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Theory of the Photomagnetoelectric Effect in Semiconductors
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Results are obtained for the photomagnetoelectric (PME) effect that are more general and exact than
those of earlier theory. Through an ambipolar treatment, the underlying general theory for current cprrier
transport with magnetic Geld, which can provide similarly unrestricted results for the Hall, Suhl, and
magnetic rectiGer eRects, is first developed. The PME eRect is considered in detail for the inGnite slab
with strongly absorbed steady radiation on one surface and parallel, steady, uniform magnetic Geld. Small
Hall angles and constant surface recombination velocities and lifetime are assumed. Small-signal theory
is given as well as nonlinear theory for arbitrary light intensity. The latter provides methods for determining
lifetime that require only negligible dark-surface concentration of added carriers, as well as a method for
determining surface recombination velocity; curves for these are given for germanium. Expressed in terms
of conductance increase, PME current or voltage does not depend explicitly on light intensity nor on
recombination velocity for the illuminated surface. Distance along the slab between equipotential probes
on opposite surfaces as obtained from a nul measurement in which Dember and PME potentials cancel
determines directly the sum of the magnitudes of the Hall angles, upon which the PME effect depends.

1. INTRODUCTION

HE photomagnetoelectric e6ect, or PME eGect,
may be described as a Hall eGect associated with

the diffusion of optically injected current carriers. It
was first observed in cuprous oxide at low temperature, '
shortly following which Frenkel provided a theoretical
explanation based on the concept of the optical exci-
tation of electron-hole pairs. ' It was observed com-
paratively recently in germanium at room temperature,
and, notably through the work of Aigrain and Bulliard' 4

and Moss and Pincherle, ' has been used to study
recombination in the volume and on surfaces of ger-
manium' —' and other semiconductors. '

The detailed theory of the present paper for the
PME effect involves fewer restrictive assumptions and
approximations than have previously been employed.
In Sec. 2, the underlying general theory for the trans-
port of current carriers with magnetic 6eld is developed.
This can provide similarly unrestricted results for the
Hall, " Suhl, " and magnetic rectifier" eftects; with

I. K. Kikoin and M. M. Noskov, Physik. Z. Sowjetunion 5,
586 (1934); I. K. Kikoin, Physik Z. Sowjetunion 6, 478 (1934);
G. Groetzinger, Physik. Z. 36, 169 (1935).' J.Frenkel, Physik. Z. Sowjetunion 5, 597 (1934), 8, 185 (1935).' P. Aigrain and H. Bulliard, Compt. rend. 236, 595, 672 (1953).
H. Bulliard, Ann. phys. 15, 52 (1954); P. Aigrain& Ann. radioelec.
Compagn. Gen. de T. S. F. 9, 219 (1954). The term "photo-
magnetoelectric" is in accord with the usage of these authors.

4 H. Bulliard, Phys. Rev. 94, 1564 (1954).
'Moss, Pincherle, and Woodward, Proc. Phys. Soc. (London)

66B, 743 (1953);T. S. Moss, Physics 20, 989 (1954);L. Pincherle,
Proceedings of the Atlantic City Conference on Photoconduc-
tivity, November 4, 1954.' J. J. Oberly, Phys. Rev. 93, 911 (1954).

'T. M. Buck and W. H. Brattain, J. Electrochem. Soc. 102,
636 (1955).' G, Grosvalet, Ann. radioelec. Compagn. Gen. de T. S.F. 9, 360
(1954).

'Kurnick, Strauss, and Zitter, Phys. Rev. 94, 1791 (1954);
T. S. Moss, reference 5; Proc. Phys. Soc. (London) 66B, 993
(1953)."R. H. Fowler, Statistical Mechanics (Cambridge University
Press, Cambridge, 1936), p. 428; H. Welker, Z. Naturforsch. 6a,
184 (1951); R. Landauer and J. Swanson, Phys. Rev. 91, 555
(1953). These treatments take added carriers into account, in
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added carriers (in concentrations which tnay be negative
as well as positive), these e&ects present a unified
aspect. Under the assumptions often made for homo-
geneous semiconductors, an ambipolar treatment"
furnishes partial diGerential equations and other equa-
tions which, provided Boltzmann statistics remain
valid, are applicable for unrestricted added carrier
concentration and whatever be the tt- or p-type con-
ductivity at thermal equilibrium. These are applied, io
Sec. 3, to the PME eÃect in an indnite slab with
strongly absorbed steady radiation incident on one
surface and steady parallel magnetic 6eld. Constant
surface recombination velocities and lifetime are as-
sumed, as well as small Hall angles for which magneto-
resistance is negligible. "

In this theory, phenomenological distinction is made
between Hall and drift mobilities, scattering models"
not being considered. An extension to the case of slow
and fast holes is given which shows that relatively few
fast holes can make a relatively large contribution to
PME current or voltage. The same equations still

apply, however, in which the Hall and drift mobilities

contrast to "classical" ones which apply to zero lifetime; see O.
Madelung, Z. Naturforsch. 9a, 667 (1954).

"H. Suhl and W. Shockley, Phys. Rev. 75, 1617;76, 180 (1949);
W. Shockley, Electrons and Holes in Setnicondnctors (D. Van
Nostrand Company, Inc. , New York, 1950), pp. 71—75, 325 R.
See also H. Suhl, Bell System Tech. J. 32, 647 (1953).

"H. Welker, Z. Naturforsch. 6a, 184 (1951);E. Weisshaar and
H. Welker, Z. Naturforsch. 8a, 681 (1953);Lehovec, Marcus, and
Schoeni, Phys. Rev. 98, 229 (1955); O. Madelung, Naturwiss. 14,
406 (1955); Madelung, Tewordt, and Welker, Z. Naturforsch.
10a, 476 (1955); E. Weisshaar, Z. Naturforsch. 10a, 488 (1955).

n W. van Roosbroeck, Phys. Rev. 91, 282 (1953).
"For less than 1% magnetoresistance in germanium or silicon,

Hall angles should in general not exceed 0.1 to 0.2 radian or
about 5 to 10 degrees: G. L. Pearson and H. Suhl, Phys. Rev.
83, 768 (1951); G. L. Pearson and C. Herring, Physics 20, 975
(1954). A similar restriction applies also to InSb: G. L. Pearson
and M. Tanenbaum, Phys. Rev. 90, 153 (1953); Tanenbaum,
Pearson, and Feldman, Phys. Rev. 93, 912 (1954); H. J.
Hrostowski (private communication)."See O. Madelung, reference 10.Theory for the large-magnetic-
Geld PME eRect has been given by I. I, Ansel'm, Zhur. Tekh. Fiz.
24, 2064 (1954).
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FIG. 1. The PMK eRect in an in6nite semiconductor slab.
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for holes are certain weighted averages that correspond
to the apparent values determined by measurements at
given temperature of Hall effect at given magnetic
field and of drift velocity or conductivity. It is indicated

briefly how the theory for arbitrary Hall angles can be
developed in a straightforward manner for semicon-
ductors like InSb and InAs, whose mobility ratios are
large" and whose magnetoresistive behavior is com-
paratively simple if they are not degenerate. '~ Magneto-
resistance in these materials, negligible only for small
Hall angles, "can perhaps to advantage be taken into
account semiempirically on the basis of measurements
without added carriers.

The condition that the curl of the electrostatic field
must vanish requires a constant (depth-independent)
PME Geld along the iiifinite slab and a nonvanishing
curl of local total current density I. Thus, PME open-
circuit voltage is the same on both surfaces, and the
associated I constitutes a circulating current. As
previously indicated, "neglect of this circulating current
by the otherwise plausible assumption that the open-
circuit I is everywhere zero —valid only if there is no
magnetic field —has led to some theoretical results
that are inconsistent and also at variance with the
experimental observation" of PME open-circuit volt-
ages substantially the same on both surfaces.

In advance of the proper derivation, it may be well

to enlarge upon this aspect of the theory in descriptive
terms. With reference to Fig. 1, consider first the short-
circuit condition with field E along the slab zero, as if
the ends of the infinite slab were joined. Optically
injected electrons and holes are deQected respectively
to the right and left by the applied magnetic field H,
and their corresponding Row densities make the Hall
angles O„and O„with the negative of the concentration
gradient of added carriers. As indicated in the 6gure,
the electron and hole currents along the slab add to
give a total PME short-circuit current density I (:-)

"H. Welker, Z. Naturforsch. 7a, 744 (1952), 8a, 248 (1953);
Physica 20, 893 (1954); M. Tanenbaum and J. P. Maita, Phys.
Rev. 91, 1009 (1953);O. Madelung and H. Weiss, Z. Naturforsch.
9a, 527 (1954); H. J. Hrostowski and M. Tanenbaum, Physica
20, 1065 (1954).

'r E. Burstein, Phys. Rev. 93, 632 (1954).
's W. van Roosbroeck, Phys. Rev. 98, 1533 (1955).
's T. M. Buck (unpublished); Moss, Pincherle, and Woodward,

reference S.

to the left. Since the total current density across the
slab is zero, I (" is proportional to the sum of the
tangents of the Hall angles.

In general, and in particular for the open-circuit
condition, the field along the slab is constant. The held
across the slab is the field of the Dember effect": Since
the diffusion constant for electrons exceeds that for
holes, zero-current diffusion involves a field opposite
to the concentration gradient which assists the transport
of holes and retards that of electrons. This field is
proportional to the concentration gradient and is thus
largest near the illuminated surface. The open-circuit
equipotentials, orthogonal to the resultant field, are
accordingly parallel curved surfaces, as indicated in
the figure by the dashed lines. For Hall angles not so
large that magnetoresistance occurs, the Dember effect
predominates and the equipotentials are inclined mostly
along the slab. It is shown in Sec. 3.5 that the distance
hx along the slab between the intersections of an
equipotential with the surfaces of the slab is a measure
of the sum 0 of the magnitudes of the (small) Hall
angles, upon which the PME effect depends. For the
distance measurement, directly opposite points on the
slab might erst be found, say, as points for which there
is no change in the Dember potential measured under
the magnetic field upon reversal in direction of this field.
The value of 8 found by this proposed nul method, in
which the PME and Dember potentials cancel, may be
compared with that computed from the Hall mobilities,
if the latter are known for the particular sample and
magnetic field.

If I,&"& were substantially uniform across the slab,
then, under open circuit, it would just be canceled by
the drift current density to the right associated with
the PME open-circuit field, E,('"). Because of recombi-
nation, however, I ('"~ decreases with depth into the
slab, being largest at the illuminated surface, where the
concentration gradient of added carriers is largest. The
sum of I "& and the drift current density is the open-
circuit circulating current density, I,~ "&; its integral
across the slab is zero. As shown qualitatively in Fig. 2

so H. Dember, Physik. Z. 32, 554, 8S6 (1931);33, 207 (1932).
The eRect was erst observed in cuprous oxide and later measured
by many other workers in this material and other materials as
well. Its theory was given by J. Frenkel, Nature 132, 312 (1933);
Physik. Z. Sowjetunion 8, 185 (1935).
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for a slab of finite length with no electrodes, the open-
circuit current is principally photomagnetoelectric and
to the left near the illuminated surface over a minor
fraction of the thickness, and principally a drift current
to the right of smaller average density over a major
fraction of the thickness.

In a slab with high-conductivity electrodes, the
current fl.ows between the electrodes in paths which are
straight but otherwise similar to the ones in the Ggure;
and the corresponding electrostatic field E and equi-
potentials are qualitatively as shown in the lower
diagram. It is clear from this diagram that end effects
result in principle in some difference between the PME
open-circuit voltages between directly opposite pairs of
probes on the illuminated and dark surfaces. This
difference is minimized if the probes are located sym-
metrically about the center. However, the condition of
constant PME open-circuit field that applies to the
infinite slab is in principle not correct for a slab with
perpendicular end electrodes. Also, if the electrodes are
maintained at the same potential, as in measurements
of PME short-circuit current, then E nevertheless has
components along the slab. These are directed towards
the electrodes; only at the center of the slab, about
which E is symmetrical, is E simply the Dember field.
While the general equations given in Sec. 2 are appli-
cable to two-dimensional boundary-value problems for
the slab with electrodes, specific results are obtained in
Sec. 3 only for the infinite slab. The use of.relatively
long slabs is accordingly always a necessary experi-
mental precaution.

Linear calculations given in Sec. 3 readily provide
PME short-circuit current and open-circuit field for the
limiting small-signal and large-signal cases. Included
also is theory for the general nonlinear case of arbitrary
light intensity which takes into account the concen-
tration dependence of added carrier diGusivity. In
conjunction with experiment, appropriate cases of this
theory can serve to determine lifetime 7 or surface
recombination velocity with good accuracy, af ter having
provided a critical check of the validity of the under-
lying assumptions. It is shown that by simultaneous
measurement of photoconductance a useful simplifi-
cation can be effected: Expressed in terms of conduc-
tance increase, PME current or voltage does not depend
explicitly on light intensity nor on the recombination
velocity s& for the illuminated surface. If absorbed light
intensity is known, then s& can also be determined, in
addition to v or to the recombination velocity s2 for
the dark surface.

In particular, a method is developed for determining
r in a thick slab in which no added carriers reach the
dark surface. For applying this method to germanium
Fig. 6 gives theoretical curves that serve to determine
the number 2I 0 of diffusion lengths in the slab thickness
from measured quantities or quantities otherwise known
with good accuracy, namely a dimensionless PME
short-circuit current 8 and the relative conductance
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Fxo. 2. The PME eGect in a semiconductor slab of finite length:
I—Open-circuit current, without electrodes; II—open-circuit field
and equipotentials, with electrodes.

increase hG/Gs. A more widely applicable method for r
in a slab of any thickness is also developed which
depends on negligible added carrier concentration at
the dark surface, as may be realized by sandblasting
this surface. This method appears to be well suited for
accurate determination of lifetime, even in slabs only
of the order of a diGusion length in thickness; it can
serve to check whether volume recombination is negli-
gible within experimental error in a particular sample.
Figure 7 gives families of curves for e- and p-type
germanium that specify 2VO according to this method
in terms of sf/(DG/Gs), with 8 as parameter. The small-
and large-signal asymptotes for infinite 2I'0 shown in
this figure indicate that the thick-slab approximation
applies only for thicknesses of at least several diGusion
lengths. For negligible volume recombination, Fig. 8
and Fig. 9 illustrate for e- and p-type germanium a
method developed for the determination of surface
recombination velocity which is based on curves of
8/(AG/Gs) eersls AG/Gs with a dimensionless form of
the recombination velocity ss as (unknown) parameter.
These curves show that PME open-circuit voltage
generally saturates slowly with increasing light in-
tensity, the large-signal approximation applying only
at large conductance increases that are not readily
obtained in practice.

Time dependence is not considered in detail. The
PMK current or voltage following suddenly applied
illumination, the steady state for which is established
about as quickly as that for the photoconductance,
does not at present seem well suited for quantitative
studies. " It may, on the other hand, be desirable to
extend the theory that has been given for the depend-
ence of the relative amplitude and phase of PME and
photoconductive response on the frequency of ac
illumination. '

s' Reference 4 and L. H. Hall, Phys. Rev. 97, 1471 (1955).
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2. GENERAL THEORY»

2.I Fundamental Equations

With the hole and electron currents I„and I„suitably
speci6ed, the fundamental equations for steady mag-
netic fields are

p po =&—p=—&N= I ss—o,'—
divI= 0, I=I„+I„;

curlE=O, E= —gradV; (3)

Bp/Bt= Brs//Bt= Bhp/Bt= —e ' divI„—Dp/r
= e ' divI„—Dp/r. (4)

The continuity equations for holes and electrons, Kqs.
(4), are the general equations simplified by use of the
condition of local electrical neutrality, Eq. (1), and by
introduction of the lifetime function v- for added carrier
concentration. "

If Boltzmann statistics apply, then the hole and
electron currents in a homogeneous semiconductor
under steady magnetic field may be expressed by use
of tensors (of the second rank) as

Io=rro E—eD„.gradp=o„LE —(kT/e) grad inp),
(5)I„=o„E+eD „gradn =o „LE+(kT/e) grad ines,

the conductivity and diEusivity tensors being related
to mobility tensors by

e,=ePls„D„= (kT/e) p„,

o = essp„, D.= (kT/e) p„.

The form of the current equations and the proportion-
ality of the diffusivity and mobility tensors in accord-
ance with Einstein s relation obtain since steady mag-
netic 6eld does not change the statistics: It aGects
neither the distribution in velocity, which remains
Maxwellian, nor the Boltzmann density distribution. "

Fxo. 3. The Hall
angles.

@The notation employed is consistent with that of reference 13.
2' S. Chapman and T. G. Cowling, The 3fathematicul Theory of

Non Uniform Gases (Ca-mbridge University Press, Cambridge,
1939),pp. 322 G. ; W. Shockley, reference 11, pp. 301—302.

The tensors may be separated into symmetric and
antisymmetric parts, and the terms involving the
antisymmetric tensors written as vector products, so
that

I„=~,& & a„+S„xa„,
I.=~„& l C.+S„XS..

Here e„&'& and 0„&') are the symmetric conductivity
tensors, and 8o and 8„(which may be written as
negative gradients of electrochemical potentials) are
the vectors in brackets in Eqs. (5). The vectors So and

S„may be referred to as Hall vectors. '4 It follows from
the principle of microscopic reversibility that" the
components of the symmetric tensors are even functions
of EI= ~H~, while those of the Hall vectors are odd
functions of H.

By specializing Eqs. (7), which are applicable to the
general case of the normally anisotropic semiconductor
with magnetoresistance, explicit dependence of the
tensors on magnetic field can be exhibited. If principal
axes of the tensor ellipsoids of o„('& and e„') are
collinear with the Hall vector, then "forces" g„and 8„
perpendicular to the Hall vector will give currents I„
and I„which are also perpendicular. The angles between
these forces and the corresponding currents may be
identified with the Hall angles if the tensor ellipsoids
are ellipsoids of rotation about the Hall vector, so that
the angles are independent of orientation in the trans-
verse plane and the Hall vectors are collinear with the
magnetic field H. These conditions may be realized in

cubic crystals by H in, say, the 100 or 111 direction.
The Hall angles e„and 8„ for holes and electrons age

shown in Fig. 3 for drift (in uniform concentrations)
under perpendicular 6elds."Equations of de6nition,

tang„=R„o-„gH='c 'p~IIH,

—tanO„=R„o„gH=c 'p, „IIH,

relate these angles to Hall coeScients R~ and R and,
in context with theoretical considerations, to Hall
mobilities p„~ and p ~. Here o-„~ and o.„~ are the trans-
verse conductivities and, with cgs units, c is the speed
of light. In this paper, only Hall angles, as the most
directly phenomenological quantities, will be employed;
R„and p» may, for example, depend on H even for
comparatively small H if holes of diGering mobilities
are actually present. '7

Consistently with these considerations, the hole and
electron currents for the case of the isotropic semi-

conductor with conductivities o-„and o-„ independent

~ This terminology is here more convenient than that resulting
from the definition of a Hall vector in terms of the antisymmetric
resistivity tensor: S. R. de Groot, Thermodynamics of Irreversible
Processes (Interscience Publishers, Inc. , New York, 1951), p. 51.

s' J. Meixner, Ann. Physik 4ll, 165 (1941); S. R. de Groot,
reference 24, pp. 8, 15-17, %-51.

~6 W. Shockley, reference 11, pp. 204 ff. The angle 8„ for elec-
trons is negative by convention.

ss Willardson, Harman, and Beer, Phys. Rev. 96, 1512 (1954).
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of H are given by

I„—(I„yk) tan8„=I,*,

I„—(I„yk) tan8„= I„*,

eGect for this case of large Hall angles is straightforward
but rather involved. It is, however, materially simpli-
fied, at least for an n-type semiconductor, if the mobility
ratio is large so that hole transport can be neglected.

in which k is a unit vector in the direction of El and

I„*—=o~E—e D„gra dp =o„] .E (—k T/e) grad inp],
(10)I„*—=o„E+eD„gradn=o LE+ (kT/e) grad indi ]

are currents respectively proportional to S„and 8„.
Equations (9) and (10) are illustrated for transport
transverse to H by the vector diagrams of Fig. 4. These
equations and diagrams apply with I„*and I„,* given
by Eqs. (10) since analogous equations and diagrams
with the same Hall angles apply separately for the
drift and diffusion contributions to I~* and I„*.The
electrostatic field E and concentration gradients need
not, of course, be collinear vectors. Solving Eqs. (9)
for I~ and. I gives

I~=cos'8„LI„*+tan8~ (I~*)&k)]+sin'8„(I~* k)k,
(11)

I„=cos'8„LI„*+tan8. (I„*&&k)j+sin'8„(I.* k)k.

The generalization for tensor ellipsoids of rotation
about the magnetic field is readily effected: Eqs. (9)
and Eqs. (11) apply with Eqs. (10) replaced by

I~*=—o.~,(E—(kT/e) grad lnP) ] ii+jj$
+a~i] E (kT/e) grad lnp—j kk,

(12)
I„*=o iLE+(kT/e) grad lnlj Lii+jj3

+o„it E+(kT/e) grad lnmf kk.

For drift in a semiconductor with no added carriers,
the conductivities 0-„& and a„& are the reciprocals of the
transverse resistances, and 0-„~ and 0.„~ are the recipro-
cals of the longitudinal resistances, as may be veri6ed
by calculating the reciprocals of the conductivity
tensors" or the hole and electron resistances them-
selves. The latter are defined in terms of the powers
dissipated by the hole and electron drift currents, and
equal

2.2 Differential Equations for Small Ha11 Angles

For small Hall angles, Eqs. (11) reduce to

I„=I„*+8,I„*yk,

I.=I.*+8.I.*Xk,

with I~* and I„*given by Eqs. (10).
Adding these equations gives

I=oEje(D„E„)gr—adhp+(8„a„+8„a„)E&&k
—e(8+„—8„D„)gradAp&&k, (14)

where the terms on the right-hand side represent the
drift, Dember, Hall, and PMK contributions, respec-
tively. Solving this equation for E results in

oE=I e(D„—D„) g—radAp —o '(8 o +8 o„)I&&k
+8eD gradhpXk, (15)

8—=8„—8.=8,+]8„],
I

(16)

and D is the general ambipolar diGusivity for added
carrier concentration":

D= o '(o ~,+o,—D„-)= kTIJ, „IJ.,(m+ p)/o
= (~+p)/(~/D. +p/D-) (17)

Equation (15) shows drift and Dember fields to be the
only ones that can be realized separately; I/o is the
drift field if the other terms are absent. If there are no
added carriers in the presence of magnetic field, then
drift and Hall terms. 'occur, while if the PME effect
obtains then all four terms are in general present. The

OpE

if terms quadratic in Hall angles are neglected; three
terms on the right-hand side represent the Dember,
Hall, and PME contributions, respectively. Here

]
o. i(E,'+E„s) cos'8 +o„iE,'7/

[orP(E s+E„') cos'8„+a„.PE,sj
for holes; there is a similar expression- for electrons. "
The dependence on the Hall angles of the resistance
E I/Is, which is the sum of these partial resistances
multiplied respectively by (I~/I)' and (I„/I)', indicates
that there is magnetoresistance in general even for
scalar conductivities O.„and 0.„.Theory of the PME

TANep I
eDp GRAD P

g.I„xk

~ W. Shockley, reference 1j., pp. 301—302.
~ It is easily shown that the angle between the hole current

Ii, and I~* is sin '(sine„sinC„), where I„is the angle between I„*
and H, and similarly for electrons. As may be expected, this
angle equals the Hall angle 8~ for I~* and H perpendicular and
vanishes for these vectors parallel. FIG. 4. The hole and electron currents.
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coefEcient of IXk in the Hall term of Eq. (15) is the
negative of the Hall angle for total current density. "
By substituting from this equation in Eqs. (13), the
currents are obtained in ambipolar form as

where
I,= (o,/o)I+I=-, I„=(o„/o)I—I=, (18)

I—=—= eD gr—add p+8(o „oo/a') IXk
—(8„o„+8„o„)(eD/o)gradhpXk, (19)

if terms quadratic in Hall angles are neglected.
The continuity equation for Dp is readily derived by

noting that since E and graddp are lamellar, the
equations

divl~ =div(o.„E)—eDo div gradDp+8~ f

gradate,

E,kg
e(M p/B—t+Dp//r)

= —div(a„E) —eD„div gradhp
—8„Igrada„, E,kg = —divI„(20)

obtain, in which the heavy brackets denote scalar
triple products. Multiplying respectively by O.„and 0-~,

adding, and simplifying gives

Bhp/Bt= divD gradd p —v gradhp —hp/r, (21)

where, with n, =ns —ps —n p——, —

v= (etj,„p„n,/a) E+gradD
+ (8,n —8„p)(ep.p„/a) EXk (22)

is the drift velocity for hp. By use of Eq. (14), the
equation

(23)dD/dip = e'p„tI,„(D D„)n,/a'—
and the identity

t -n'+t, p'=a'/e'(t -+t o)+rn', (24)

30Suitably specialized, this angle is the one derived by W.
Shockley, reference 11, pp. 215 G.

3'A term in gradd peak is deleted; expressions for v differing

only by terms that do not contribute to v gradDp are considered
equivalent.

where p=—p, „p~/(p„+go), Eq. (22) may be written as"

v= (ey„y~n, /a') I+8P(1+e'tj, „yon,s/a') E Xk
= (ey„yon, /as)I+8(1+e P„tj~n,'/a') (,P/a)IXk. (25)

The second form applies, from Eq. (15), with the
neglect of terms quadratic in Hall angles.

A complete formulation involves also Eq. (2) as a
second differential equation which, from Eq. (14), may
be written as

div[aE+e(D„D„) gradd p—]
+e(8'„+8„p„)fgradt1p, E,kg=0. (26)

It is convenient to use, in addition to Ap, the potential

V—[(b—1)/(b+1—))(kT/e) ln(o/os) (27)

Equations (29) are fundamental differential equations
of the theory for small Hall angles. The condition that
E be lamellar, Eq. (3), is implicit in the introduction
of lt. If the transport geometry is a simple one, it is

often better not to solve for this potential, but to apply
Eq. (3) directly; the continuity equation in the single

dependent variable Ap is then the only differential

equation that need be solved.

2.3 Extension for Holes of Different Mobilities

Various experiments on infrared absorption, magneto-

resistance, Hall eGect, and cyclotron resonance and

their theoretical interpretation have indicated the

presence in germanium of holes of essentially two

effective masses. "The present treatment may easily be
extended to take these into account. Denote by pt and

ps the respective concentrations of slow and fast holes;

by p» and p», their drift mobilities; by a»=ep»pt
and ass ——ep„sps, their contributions to conductivity;

by D» and D», their diGusion constants; and by 0„I
and tI„2, their Hall angles for given B.The hole current

densities for scalar conductivities and small Hall angles

are then

where

I„,=I„*+8„I„*Xk;s=1, 2 (3o)

I,~=o.„;E—eD; gradp;

=ao;[E—(k'r/e) grad lnp~j; i =1, 2. (31)

The second equations of Eqs. (9) and (10) give the

electron current density.
It will be assumed that the ratio of the hole concen-

trations is fixed, so that

p,/p=, p,/p=1 —;p=p, +p„ (32)

with r a constant. YVith this assumption and the

neutrality condition, Eq. (1), the expression for I
obtained by adding the three current-density equations

may be solved for E in terms of I and Ap. If the de6-

3'Much of this work has recently been summarized by C.
Kittel snd by A. C. Beer, Phys. Rev. 98, 1542 (1955). See also
reference 27.

as second dependent variable, in terms of which the
total current density may be written as

I= —o grad/ —(8~as+8 o„) gradfXk
—8eD gradapxk, (28)

and the continuity equation and Eq. (26) as

div(D gradAP)+I2[n, gradlt+ (8on 8—„P) gradfXkj
~ grad lno —Dp/r=0,

(29)
div grad/+[grad/+ (8~y„+8~ ) grad/

Xk/(p„+p )j grad lno-=0.



PHOTOMAGNETOELECTRI C EFFECT IN SEMICONDUCTORS 1719

nitions

ti = (& 1+o 2)/e(p1+p2) = (1—«) t1„1+«t1,2

D,=kTti~/e,
8,—= ( „8„+,y„)/~„

= L(1 «)t —u18nt+«t y28n2'j/t u (33)

Di= o,tD—/~„= (1 «)t „—D/t „
D2 & 2D/& «ti 2D/t2 D1+D2 D

are employed, with o~t+o.„s=o~, then, to the first
order in Hall angles, E is given by Eq. (15) and the
hole current densities in ambipolar form are

I„;=(o-„,/o) I—eD, gradt1p

+(~„/o')L(8„—8„)o„+(8„—8,)~,]IXl
—e(o„,/o~) (8„—8o,/o)D gradhpX&;

i=1, 2, (34)

with the corresponding total hole current density and
electron current density as previously given, Since it is
implicit in Eqs. (32) that the lifetime r applies to
concentrations of added holes of either mobility, the
definition of Eqs. (33) thus lead to Eqs. (21) and (25)
for the continuity equation for added carriers; and
Eqs. (29) apply as the fundamental differential equa-
tions.

In accordance with these considerations, all results
of this paper apply for holes of two mobilities provided
that where boundary conditions are involved the con-
ditions hold with surface recombination velocities for
these holes that are the same. By further extension of
an obvious nature any discrete or continuous distri-
butions of concentration ratio r for holes with respect
to mobility can similarly be taken into account. Compu-
tation of 0 shows that a small concentration of fast
holes in germanium —a value of r of about 0.02, with
t1~2/t1„1 about 8, has been found to account for the
dependence on II of the Hall effect and magneto-
resistance" —contribute about 30% to PME current
or voltage, the slow holes contributing only about
two-thirds as much and the electrons 50%.

3. THE PME EFFECT IN AN INFINITE SLAB

3.1 Formulation

From the symmetry of the in6nite slab, I equals
I,i, with I, a function of y, and is parallel to the slab
surfaces; and gradhp equals (dip/dy)j and is perpen-
dicular to the surfaces; both are perpendicular to the
magnetic field which is assumed parallel to the surfaces,
as shown in Fig. 1. Thus, from Eqs. (15), (18), and
(19), if I» is the (scalar) hole current density across
the slab,

E,=o '(I, 8I~„)=o '(I,+8eDdhp/dy—) (35)

holds to the first order in Hall angles, with E„a con-

I.wp

I&")=8 I„„dy= —8e Ddap= —8eD, t ~p,—~p2

—-,'(b —1)(b+1) 'I, ln(o 1/o 2)) (37)

per unit width along the magnetic field, where yo and
—yo and subscripts 1 and 2 denote the illuminated and
dark surfaces. The integrated form, in which D;

2D„D~/(D —+D~) is the diffusivity for intrinsic ma-
terial, ' is obtained by use of Eq. (17).The open-circuit
condition is

r"o
I,dy =0,

yo

(38)

which, with Eqs. (35) and (37), gives E, equal to the
PME open-circuit field

Vo

E '-'= I&"&/G G—=— ady, (39)

and I, equal to the open-circuit circulating current
density'~

I,"'= oI t-'/G 8eDdhp—/dy, —(40)

in which G is the conductance of the illuminated slab
per unit width along the magnetic field. Kith the drift
term of Eq. (36) for the open-circuit condition thus of

» ln Eq. (26), the second differential equation, the scalar triple
product vanishes for this geometry, and the equation merely
provides (for small Hall angles) the Dember field E„racotshse
slab. See Sec. 3.5 and reference 34.

'4 The magnitude of the apparent Dember potential is reduced
by an amount quadratic in (small) Hall angles since, from Eq.
(1&), E„ includes the term Ir ~(e„o„+e„a„)E&"& for the open-.
circuit condition. This term represents a Hall 6eld associated
with the PME circulating current, or, more precisely stated,
with the difference between the open-circuit and short-circuit
current densities. See G. Groetzinger and J. Aron, Phys. Rev.
100, 978 (1955).

"Equations (26) and (27) of Landauer and Swanson, reference
1G, give the corresponding small-signal equation but without the
drift term. This continuity equation is approximately valid
provided the change in potential in a diffusion length associated
with E, is small compared with kT/e8.

"W. van Roosbroeck, Bell System Tech. J. 29, 560 (1950);
see also reference 13.

3' The associated nonuniform magnetic 6eld is in the direction
of H; its contribution ig relatively smaU,

stant, in accordance with Eq. (3); and"'4 from Eqs.
(21) and (25) the continuity equation is

Bhp/Bt =d (Dip/dy)/dy
+8pE, (1+e'p „ti~«t,s/o') dip/dy tt,p—/r. (36)

For the theory of the Hall e6ect in the infinite slab and
the magnetic rectifier, this equation (with the time
derivative zero) applies in general without further
material simplification. "For the PME effect, however,
usually either short-circuit current or open-circuit
voltage is of interest. For the former, the condition
is E,=O, for which the drift term does not occur in
Eq. (36); for the latter, this term is of order 8' and may
be neglected. From Eq. (35), the PME short-circuit
current is
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per unit width along the magnetic Geld. Thus, from
Eqs. (37), (39), (44), (45), and (46), the PME small-
signal current and voltage are given by"

It"i = —G 8 t-i= OeD (AP— &P )—
FIG. 5. The dependence of S~D;/Do on resistivity po

for germanium at 300'K.

e%+I» ——estd p,

I„„=—essAp, y = —yp,
(42)

where (R is the rate of generation of carrier pairs per
unit area by strongly absorbed radiation, and s& and s2

are surface recombination velocities. Note that in

I„„= eDdh p/dy O(o.„o.„—/o') I, —

order 8~, the equation may be written as

d(Dip/dy)/dy ap/r= 0—
for the steady state. With a theory based on Eq. (41),
it is evidently better in principle to measure short-
circuit current rather than open-circuit voltage. If both
are measured, and the conductance without magnetic
field as well, then consistency according to Eq. (39) is

an indication of the validity of the assumption of small
Hall angles.

Boundary conditions for the slab are

Ss sinh2 Yp+ cosl12 Yp —1
= —Oe(RL

(1+SiSs) sinh2Y'p+ (Si+Ss) cosh2Yp

(Dp/r)& Ss+tanhYp
= —8 sG.

p,„+@~Ss tanhYp+1
(47)

Note that the result in terms of AG does not depend
explicitly on 8. nor on s&.

For Yp))1, or the "thick" slab, Eqs. (47) reduce to

Ii"= GpE l-& = —O—e(RL(Sr+1)—'

O(Dp/r) i(l .+—l )-'~G (4S)

a result useful for the determination of r (and si as
well, if (R is known). For Yp«1, or negligible volume
recombination, the result

It".i = —Oe(R 2ypSs'(St'+Ss'1 25i'52 )
O(~-+~.) '»—(1+esyp/Dp) '~G, (49)

in which Si'=styp/Dp and Ss'= ssyp/Dp, ma—y be used
to determine ss (and si as well, if (R is known). For ss
large compared with st and Dp/rs&, lifetime r may be
found from

which follows from Eqs. (18) and (19), the second term I "= —OeM(Si+ th2YP)

may be neglected with I, of order 0. =—O(Dp/r)&{@„+Iz„) ' cothYp AG. (50)

For si=s2, so that Si——S2—=S, the result in terms of (R3.2 The Small-Signal Case assumes the form,

fRL Ss sinh(Yp+ Y)+cosh(Yp+ Y)
(44)

Dp (1+StSs) sinh2 Yp+ (Si+Ss) cosh2 Yp

in which
Y=y/L, —Yp=—yp/I. , L= (Dp7) &, —

Si=siL/Dp, Ss=ssL/Dp. — —(45)

If the relative increase in local conductivity is
everywhere small compared with unity, then D and 0

may be replaced by their thermal equilibrium values
Do and 00, and r, si, and s2 are also constants. "Equation
(41), the continuity equation, and Eqs. (42), the
boundary conditions, are then linear '.and give the
solution

Ii"= —OetRL(5+coth Yp) '.

3.3 The Intrinsic and Large-Signal Cases

(51)

Provided sg, s2, and 7. are constant, " the continuity
equation and boundary conditions that apply in general
to an intrinsic semiconductor are, since D has the
constant value D;, those of the small-signal case. These
equations apply also to an extrinsic semiconductor for

ss By specializing these results (to the case of Hall and drift
mobilities of electrons and holes all equal and D0 equal to the
limiting value D„or D„ for extrinsic material), they can be shown
to agree with the PME voltage of H. Bulliard, reference 3,
specialized to the small-signal, small-Hall-angle case.

3' Other volume recombination laws may obtain in some cases,
such as the mass-action law or one of the type discussed by W.
Shockjey and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).
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relative increases in local conductivity everywhere large
compared with unity. Thus, with Dp construed as D,
wherever it occurs, Ap is given by Eqs. (44) and (45),
and from Eqs. (46) and

L l fI„„) (Dp)
{52) G-—=

I II-= (~-+~.) It.emDp) &~) (r)GE—.- = eeD—;(ap, ap,—),

In Fig. 5, K) is plotted against pa=0.0
—' for" germanium

at 300'K;
Dimensionless hole current across the slab is

I"' is given by Eqs. (47) and E. " by

(e(RL)
g (oui —

g~

KGp)

Ss sinh2Fp+cosh2 Y'p —1
X

(1+SiSs) sinh2Fo+(St+So) cosh2Y'o

+e (p„+pr ) r [So(cosh2 Yp —1)+sinh2 Fof(R/Go

1+5)AP dhP
(59)

1+AP d Y

This quantity may be expressed in terms of hP; it is
readily verified that a first integral of Eq. (55) is

53
1+X)d P dhP

1+EP d Y

The approximate form of Eq. (53) for G dG))Gp is

(Dp/r) & So+tanh Fp
Z.~-) =0

ii„+@~ Ss tanhYp+1
(54)

3.4 Cases of Arbitrary Light intensity

which shows that E,"' "saturates" for constant r in
the large-signal cases, I&'') being proportional to G.
These results for E,'") are consistent with theory
previously given for the dependence on light intensity
in which constant D is assumed and which is, thus,
strictly speaking, theory for the intrinsic case.'~

= [A+2(X)—1)[ln(1+AP) —AP$+K)APs)i (60)

in which 3 is a constant of integration. Three equations
that determine A and the dimensionless surface concen-
trations AP~ and AP2 in terms of g, X), I 0, S~, and S2
are thus

2—SgAPg

= [A+2 (S—1)[ln(1+&Pt) —APi)+ X)APt')&,
(61)

S,SP,
= [A+2 (I)—1)[ln(1+DPs) —APs J+K)hP, '$&,

The nonlinear continuity equation and boundary
conditions for the slab, Eqs. (41) and (42), will be
considered for ~ constant. They are advantageously
expressed in dimensionless form as

pb, P1 (1+M,P)dd, P
=2Fo, (62)

"n~, (1+~P)[A+2(n —1)[ln(1+~P)
—~P]+ n~P']b

and

—AP=O,
dY 1+AP dF

(55)

the first two being the boundary conditions and the
third following directly from Eq. (60). From Eqs. (37),
(39), (57), and (58), dimensionless PME short-circuit
current is

1+SAP dhP

1+AP dF

1+SAP dhP

=SghP, I'= Vp,

(56)

~—=—( -+~~)1"/«oDp= ( -+~,)G&'-'/«oDo
= X) (DPt —DPs)

—(X)—1) in[(1+APt)/(1+DPs) j. (63)

where4'

=S25P, F= —I'0,
1+hP d F

AP= hp/m, m= op/—e(p, „+IJ,„), —
e(fi +p, )L(R/o oDo= e(—p„+p„)(R/op(Do/r)», (57)

S=D;/Do=2m/(tlap+— pp)=2op/e(p +p )(Bp+pp),

the other quantities that occur being defined by Eqs.
(45). Note that the dimensionless added carrier concen-
tration AP is the relative increase in local conductivity,
Do/op, and that

D/D (o1+nDP)//(1+AP). (58)
~ Use of the concentration unit m seems best in the present

connection; with e„ two parameters, including the mobility
ratio b, occur explicitly.

From Eqs. (46) and (57) the relative conductance
increase is given by

AG/Gp= (2Fp) '(8—StDPi —SshPs), (64)

which, from Eqs. (59), (60), and (61), is proportional
to the difference between the magnitudes of the hole
currents at the surfaces. It is readily seen from Eqs.
(61) to (64) that 8 may be obtained (in general by
numerical calculation) as a function of EG/Gp with 5),
2I'0, and S2 as parameters and no explicit dependence
on and S~. These various relationships can be shown
to provide the results derived directly for the small-
signal case.
"Values of e0p0 and drift mobilities are employed as in reference

13; these mobilities obtain provided 4rp is not too large. In the
notation of this reference, S=1+f(b—1)/(b+1)g tanhWp.
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FIG. 6. Dependence of e/(2yphG/Gp) on e for thick germanium
slabs at 300'K. The dimensionless PME current-photoconductance
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S& times this for the limiting large-signal case.

Equations (63) and (64) reduce to

y= n/t. Pt (n —1) 1n(—1+APt)
and

(66)

AG/Go= (2F'o) '(&—St&Pt)
= r(2yprts)

—'((R—siApr). (67)

From Eq. (66), 8 depends for given 5) only on APIr
and from Eqs. (65) and (67), the quantity 2FoAG/Gp

does likewise. In Fig. 6, the ratio d/(2FphG/Gp) is

plotted against 8 for the three values of S that corre-
spond to intrinsic and (sufficiently strongly extrinsic~)
e- and p-type germanium. For intrinsic material, for
which S=1, the ratio is unity, as it is in the small-signal

limit, D being D; and independent of Ap. Analysis by
means of these curves of measurements of d,G/Gp and
I&"&, the latter providing 8, determines 2I'p and hence
r. As the curves show, r may be obtained from small-

signal measurements by means of the relationship
2Fo ——S/(~G/Gp) or

r=Dp[f'~G/(u +f )I"3' (68)

Agreement between theory and experiment over an
extended range in d would show that the assumption
of constant r is valid. If 6l is also known and DPt is

~ In the notation of reference 13, the approximate condition is
I wpI )3.

3.41 The Thick Slab

Considerable simplification results if the slab is a
number of diffusion lengths thick, so that the added
carrier concentration and hole Row density at the dark
surface are much smaller than at the illuminated
surface. The idealization is the slab of infinite thickness,
for which AP~ and 2 are zero; the thickness integral
of Eq. (62) then of course diverges, and, from the first
of Eqs. (61), the boundary condition for the illuminated

surface may be written as

(Z, —SthPr)'
=2($—1)[ln(1+AP )—hP )+nhPP. (65)

evaluated in terms of d from Eq. (66), then st may be
found by use of the second form of Eq. (6'7).

3.42 Method of the High-Recombination-Velocity
Dark Surface

The method of the thick slab has the practical
limitation that in general it does not apply unless 2Vp
is suKciently large, while large 2Fp makes for small
DG/Gp which may be dificult to measure accurately.
This limitation is largely obviated by a method em-

ploying slabs in which 2I'p is not large and in which
large s2 has been produced, as by sandblasting the
dark surface. The condition of negligible AP2 may thus
be realized substantially independently of the value of
2Fp. For this method, Eq. (66) applies as well as Eq.
(62) with the lower limit of the integral set equal to
zero. This integral converges since A, from Eqs. (59)
and (60) and the second of Eqs. (61), equals (SshPs)'
or C»' for the dark surface and is not zero.

Equations (61) and (64) give

2 FphG/Gp ——[2+2 (X)—1)[ln(1+DP t)
APt j+.SAP—is j*'—2 *', (69)

so that, with Eq. (66), 2FpAG/Gp depends for given S
on 2 and 8. By numerical integration of the thickness
integral, 2I"p may also be obtained for given S in terms
of A and d. Eliminating A furnishes a relationship
between 2Fp, 2FpAG/Gp, and d from which a family of
curves of 2Fp versus d/(DG/Gp) with 8 as parameter
may be obtained. Figure 7 gives such families of curves
for (suKciently strongly extrinsic~) rr- and p-type
germanium. The dashed curves for zero and infinite 8
correspond to 8/(DG/Gp) equal to 2Fp cothFp and to
I)'* 2Fp coth($ 'Fp) for the small- and large-signal
cases, respectively. " The value of 2I'p determines r,
and if (R is known as well then s& may be found as for
the thick slab.

Use of a dark surface with negligible recombination
velocity s2 would provide in principle a more sensitive
measure of slight volume recombination. In practice,
though, it may be diQicult to secure sufficiently small
ss. The small-signal 8/(AG/Gp) for no volume recombi-
nation and s&$0, namely 2/(1+Do/ssyp), would result
in a fictitious 2I'p in accordance with the relationship
d/(AG/Gp) =2Fp tanhF'p that applies for sp ——0 in the
small-signal and intrinsic cases; and the condition that
this Gctitious 2I'p be small compared with the true one
is ss((yp/r for slight volume recombination. If yo is

10S2r, say, and $2 is 50 cm sec ', then 2yp is appreciably
less than a di6'usion length I if, for e-type germanium
at 300'K, I and r are appreciably less than about
0.05 cm and 50 @sec. These are conditions under which
use of the small ss could confer some advantage; Fig. 7
indicates that if 2yp is of order L, then the method of
large s2 should provide good accuracy.

~ Note that the small-signal relationship applies for all d to
intrinsic material.
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I"0 of diRusion lengths in the slab thickness on the dimensionless PME current-
for germanium slabs at 300'K with high-recombination velocity dark surfaces.

C„„'=—(yo/enzDO) I,„=(p„+p„)yeI, „/a eDO

I"=—y/yo
1+DP dF'

(70)

3.43 Negligib1e Volume Recombination

I'or slab thickness small compared. with a diffusion
length, the condition of constant I» represents a first
integral of the continuity equation. Thus, C» given by

The equation

(n —1) 1nL(1+&Pt)/(1+&P2)$
n(aP, SP,)= 2—C„„' (7—1)

is obtained by integrating Eq. (70), writing the result
for the respective surfaces, I"=&1, and subtracting.
The boundary conditions, Eqs. (42), are

2'+C„„'=St'APt,
(72)

where

is constant; primes here distinguish dimensionless
quantities based on yo as length unit rather than I.

&'=—(yo/tttDO) R= e(p„+IJ,,)yo(R/a oDo,

Sl =—Srye/DD, Sl =~2ye/DO.
(73)
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8= —2C„„'=252'5 (74)

1

~G/G. =-; t ~PdI
b, Py

= —(2C„„) '
~

EP(1+nhP)(1+hP) 'dDP

= s-i[(n —1)(ln[(1+aP,)/(1+aP, ))
aPi+ nPs)+ ',—n(aPis APs')-)—

=-,'ny-i(ap, —ap,)(ap, +ap, +2/n) —1, (77)

obtained by use of Eqs. (70), (74), and (75),
To facilitate numerical computation, Eq. (75) may

be written as

ln(1+AP, )=[n/(n —1))APi—E',
(78)K—= (n+2Ss') (n —1) 'APs —ln(1+DPs).

Then, with K) known, values may be assigned to 52' as
parameter and to DP~ which determine, besides 8, also
IC and thus APt as root of Eq. (78). To compute DG/Gs
from Eq. (77) with reasonable accuracy, this root must
be evaluated to a number of significant 6gures. Figures
8 and 9 give d/(AG/Gs) versus AG/Gs so obtained for
values of Ss' as parameter for (suKciently strongly ex-
trinsic~) ts- and p-type germanium.

from Eqs. (37), (63), (70), and (72). Eliminating g»'
from Eqs. (71) and (72) results in 'the equations

(n —1) 1n[(1/DP])/(1+BPs)) —n(APi —APs)
= —2Ss'APs ———0 (75)

and
St'DPr+Ss'DPs= 2',

which determine AP~ and dP~. The relative conduc-
tance increase is

0
f02 4 8 80f 2 4 8 8 2 4 8 Ifo f $0

hG Go

FIG. 9. Dependence of the dimensionless PME current-photo-
conductance ratio e/(itG/Go) on the relative conductance increase
&G/Go for P-type germanium slabs at 300'K with no volume
recombination.

With this method, volume recombination, which
increases d/(DG/Gs), would give an apparent ss larger
than the true one. It can be shown that the correction
bd/(DG/Gs) at fixed AG/Gs for slight volume recombi-
nation is [2—4(1+3/2Ss')/3 (1+1/Ss')') Fss for the
small-signal and intrinsic cases.

3.5 The Open-Circuit Equipotentials

The equipotential surfaces shown in Fig. 1 for the
infinite slab are specified by

pVD

he= ' coty dy, cot p= E„/E„—(79)

which relates to the y coordinate of a point on an
equipotential its x distance from the intersection with
the dark surface. For the open-circuit condition, the
constant field E, is E,'-&, which is of the first order in
Hall angles. It follows then from Eq. (14) that, to the
same approximation, E„is the Dember field, '4

E„=—(e/o) (D„—D,)dip/dy. (8o)

The integral obtained by substituting for E„in Eq. (79)
is easily evaluated. For open circuit, it gives

~~= (kr/e) (b—1)(b+ 1)-'[ln( /~, ))/E, &-&

= s[(~. ' —~=')G»(~/ s))/ge[~pi —~ps
—-'(b —1)(b+ 1)-'rs, ln(~, /~s)), (81)
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obtained by use of Einstein's relation and Eels. (37)
and (39).

The equipotentials for the small-signal case are given
by

(D D,)—2yp ~P—~Ps
Ax=

ODp d pr —Aps
(g2)

as obtained by expanding the logarithms. This result
may be written explicitly in terms of y by use of the
appropriate expressions for Ap and 8,& "&. From it, the
distance along the slab between intersections of an
equipotential with the surfaces is given by

Ax= (D„—D„) 2yp/eDp

for the small-signal case. This Ax is a direct measure

of 8. It is large compared with the thickness 2yo of the
slab, since 8 has been assumed small.
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Study of the optical hyperfine structure of several Gd I lines using enriched isotopes shows that the spins
of the odd isotopes Gd"' and Gd'" each are s2. The ratio of the magnetic moments is tsr(Gd'»)/~z(G(p»)
=0.80~0.02. The magnetic moment for Gd'" obtained from two lines is —0.37&0.04 nm. Deviations from
the interval rule in these two lines can be accounted for with a quadrupole moment of approzimately
1.0)&10-24 cm~ for Qd«7 and 1.1)&10~' cm' for Gd«'. The known anomolous isotope shift between neutron
numbers 88 and 90 (Gd'" and Gd'») is accurately measured for several lines.

INTRODUCTION

S PECTROSCOPIC measurements of the nuclear
moments of the heavier odd-neutron nuclei have

been hampered by the presence in the corresponding
elements of several even-even isotopes. With the
availability of enriched samples, however, it has
become possible to add to the rather scanty data on
such nuclides for comparison with predictions of the
unified shell model developed by Bohr' and by Bohr
and Mottelson. ' The recent work of Mottelson and
Nilsson' shows that marked deviations are to be ex-
pected from the moments derived from the single-
particle model in those regions of the periodic table
where the nuclear deformations are large. Thus whereas
a spin I=7/2 was assigned by Klinkenberg' to the odd
isotopes 64Gd'" and 64Gd" on the basis of the shell
model, it appears that if the nuclei are sufficiently
deformed the lowest level should be either 3/2 or 5/2+. '

*Work supported by the National Science Foundation.
'A. Bohr, Kgl. Danske Videnskab. Selskab Mat. -fys. Medd.

26, No. 14 (1952).' A. Bohr and B.R. Mottelson, Kgl. Danske Videnskab. Selskab
Mat. -fys. Medd. 27, No. 16 (1953).' B.R. Mottelson and S. G. Nilsson, Phys. Rev. 99, 1615 (1955).' P. F. A. Klinlrenberg, Revs. Modern Phys. 24, 03 (1952).' Reference 3, Fig. 2, p. 1616.

Previous studies~' with natural gadolinium have
been chief concerned with the isotope shifts, and
Murakawa' has confirmed the anomalously large shift
between isotopes 152 and 154 that was expected by
analogy with Xd and' Sm. This author, and somewhat
earlier Suwa, ' attempted to draw conclusions about the
spins and magnetic moments of the odd isotopes of Gd
from the unresolved structure underlying the strong
components due to the even isotopes. Both investi-
gators concluded that the spins were probably greater
than 3/2, and Murakawa assumed the value 7/2 in
estimating the magnetic moments. It is therefore
apparent that further study of the hyperfine structure
of Gd with separated isotopes was needed. The very
complete classificatiori of the lines of both Gd I and
Gd zr by Russell" makes it possible to derive the nuclear
moments from the observed splittings.

The composition of the four samples of enriched
isotopes used in the present work, as compared with
that of natural Gd, is shown in Table I.

'P F A Klinkenberg Physica ].2 33 (1946)' P. Brix and H. D. Engler, Z. Physik 133, 362 (1925).' K. Murakawa, Phys. Rev. 96, 1543 (1954).' S. Suwa, J. Phys. Soc. (Japan) 8, 377 (1953) and Phys. Rev.
86, 247 (1952).

"H. N. Russell, J. Opt. Soc. Am. 40, 550 (1950).


