=1,%,

9
L.— (I.Xk) tanf,=L.*, )

in which k is a unit vector in the direction of H and
I*=¢,E—eD, gradp=0c,[ E— (kT /¢) grad Inp ]|,

10
L.*=¢,E+eD, gradn=o,[ E+ (kT /e) grad Inn ] (10)
are currents respectively proportional to &, and &,.
Equations (9) and (10) are illustrated for transport
transverse to H by the vector diagrams of Fig. 4. These
equations and diagrams apply with I,* and I.* given
by Egs. (10) since analogous equations and diagrams
with the same Hall angles apply separately for the
drift and diffusion contributions to I,* and I,*. The
electrostatic field E and concentration gradients need
not, of course, be collinear vectors. Solving Egs. (9)
for I, and I, gives

I,=cos%, [I,*+tand, (I,*Xk)]+sin%, (I,*-k)k, 1
L.=cos, [I.*+tanb, (1.*Xk)]+sin?, (I.*-k)k.

The generalization for tensor ellipsoids of rotation
about the magnetic field is readily effected: Egs. (9)
and Egs. (11) apply with Egs. (10) replaced by

L*=0, [ E— (kT/e) grad Inp]-[ii+ij]
4o, E— (kT /e) grad Inp]- KKk,

12
L*=¢.[ E+ (kT /e) grad Inn]-[1i+35] 12
+ou B4 (kT /e) grad Inn]-kk.

For drift in a semiconductor with no added carriers,
the conductivities o,; and o, are the reciprocals of the
transverse resistances, and o,; and o,; are the recipro-
cals of the longitudinal resistances, as may be verified
by calculating the reciprocals of the conductivity
tensors® or the hole and electron resistances them-
selves. The latter are defined in terms of the powers
dissipated by the hole and electron drift currents, and
equal

["'p ¢ (Ez2+Eu2)’ cos*0pto, lEz2]/
[op2(E2+E2) costyto,tE2]

for holes; there is a similar expression for electrons.?
The dependence on the Hall angles of the resistance
E-1/I2, which is the sum of these partial resistances
multiplied respectively by (Z,/I)? and (1,/I)? indicates
that there is magnetoresistance in general even for
scalar conductivities o, and ¢,. Theory of the PME

28 W. Shockley, reference 11, pp. 301-302.

2 Tt is easily shown that the angle between the hole current
I, and L,* is sin~(sind, sin®,), where ®, is the angle between I,*
and H, and similarly for electrons. As may be expected, this
angle equals the Hall angle 6, for I,* and H perpendicular and
vanishes for these vectors parallel.
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effect for this case of large Hall angles is straightforward
but rather involved. Tt is, however, materially simpli-
fied, at least for an #-type semiconductor, if the mobility
ratio is large so that hole transport can be neglected.
2.2 Differential Equations for Small Hall Angles

For small Hall angles, Eqgs. (11) reduce to
Ip= Ip*+0plp*xk:

(13)
In= In*+0nln*xk,
with I* and I,* given by Egs. (10).
Adding these equations gives
I=0E4-e(D,—E,) gradAp+ (6,0p+0,0.) EXk
—e(0,Dp—0.D,) gradApXk, (14)

where the terms on the right-hand side represent the
drift, Dember, Hall, and PME contributions, respec-
tively. Solving this equation for E results in

cE=1—¢e(D,—D,) gradAp—o (0,0 p+0.0,) [ Xk

+6eD gradApXk, (15)
if terms quadratic in Hall angles are neglected; three
terms on the right-hand side represent the Dember,
Hall, and PME contributions, respectively. Here

0=0,—0,=0,710x], (16)
and D is the general ambipolar diffusivity for added
carrier concentration'®:

D=0 0Dyt 05D2)=kTpnu,(ntp)/c
= (n+p)/ (w/Dytp/Da). (17)

Equation (15) shows drift and Dember fields to be the
only ones that can be realized separately; I/c is the
drift field if the other terms are absent. If there are no
added carriers in the presence of magnetic field, then
drift and Hall terms occur, while if the PME effect
obtains then all four terms are in general present. The

TAN 6n-Inxk

ohE

eDnGRAD N

F16. 4. The hole and electron currents.
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coefficient of IXk in the Hall term of Eq. (15) is the
negative of the Hall angle for total current density.®
By substituting from this equation in Egs. (13), the
currents are obtained in ambipolar form as

Ip= (U'p/U)I"‘ IE, I.= (‘Tn/o')l_ IE; (18)
where
I==—eD gradAp+-0(ono,/0*)IXk
— (0,01 +040,) (eD/o) gradapXk, (19)

if terms quadratic in Hall angles are neglected.

The continuity equation for Ap is readily derived by
noting that since E and gradAp are lamellar, the
equations

divl,=div(s,E)—eD, div gradAp+6,[grados,,Ek]
=—¢(0Ap/31+Ap/T)
= —div(¢,E)—eD, div gradAp

—6.[grade,, Ek]=—divl, (20)

obtain, in which the heavy brackets denote scalar
triple products. Multiplying respectively by ¢, and ¢,
adding, and simplifying gives

dAp/ot=divD gradAp—v-gradAp—Ap/7, (21)
where, with #n,=n¢— po=n—72,
V= (eunptns/0)E+gradD

+ (01— 0.p) (eunpe /o) EXk  (22)

is the drift velocity for Ap. By use of Eq. (14), the
equation

dD/dAp= uniip(Dn—Dp)ns/a* (23)
and the identity
pat®Fppp?= 02/ (ntpp)+ind, (24

where i=unup/ (untuo), Eq. (22) may be written as

V= (epnppns/c?)I+-0a(1+ Eunppns/o®) EXk
= (eptnpps/0?) IH+-0(1+Eunupnd/o*) (a/0) IX k.

The second form applies, from Eq. (15), with the
neglect of terms quadratic in Hall angles.

A complete formulation involves also Eq. (2) as a
second differential equation which, from Eq. (14), may
be written as

div[cE+e(D,—D,) gradAp]
+e(Oppp+0nua)[gradap, Ek]J=o0.

It is convenient to use, in addition to Ap, the potential
Yy=V—[(6—1)/(+1)1(kT/e) In(s/o0)  (27)

® Suitably specialized, this angle is the one derived by W.
Shockley, reference 11, pp. 215 ff.

3 A term in gradApXk is deleted; expressions for v differing
only by terms that do not contribute to v-gradAp are considered
equivalent.

(25)

(26)
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as second dependent variable, in terms of which the
total current density may be written as

I=—¢ grady— (6,0 pF0.0x) grady Xk

—0eD gradApXk, (28)

and the continuity equation and Eq. (26) as

div(D gradAp)+ a[ns grady+ (0,2—0.p) gradlﬁ Xk]
-grad Ino—Ap/7=0,

div grady+[grady—+ (0 pup+0nun.) grady
Xk/(untup) ] -grad Inc=0.

Equations (29) are fundamental differential equations
of the theory for small Hall angles. The condition that
E be lamellar, Eq. (3), is implicit in the introduction
of . If the transport geometry is a simple one, it is
often better not to solve for this potential, but to apply
Eq. (3) directly; the continuity equation in the single
dependent variable Ap is then the only differential
equation that need be solved.

(29)

2.3 Extension for Holes of Different Mobilities

Various experiments on infrared absorption, magneto-
resistance, Hall effect, and cyclotron resonance and
their theoretical interpretation have indicated the
presence in germanium of holes of essentially two
effective masses.? The present treatment may easily be
extended to take these into account. Denote by p1 and
P2 the respective concentrations of slow and fast holes;
by up1 and ppe, their drift mobilities; by op1=euzip1
and opo=euyps, their contributions to conductivity;
by D1 and D,,, their diffusion constants; and by 6,
and 8,2, their Hall angles for given H. The hole current
densities for scalar conductivities and small Hall angles
are then

Li=L#+0,1,#Xk; i=1,2 (30)
where
I*=0piE—eDy; gradp;

=0, E— (kT/¢) grad Inp;]; i=1,2. (31)

The second equations of Egs. (9) and (10) give the
electron current density.

It will be assumed that the ratio of the hole concen-
trations is fixed, so that

po/p=r, P/p=1—r; p=pitps

with 7 a constant. With this assumption and the
neutrality condition, Eq. (1), the expression for I
obtained by adding the three current-density equations
may be solved for E in terms of I and Ap. If the defi-

(32)

2 Much of this work has recently been summarized by C.
Kittel and by A. C. Beer, Phys. Rev. 98, 1542 (1955). See also
reference 27.
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nitions
up= (o p1F0p2)/e(prtpa)= (1—7)uprtrupe;
D,=kTuy/e,
0,= (0510910 2052) /05
=[A=N)upptrupbpe]/ by
Di=opD/op= (1=1)upD/up
Dy=0p3D/0p=1u2D/pp; D1t+D2=D
are employed, with o,1+0y2=0, then, to the first
order in Hall angles, E is given by Eq. (15) and the
hole current densities in ambipolar form are
Ipi‘: (am-/o)l- eD,; gradAp
+ (U'pi/‘7'2)|:(epi“ 0n)ont (em'_ Hp)a,,]IXk
—e(0i/0p) 0pi—00,/0)D gradApXk;
i=1, 2,

(33)

(34)

with the corresponding total hole current density and
electron current density as previously given. Since it is
implicit in Eqgs. (32) that the lifetime = applies to
concentrations of added holes of either mobility, the
definition of Egs. (33) thus lead to Egs. (21) and (25)
for the continuity equation for added carriers; and
Egs. (29) apply as the fundamental differential equa-
tions.

In accordance with these considerations, all results
of this paper apply for holes of two mobilities provided
that where boundary conditions are involved the con-
ditions hold with surface recombination velocities for
these holes that are the same. By further extension of
an obvious nature any discrete or continuous distri-
butions of concentration ratio » for holes with respect
to mobility can similarly be taken into account. Compu-
tation of 6 shows that a small concentration of fast
holes in germanium—a value of 7 of about 0.02, with
up2/up1 about 8, has been found to account for the
dependence on H of the Hall effect and magneto-
resistance®>—contribute about 309, to PME current
or voltage, the slow holes contributing only about
two-thirds as much and the electrons 509%.

3. THE PME EFFECT IN AN INFINITE SLAB
3.1 Formulation

From the symmetry of the infinite slab, I equals
I, with I, a function of y, and is parallel to the slab
surfaces; and gradAp equals (dAp/dy)j and is perpen-
dicular to the surfaces; both are perpendicular to the
magnetic field which is assumed parallel to the surfaces,
as shown in Fig. 1. Thus, from Egs. (15), (18), and
(19), if I,, is the (scalar) hole current density across

the slab,
E,=0"'(I;—0I,,)=0"1(I,+0eDdAp/dy) (35)

holds to the first order in Hall angles, with £, a con-
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stant, in accordance with Eq. (3); and®# from Egs.
(21) and (25) the continuity equation is

dAp/dt=d(DdAp/dy)/dy
F0GE (14 Runund/o?)dAp/dy—Ap/7.  (36)

For the theory of the Hall effect in the infinite slab and
the magnetic rectifier, this equation (with the time
derivative zero) applies in general without further
material simplification.?® For the PME effect, however,
usually either short-circuit current or open-circuit
voltage is of interest. For the former, the condition
is E,=0, for which the drift term does not occur in
Eq. (36); for the latter, this term is of order 62 and may
be neglected. From Eq. (35), the PME short-circuit
current is

AD,

Y
I(‘w) =9f Ipydy= —0ef DdAP= —GGD,[APr— APZ
—Yy AD2

—3(0=1)(b+1)"n In(01/02)]  (37)

per unit width along the magnetic field, where yo and
— 9o and subscripts 1 and 2 denote the illuminated and
dark surfaces. The integrated form, in which D;
=2D,D,/(D.+D,) is the diffusivity for intrinsic ma-
terial % is obtained by use of Eq. (17). The open-circuit

condition is
Yo
f I.dy=0,
—Yo

which, with Egs. (35) and (37), gives E. equal to the
PME open-circuit field
Yo

E00=—]60/G, G= ady,

—Yo

(38)

(39)

and I, equal to the open-circuit circulating current
density?®”
1,009 =—¢]G9/G—0eDdAp/dy, (40)

in which G is the conductance of the illuminated slab
per unit width along the magnetic field. With the drift
term of Eq. (36) for the open-circuit condition thus of

3 Tn Eq. (26), the second differential equation, the scalar triple
product vanishes for this geometry, and the equation merely
provides (for small Hall angles) the Dember field E, across the
slab. See Sec. 3.5 and reference 34.

3¢ The magnitude of the apparent Dember potential is reduced
by an amount quadratic in (small) Hall angles since, from Eq.
(14), E, includes the term o 1(0,0,+0,0,)E, 9 for the open-
circuit condition. This term represents a Hall field associated
with the PME circulating current, or, more precisely stated,
with the difference between the open-circuit and short-circuit
current densities. See G. Groetzinger and J. Aron, Phys. Rev.
100, 978 (1955).

3 Equations (26) and (27) of Landauer and Swanson, reference
10, give the corresponding small-signal equation but without the
drift term. This continuity equation is approximately valid
provided the change in potential in a diffusion length associated -
with E, is small compared with 27"/ef.

36 W. van Roosbroeck, Bell System Tech. J. 29, 560 (1950);
see also reference 13.

37 The associated nonuniform magnetic field is in the direction
of H; its contribution is relatively small,
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order 6% the equation may be written as

d(DdAp/dy)/dy—Ap/7=0 (41)

for the steady state. With a theory based on Eq. (41),
it is evidently better in principle to measure short-
circuit current rather than open-circuit voltage. If both
are measured, and the conductance without magnetic
field as well, then consistency according to Eq. (39) is
an indication of the validity of the assumption of small
Hall angles.
Boundary conditions for the slab are

eR+1,,=es1Ap, y=9Yo,

Y=o,

(42)
I,y=—esAp,

where ® is the rate of generation of carrier pairs per
unit area by strongly absorbed radiation, and s; and s
are surface recombination velocities. Note that in

I py=—eDdAp/dy—0(0s0,/0*)]1., (43)

which follows from Eqs. (18) and (19), the second term
may be neglected with I, of order 4.

3.2 The Small-Signal Case

If the relative increase in local conductivity is
everywhere small compared with unity, then D and o
may be replaced by their thermal equilibrium values
Dy and o9, and 7, s1, and s; are also constants.”® Equation
(41), the continuity equation, and Egs. (42), the
boundary conditions, are then linear and give the
solution

®L Se Sinh(Yo-I— Y)+COSh(Yc+ Y) (44)
" Dy (145155) sinh2V o (S1--S5) cosh2¥o
in which
V=y/L, Yo=y/L, L=(Do7)}
0=, 0 ) (45)

S1-—_—-S1L/Do, S2ES2L/D0.

vaN ROOSBROECK

The conductance increase above the thermal equi-
librium value Gy is

Yo
AGEG—GO:e(#n"‘#ﬁ)f Aﬁdy:e(l-‘n"‘l-‘p)"'(R

v
Sa(cosh2Vo—1)+sinh2Y
X
(1451S3) sinh2Y o+ (S1+.S2) cosh2¥,

46)

per unit width along the magnetic field. Thus, from
Egs. (37), (39), (44), (45), and (46), the PME small-
signal current and voltage are given by?3®

I(u) = —G()Ez(‘w) = —GeDo (Apl— Apz)

L Sz sinh2¥+cosh2V,—1
(1 +S1Sz) sinh2 Y0+ (Sr‘l-Sz) cosh2 Y()
(Do/'r)% S2+tal’tho

—6 AG.
ﬂn+l~lp Sz tanhYo-}-l

Note that the result in terms of AG does not depend
explicitly on ® nor on s;.
For Yo>1, or the “thick” slab, Egs. (47) reduce to

I69=—GoE (9= —0eRL(S+1)!
= _B(DU/T)%(#n+ﬂp)~1AG, (48)

a result useful for the determination of 7 (and s; as
well, if ® is known). For ¥,<1, or negligible volume
recombination, the result
T69=—fe®-2y0Sy (S1'+S2'+25//Sy)!

= —0(untpp)'s2(1+s5290/Do)'AG,  (49)
in which SyY=s1y0/Do and S2'=s2y0/Do, may be used
to determine s, (and sy as well, if ® is known). For s,
large compared with s; and D,/7s1, lifetime r may be
found from
FACLES —060:\‘14(51"“ coth2 Yo)'_l

=—0(Do/7)}(un"tmup)~" cothVy AG. (50)

For s1=s9, so that S1=S,=S, the result in terms of ®
assumes the form, :

I69=—0eRL(S+coth¥,) 1.

(47)

&)

3.3 The Intrinsic and Large-Signal Cases

Provided si, 52, and 7 are constant,® the continuity
equation and boundary conditions that apply in general
to an intrinsic semiconductor are, since D has the
constant value D, those of the small-signal case. These
equations apply also to an extrinsic semiconductor for

38 By specializing these results (to the case of Hall and drift
mobilities of electrons and holes all equal and Dy equal to the
limiting value D, or D, for extrinsic material), they can be shown
to agree with the PME voltage of H. Bulliard, reference 3,
specialized to the small-signal, small-Hall-angle case.

# Other volume recombination laws may obtain in some cases,
such as the mass-action law or one of the type discussed by W.
Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).
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relative increases in local conductivity everywhere large
compared with unity. Thus, with D, construed as D;
wherever it occurs, Ap is given by Egs. (44) and (45),
and from Eqs. (46) and

I¢9=—GE;°) = —0eD;(Apr— Ap), (52)
7169 is given by Egs. (47) and E,(°? by
(e(RL
E (o9=9
Go
Sasinh2Yy+cosh2V,—1
(53)

X
(14-51S9) sinh2Y o+ (S1+S2) cosh2¥
+e(untup) 7 S2(cosh2Vo—1)+sinh2¥ o |®R/Go

The approximate form of Eq. (53) for G~AG>Gy is
(Do/7)} Sa+tanh¥,
pntup Setanh¥ot1

E, (9= (54)

which shows that E,(°9 “saturates” for constant = in
the large-signal cases, I 9 being proportional to G.
These results for E, (9 are consistent with theory
previously given for the dependence on light intensity
in which constant D is assumed and which is, thus,
strictly speaking, theory for the intrinsic case.®

3.4 Cases of Arbitrary Light Intensity

The nonlinear continuity equation and boundary
conditions for the slab, Egs. (41) and (42), will be
considered for 7 constant. They are advantageously
expressed in dimensionless form as

d 1+DAP IAP
— ——— ———AP=0, (55)
dY 14AP dY
and
1+ DAP AP
- —=5,AP, Y=Y,
1+AP dY
(56)
14+ DAP dAP
———— —=5,AP, Y=-Y,,
14+AP dY
where??
APEAP/m; mEO'o/e(p,,,,-f-[.Lp),
£=e(untup)LR/coDo=e(untup) ®/ao(Do/7)}, (57)

D=D,/Do=2m/ (no+po) =200/ e(un-tpuy) (no+ po),

the other quantities that occur being defined by Egs.
(45). Note that the dimensionless added carrier concen-
tration AP is the relative increase in local conductivity,
Acg/ay, and that

D/Do= (14 DAP)/(14+AP). (58)
4 Use of the concentration unit » seems best in the present

connection; with #, two parameters, including the mobility
ratio b, occur explicitly.
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In Fig. 5, D is plotted against po=0¢! for* germanium
at SOOOK.‘
Dimensionless hole current across the slab is

L Ipy D(] -3
Co= ( )Ipy= (#n"l"#p)( ) ("—‘)
emDy oo T

1+DAP dAP
1+AP 4V

59)

This quantity may be expressed in terms of AP; it is
readily verified that a first integral of Eq. (55) is

1+ DAP dAP
1+AP 4V
=[4+42(D—1)[In(1+AP)— AP]+DAPE, (60)

in which 4 is a constant of integration. Three equations
that determine 4 and the dimensionless surface concen-
trations AP; and AP, in terms of £, D, ¥y, Sy, and S,
are thus

£—SiAP;
=[4+2(D—1)[In(14+AP;)— AP, ]+ DAPZ],

SAP, (6)
=[A4+2(D—1)[In(1+APy)— AP, ]+ DAPL],

and
APy (14 DAP)IAP

fm (AP A+2(D—D[In(1+4P) ()

— AP+ DAP

the first two being the boundary conditions and the
third following directly from Eq. (60). From Egs. (37),
(39), (57), and (58), dimensionless PME short-circuit
current is

9=— (l‘n+.up)~[(u)/00'0D0= (ﬂn_}—ﬂp)GEz(oc)/aa'ODO
= §D(AP1—AP2)
—(D—1) In[(14+AP1)/(1+APy)]. (63)

From Egs. (46) and (57) the relative conductance
increase is given by

AG/Gy= (ZYQ)*1(£—51AP1'—52AP2), (64)

which, from Egs. (59), (60), and (61), is proportional
to the difference between the magnitudes of the hole
currents at the surfaces. It is readily seen from Egs.
(61) to (64) that 9 may be obtained (in general by
numerical calculation) as a function of AG/G, with D,
2Y,, and S, as parameters and no explicit dependence
on £ and S:. These various relationships can be shown
to provide the results derived directly for the small-
signal case.

4 Values of 79p, and drift mobilities are employed as in reference

13; these mobilities obtain provided o9 is not too large. In the
notation of this reference, D=1+[(b—1)/(b+1)] tanhW,.
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Fic. 6. Dependence of 9/(2Y0AG/Go) on 4 for thick germanium
slabsat 300°K. The dimensionless PME current-photoconductance
ratio 9/(AG/Go) equals the number 2¥, of diffusion lengths in
the slab thickness for the small-signal and intrinsic cases and
D? times this for the limiting large-signal case.

3.41 The Thick Slab

Considerable simplification results if the slab is a
number of diffusion lengths thick, so that the added
carrier concentration and hole flow density at the dark
surface are much smaller than at the illuminated
surface. The idealization is the slab of infinite thickness,
for which AP, and A are zero; the thickness integral
of Eq. (62) then of course diverges, and, from the first
of Egs. (61), the boundary condition for the illuminated
surface may be written as

(L—S:4P,)?

=2(D—1)[In(1-+AP)— AP+ DAPL.  (65)
Equations (63) and (64) reduce to
§=DAP1— (D—1) In(1+APy) (66)
and
AG/G()= (2 Yo)_l (.,C—SlAPl)
= T(Zygm)"l((R—slApl). (67)

From Eq. (66), 9 depends for given D only on APy
and from Egs. (65) and (67), the quantity 2Y,AG/G,
does likewise. In Fig. 6, the ratio 9/(2Y,AG/Go) is
plotted against ¢ for the three values of D that corre-
spond to intrinsic and (sufficiently strongly extrinsic®?)
n- and p-type germanium. For intrinsic material, for
which ©=1, the ratio is unity, as it is in the small-signal
limit, D being D; and independent of Ap. Analysis by
means of these curves of measurements of AG/G, and
I¢9) the latter providing 9, determines 2Y, and hence
7. As the curves show,  may be obtained from small-
signal measurements by means of the relationship
2Y,=9/(AG/G)) or

T= Do[ﬁAG/ ([J,,,-I—'up)[(sc)]z.

Agreement between theory and experiment over an
extended range in 4 would show that the assumption
of constant 7 is valid. If ® is also known and Ap; is

(68)

“TIn the notation of reference 13, the approximate condition is
| Wol >3.

vaN ROOSBROECK

evaluated in terms of 9 from Eq. (66), then s; may be
found by use of the second form of Eq. (67).

3.42 Method of the High-Recombination-Velocity
Dark Surface

The method of the thick slab has the practical
limitation that in general it does not apply unless 2¥
is sufficiently large, while large 2V, makes for small
AG/Go which may be difficult to measure accurately.
This limitation is largely obviated by a method em-
ploying slabs in which 2Y, is not large and in which
large s, has been produced, as by sandblasting the
dark surface. The condition of negligible AP; may thus
be realized substantially independently of the value of
2¥,. For this method, Eq. (66) applies as well as Eq.
(62) with the lower limit of the integral set equal to
zero. This integral converges since 4, from Egs. (59)
and (60) and the second of Egs. (61), equals (SsAPj)?
or Cy,? for the dark surface and is not zero.

Equations (61) and (64) give

2V 0AG/Go=[A+2(D—1)[In(1-+APy)
— AP+ DAP2 T — A, (69)

so that, with Eq. (66), 2Y,AG/G, depends for given D
on A and J. By numerical integration of the thickness
integral, 2Y, may also be obtained for given D in terms
of A and 4. Eliminating A furnishes a relationship
between 2V, 2Y0AG/Gy, and d from which a family of
curves of 2V, versus 9/(AG/G,) with d as parameter
may be obtained. Figure 7 gives such families of curves
for (sufficiently strongly extrinsic?) n- and p-type
germanium. The dashed curves for zero and infinite ¢
correspond to 9/(AG/Go) equal to 2Y, cothY, and to
D27V, coth(D—#Y,) for the small- and large-signal
cases, respectively.®® The value of 2V, determines 7,
and if ® is known as well then s; may be found as for
the thick slab.

Use of a dark surface with negligible recombination
velocity ss would provide in principle a more sensitive
measure of slight volume recombination. In practice,
though, it may be difficult to secure sufficiently small
s2. The small-signal 9/(AG/Gy) for no volume recombi-
nation and 5.0, namely 2/(1+Do/szy0), would result
in a fictitious 2¥, in accordance with the relationship
9/(AG/Go)=2Y tanh¥, that applies for s;=0 in the
small-signal and intrinsic cases; and the condition that
this fictitious 2V, be small compared with the true one
is 59yo/7 for slight volume recombination. If y, is
10s.7, say, and s» is 50 cm sec™, then 2y, is appreciably
less than a diffusion length L if, for #-type germanium
at 300°K, L and r are appreciably less than about
0.05 cm and 50 usec. These are conditions under which
use of the small s, could confer some advantage; Fig. 7
indicates that if 2y, is of order L, then the method of
large s should provide good accuracy.

4 Note that the small-signal relationship applies for all g to
intrinsic material.
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F16. 7. Dependence of the number 2V, of diffusion lengths in the slab thickness on the dimensionless PME current-
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3.43 Negligible Volume Recombination

For slab thickness small compared with a diffusion
length, the condition of constant I,, represents a first
integral of the continuity equation. Thus, C,,” given by

Cp'= (yo/emDo)Ipy= (Nn+ﬂp)y01py/o'0D°

1+DAP dAP

= — _ YIE
14+AP 4V o/

(70)

is constant; primes here distinguish dimensionless
quantities based on ¥, as length unit rather than L.

The equation

(D—1) m[(1+AP:)/(1+APy)]
- @(APl“ AP2) = 2prl (71)

is obtained by integrating Eq. (70), writing the result
for the respective surfaces, ¥'=-1 and subtracting.
The boundary conditions, Egs. (42), are

&'+C,/=SVAPy,
Cpy'=—SJAP,,
where
£'= (yo/mDo) ®=e(untpp)yo®R/70Do;
Sy'=s190/Do, S2'=s2y¢/Do.

(72)

(73)
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With constant 7 ,,;,, the PME short-circuit current is
given simply by
9=—2Cp,/=25,AP,, (74)

from Egs. (37), (63), (70), and (72). Eliminating C,,’
from Egs. (71) and (72) results in the equations

=—25/APy=—4d (75)
and

S1’AP1+52'AP2= £’, (76)

which determine AP; and AP,. The relative conduc-
tance increase is

1

AG/Go=1 f APQY’

-1

AP
=—(2Cp)™" f AP(14+DAP)(14+AP)HAP
A

=g [(D—-1)(In[(1+AP1)/(14+APy)]
— AP\ H+AP)+3D(AP2—AP2)]
=1Dg1(AP1— APy (AP1H+AP+2/D)—1, (77)

obtained by use of Egs. (70), (74), and (75).
To facilitate numerical computation, Eq. (75) may
be written as

In(14+AP)=[D/(HD—1)]JAP,—K, (78)
K= (3)+252’) (:D—' 1)—1AP2“IH(1+AP2).

Then, with D known, values may be assigned to .Sy as
parameter and to AP» which determine, besides 9, also
K and thus APy as root of Eq. (78). To compute AG/G,
from Eq. (77) with reasonable accuracy, this root must
be evaluated to a number of significant figures. Figures
8 and 9 give 9/(AG/Gy) versus AG/Gy so obtained for
values of Sy’ as parameter for (sufficiently strongly ex-
trinsic®?) #- and p-type germanium.
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With this method, volume recombination, which
increases 9/(AG/Go), would give an apparent s, larger
than the true one. It can be shown that the correction
89/ (AG/G,) at fixed AG/G, for slight volume recombi-
nation is [2—4(1+43/2SY)/3(14-1/8)2]¥* for the
small-signal and intrinsic cases.

3.5 The Open-Circuit Equipotentié.ls

The equipotential surfaces shown in Fig. 1 for the

infinite slab are specified by

0
Ax=f cotedy, coto=—E,/E,, (79)
v

which relates to the y coordinate of a point on an
equipotential its x distance from the intersection with
the dark surface. For the open-circuit condition, the
constant field E, is E,(°9, which is of the first order in
Hall angles. It follows then from Eq. (14) that, to the
same approximation, E, is the Dember field,*

E,=—(¢/0)(Da—D,)dAp/dy. (80)

The integral obtained by substituting for £, in Eq. (79)
is easily evaluated. For open circuit, it gives

Ax= (kT/e) (b—1) (b+1)""[In(c/c2) ]/ E.(*®
=3[y —1a)G In(0/02) J/0e[ Apr—Aps

—3(0—D @+, In(o1/a2)], (81)
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obtained by use of Einstein’s relation and Egs. (37)
and (39).

The equipotentials for the small-signal case are given
by

(Dn—=Dy)-2y0 Ap—Aps

0D, Api—Apy

Ax (82)

as obtained by expanding the logarithms. This result
may be written explicitly in terms of y by use of the
appropriate expressions for Ap and E,(°9. From it, the
distance along the slab between intersections of an
equipotential with the surfaces is given by

Ax= (D,.—Dp) . 2y0/0D0

for the small-signal case. This Ax is a direct measure

1725

of 9. It is large compared with the thickness 2y, of the
slab, since # has been assumed small.
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Study of the optical hyperfine structure of several Gd 1 lines using enriched isotopes shows that the spins
of the odd isotopes Gd'%® and Gd'* each are §. The ratio of the magnetic moments is x;(Gd!5) /u;(Gdw7)
=0.80-0.02. The magnetic moment for Gd'¥” obtained from two lines is —0.37+0.04 nm. Deviations from
the interval rule in these two lines can be accounted for with a quadrupole moment of approximately
1.0X1072 cm? for Gd'¥7 and 1.1X1072% cm? for Gd!%5. The known anomolous isotope shift between neutron

numbers 88 and 90 (Gd!*2 and Gd!'™) is accurately measured for several lines.

INTRODUCTION

PECTROSCOPIC measurements of the nuclear

moments of the heavier odd-neutron nuclei have
been hampered by the presence in the corresponding
elements of several even-even isotopes. With the
availability of enriched samples, however, it has
become possible to add to the rather scanty data on
such nuclides for comparison with predictions of the
unified shell model developed by Bohr! and by Bohr
and Mottelson.? The recent work of Mottelson and
Nilsson® shows that marked deviations are to be ex-
pected from the moments derived from the single-
particle model in those regions of the periodic table
where the nuclear deformations are large. Thus whereas
a spin I=7/2 was assigned by Klinkenberg? to the odd
isotopes 4Gd!%® and :Gd'® on the basis of the shell
model, it appears that if the nuclei are sufficiently
deformed the lowest level should be either 3/2~ or 5/2+.5
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Previous studies®® with natural gadolinium have
been chiefly concerned with the isotope shifts, and
Murakawa?® has confirmed the anomalously large shift
between isotopes 152 and 154 that was expected by
analogy with Nd and Sm. This author, and somewhat
earlier Suwa,’ attempted to draw conclusions about the
spins and magnetic moments of the odd isotopes of Gd
from the unresolved structure underlying the strong
components due to the even isotopes. Both investi-
gators concluded that the spins were probably greater
than 3/2, and Murakawa assumed the value 7/2 in
estimating the magnetic moments. It is therefore
apparent that further study of the hyperfine structure
of Gd with separated isotopes was needed. The very
complete classification of the lines of both Gd 1 and
Gd 11 by Russell’® makes it possible to derive the nuclear
moments from the observed splittings.

The composition of the four samples of enriched
isotopes used in the present work, as compared with
that of natural Gd, is shown in Table I.
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