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Multiplet Structure of Excitons in Ionic Crystals*
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The excited states of crystals arising from the configuration in which an electron is transferred from a
negative ion to a nearest neighbor positive ion are analyzed. It is concluded that 72 overlapping exciton
bands result for crystals having the NaC1 structure. Optical transitions from the ground state are allowed
to only 5 of the 30 energy levels into which the 72 bands collapse at the center of the Brillouin zone. For
crystals having the CsCl structure, 96 bands occur which collapse into 40 energy levels at k= 0, 6 of which
can be reached from the ground state by allowed optical dipole transitions. In the absence of spin-orbit
interaction, only two transitions are allowed for both structures. It is concluded that the lifetime of exciton
states, as limited by interaction with optical phonons, is sufficiently short to account for the width and
temperature dependence of fundamental absorption lines. Approximate wave functions describing the
exciton states are constructed and a procedure for calculating energy levels and relative intensities of
absorption components is formulated.

number of 6lms and are well established. They cannot
be attributed to absorption processes analogous to the
n and P bands' observed in alkali halides because they
were not altered when the BaO films were heated
either in barium vapor or oxygen gas, and, furthermore,
their peak absorption constant is several orders of
magnitude larger than that of typical n and P bands.
Hartman and Nelson' have measured the optical ab-
sorption of evaporated films of NaCl and KC1 and the
reRectivity of single crystals of the same materials in
the fundamental region. At low temperatures the
"first" peak in both materials is well resolved, having
two strong components. For NaCl there appears one
and perhaps two smaller components on the low-energy
side of the larger peaks, similar to Zollweg's observa-
tions for BaO.

I. INTRODUCTION AND CONCLUSION

HE first peak in the fundamental optical absorp-
tion of alkali halide crystals is generally inter-

preted' as the result of an electronic transition from
the ground state to an exciton state' of the crystal.
These absorption peaks' are generally a few tenths of
an ev in width, and their position and width are sensitive
to temperature. For the bromides and iodides there is
a second absorption maximum at a slightly higher
energy, the separation from the 6rst being about equal
to the spin-orbit splitting of the ground-state con6gur-
ation of Br and I, respectively. Therefore this structure
has been attributed to the spin-orbit coupling of the
hole left on the Br or I ion during the formation of
an exciton.

Recent studies of the optical absorption of several
alkali halides and BaO at low temperatures using high-
resolution techniques have revealed considerably more
structure in the exciton region than has been indicated
previously. Zollweg4 has measured the optical absorp-
tion of evaporated BaO films at low temperatures and
has found four components, two large and two small,
in the first half-volt of the fundamental absorption.
His results are shown in I'ig. 1. The two small compo-
nents, which lie on the low-energy side of the larger
ones, appeared at low temperatures for all of a large
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The discovery of the additional structure mentioned
above indicates the necessity for carrying out such
experiments at low temperatures and with single
crystalline materials whenever possible, or at least with
carefully prepared and well annealed films. A complete
study of the eGect of substrate temperature and
annealing treatment on. the fundamental absorption of
KI evaporated films has been made by Fischer. '

In his work on the temperature dependence of the
absorption peaks in KI, Fesefeldt' resolved quite clearly
(at liquid nitrogen and liquid hydrogen temperatures)
a moderately strong peak lying between the first two
peaks apparent at room temperature. As the data of
Hilsch and PohP for KI show a third peak a fraction
of an electron volt higher in energy than the two just
mentioned, it is possible that the exciton absorption of
KI has at least four components. It is the purpose of
the present paper to explain the origin of a complex
absorption structure associated with exciton creation.
In fact we shall conclude that the primary exciton
multiplet for ionic crystals having the NaCl lattice
should consist of five components and that the exciton
multiplet for crystals with the CsCl structure should
have six components.

The traditional view regarding the nature of an
exciton in an ionic crystal is as follows. (Throughout
the remainder of the discussion we shall refer to NaCl
only, regarding it as a prototype for the other salts. )
The electronic configuration of the Na+ ion consists
of closed shells up to and including the 2p shell. The
lowest energy state available on the ion is the 3s state
ordinarily occupied by the valence electron. The Cl
ion consists of closed shells up to and including the
3p shell. The electronic transition associated with
exciton formation has usually been ascribed to the
removal of one electron from a Cl 3p state and its
reassignment to a 3s state of a nearest neighbor Na+
ion. Since such a state of excitation in one unit cell of
the crystal is energetically equivalent to that in any
other unit cell (as a result of the translational symmetry
of the lattice), the excitation will readily propagate
through the crystal. Experimental evidence regarding
the mobility of the excitation has been provided by
the work of Apker and Taft. '

Theoretical calculations' of the energy .of the first
excitation state relative to the ground state have been
based upon the assumption that the excited electron is
on a nearest neighbor alkali ion relative to the hole on
the halogen ion. Agreement with the experimental

' F. I ischer, Z. Physik 139, 328 (1954).' L. Apker and E. Taft, Phys. Rev. ?9, 964 (1950); 81, 698
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Hebb, Phys. Rev. S1, 702 (1951);D. L. Dexter and W. R. Heller,
Phys. Rev. 84, 377 (1951).' K. L. Wolf and K. F. Herzfeld, Haldbech der Physik (Verlag
Julius Springer, Berlin, 1928), Vol. 20, p. 632; M. Born, Z.
Physik ?9, 62 (1932); W. Klemm, Z. Physik 82, 529 (1933);
A. von Hippel, Z. Physik 101, 680 (1936); T. ¹ugebauer, Z.
Physik 104, 207 {1937).

values is quite satisfactory for most of the alkali halides,
provided electronic polarization effects (Klemm') and
overlap effects of the neutralized ions with their sur-
roundings (von HippeP) have been taken into account.
In calculating the absorption cross section associated
with exciton creation, Dexter" used a wave function
for the exciton state in which the excited electron was
concentrated primarily on the same Cl atom as its
associated hole and which had the character of a Cl 4s
state. There is no doubt that the wave function of the
excited electron overlaps the Cl atom considerably,
otherwise the transition probability would not be so
large as it is. Furthermore, within the framework of a
variational calculation one may expect that a Cl 4s-type
state will be admixed in so far as it is energetically
favorable. Nevertheless, it seems legitimate to ask
whether the best "zeroth-order" description of an
exciton in NaCl would require the electron to be
primarily in a Cl 4s state or in a Na 3s state. The
agreement with observation of the calculated exciton
energies mentioned above supports the latter alterna-
tive. As shown below, the occurrence of many compo-
nents in the exciton absorption can be understood also
only if the latter alternative is the correct one.

Let us consider the electronic configuration (3p)s4s
associated with the former alternative. The total
orbital angular momentum is I.= 1. The total spin 5 is
either 0 or 1. There is one resulting energy level with
total angular momentum J=O and one with J=2.
There are two energy levels with J= i. Since the total
angular momentum of the ground state is 0, optical
dipole transitions are strictly forbidden to the states
J=0, 2. The only allowed transitions are to the two
states with J=1. If the spin-orbit coupling is negligibly
small, only one of these states (S=O) can be reached
by an allowed transition. If the spin-orbit interaction
is weak, there will be one strong and one weak transi-
tion. The case of Bao cited above illustrates the
inadequacy of the model under consideration. Four
lines are observed instead of two. The two observed
weak lines cannot be attributed to transitions to the
forbidden levels, J=O, 2 made possible by phonon
interactions because the lines would then be consider-
ably broadened, whereas in fact they are quite narrow.
Furthermore, the two strong components are of com-
parable magnitude, whereas the spin-orbit splitting of
the 0 ion is small (~0.03 ev) compared to the splitting
(0.24 ev) of the large components. For the alkali
halides the model is also inadequate in those cases
where more than two components have been resolved.
The foregoing argument is not altered in essence if the
cubic structure of the lattice is taken into consideration.

%e shall now enumerate the various exciton states
that arise according to the traditional configuration.
Consider a hole to be located on a particular Cl ion.
Since the 3p state is triply degenerate, and since there

'0 D. L. Dexter, Phys. Rev. 83, 435 (1951).
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are six nearest neighbor Na+ ions, there will be a total
of 3&6)&4=72 excited states. The extra factor of 4 is
due to the four possible spin states of the electron-hole
pair. Since the hole can be located on any of the N
chlorine ions of the crystal, each of the 72 states will

be S-fold degenerate in the zeroth approximation.
%hen appropriate interactions are taken into account, '
each S-fold degenerate level will spread into a band of
states, each state being associated with one of the E
allowed wave vectors it of the fundamental Brillouin
zone. The exciton con6guration gives rise, therefore, to
72 complete energy bands, all of which are nondegen-
erate for a general point in k space. One would expect
the energy width of each exciton band to be the same
order of magnitude (several ev) as that of electronic
conduction bands, a feature which is born out by
detailed calculations (Heller and Marcus' ). The 72
exciton bands will be mutually overlapping. The wave
function of a speci6c exciton state can be represented
approximately as a linear combination of the 72S wave
functions associated with the localized excitation states
considered originally.

If we are concerned only with those exciton states
that can be excited as a result of an optical transition
from the ground state of the crystal, our study is
greatly simplified as a result of the wave vector selection
rule. ' The wave vector of an absorbed photon must
equal the wave vector of the created exciton. Because
typical optical wave lengths are very large compared
to a lattice constant we can assume for all practical
purposes that k=0. The problem of classifying energy
levels lying at the center (k=0) of the fundamental
Brillouin zone is determined to a large extent by the
symmetry properties of the lattice. " There are many
degeneracies imposed by the symmetry alone. The
classi6cation of the 72 states at k=0 into energy levels
and symmetry types is carried out in Sec. II. A result
is that the 72 states fall into 30 energy levels, each
belonging to one of the 10 symmetry types possible
for a cubic structure.

Since the ground-state wave function of the crystal
is invariant under all of the cubic symmetry operations,
it follows from the general principles of group theory"
that the only energy levels which can be reached by an
allowed electric dipole transition are those which belong
to the same symmetry type as the perturbing Hamil-
tonian responsible for the transition. Only 5 of the 30
energy levels have this appropriate symmetry. Conse-

quently, there will be in general 5 lines in the exciton
multiplet. If the spin-orbit interaction of the electrons
can be neglected, the total spin is a good quantum
number and must be conserved during the transition.
It follows from the analysis in Sec. II that for this

Bouckaert, Smoluchowski, and signer, Phys. Rev. 50, 58
(1936); C. Herring, J. Franklin Inst. 233, 525 (1952)."E. %igner, Gruppentheorie und ihre Anwendung auf die
Quantenmechanik (Vieweg und Sohn, Braunschweig, 1931);B. L.
van der Waerden, Die Gruppentheoretische Methode in der Quanten-
mechanik (Verlag Julius Springer, Berlin, 1932).
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FIG. 2. Optical absorption of NaI, KI, RbI, and CsI,
after Hilsch and Pohl.
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circumstance only two exciton levels can be reached
by an allowed transition. If the spin-orbit interaction
is weak, but not zero, there will be two strong and
three weak transitions. If the spin-orbit interaction is
comparable to other interactions involved, all five
components will be of similar magnitude. These are the
major conclusions of the present work.

For ionic crystals with the CsCl structure the number
of components is changed. Since there are 8 nearest
neighbor metal ions to a given negative ion, there will

be 3)&SX4=96 exciton bands. At k=0 the exciton
states collapse into 40 energy levels, 6 of which can be
reached by allowed transitions. In the case of weak
spin-orbit interaction, there will be 2 strong and 4 weak
components. Compared to the NaCl lattice there is
one extra component.

If one examines the data of Hilsch and Pohp for the
sequence of salts NaI, KI, RbI, and CsI, an obvious
correspondence between three peaks in each of the four
materials is observed (Fig. 2). CsI, the only one having
the CsCl structure, has one extra and relatively strong
peak lying between what otherwise would have been
the 6rst and second peak. Since the spin-orbit splitting
of the iodides is very large, the appearance of an extra
absorption peak of fair magnitude seems to be well
accounted for by the present analysis. However, until
further low-temperature and high-resolution studies are
performed on the bromides and iodides, it would be
best to regard such apparent confirmation as tentative.

It is of interest to consider the interaction of excitons
with lattice phonons. The writer is not aware of any
theoretical study of this subject. It is to be expected
that the primary interaction will be with the optical
modes of the lattice vibration spectrum, as is the case
for electrons" in the conduction band. At first. sight
one may expect the interaction of excitons to be weaker
than that of electrons because the exciton is a neutral
unit and will not feel the electric field arising from the
polarization (longitudinal, optical) waves. This con-
sideration does not apply, however, to transitions be-
tween many of the 72 exciton bands because the
"internal state" of the exciton can be changed in a
way analogous to the change eGected by an electric
dipole transition in an atom. Consequently the lifetime
of an individual exciton state is very likely as short as
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that of a conduction electron state. It is relatively easy
to observe that such is the case. Consider the electro-
static potential V arising from a polarization wave with
wave number q. The direct interaction of an electron
with the potential produces a perturbation energy eV.
An exciton will have associated with it an electric
dipole moment of magnitude ea (where a is the lattice
constant) and will interact with the electric field,
V'V=iqV, so that the matrix element of a transition
will be of magnitude eVqu. Since qu 1 for most
phonons, it follows that the transition probabilities
will be of similar magnitude.

The lifetime of a conduction electron state can be
estimated from the observed mobilities" of electrons in
typical ionic crystals, and is of the order of 10 " to
10 " sec at room temperature. According to the
uncertainty principle, therefore, the energy width of
an exciton state may be a few tenths of an ev, a magni-
tude which agrees with the width of observed funda-
mental absorption peaks at room temperature.

Since the lifetime determined by phonon interactions
will increase with decreasing temperature, the narrow-
ing of the fundamental absorption lines at low temper-
atures, observed by Zollweg4 and others, is to be
expected. For temperatures considerably below the
Debye temperature of the lattice only a temperature
independent, spontaneous emission of optical phonons
can occur, because the optical modes undergo only
their zero-point oscillations at such temperatures. This
fact may account for the observations of Fischer' and
Zollweg, 4 who Gnd that the exciton lines do not continue
to narrow below liquid nitrogen temperature. Since
emission of optical phonons by an exciton is possible
energetically only if there are exciton states or bands
lying lower in energy, one may expect a general trend
(not without exception) for exciton absorption lines of
lower energy (in the same material and rleaslred at
low terlperatlres) to be narrower than those of higher
energy, for the simple reason that a Iow-energy exciton
will have fewer exciton bands lying below it. Such a
trend is apparent in the data of Fischer on KI and
that of Zollweg on BaO.

In the preceding paragraphs we have been speaking
of the lifetime of an individual exciton state and not of
the ultimate life of the electronic excitation as such,
which we shall consider now. To avoid ambiguity we
shall refer to this process in terms of its decay time.
There are many conceivable mechanisms by which
excitons can decay: direct luminescence of a free
exciton, transfer of the excitation to or capture at a
foreign atom with subsequent luminescence or non-
radiative (multiple phonon) decay, capture at a dislo-
cation with subsequent production of lattice vacancies, "

"E.M. Pell, Phys. Rev. 87, 457 (1952); A. G. Redfield, Phys.
Rev. 94, 537 (1954);J. R. Macdonald and J. E. Robinson, Phys.
Rev. 95, 44 (1954).

'~F. Seitz, Revs. Modern Phys. 26, 7 {1954), p. 80; for a
quantitative study of such processes see H. Ruchardt, Z. Physik
f40, 547 (1955).

capture at a negative ion vacancy to produce an Ii
center and a free hole (Dexter and Hellers), capture at
an Ii center to produce a vacancy and a free electron, '
etc. All but the first of the processes just mentioned
require lattice imperfections, and these processes will

probably predominate in even the best crystals avail-
able.

It is of interest, nevertheless, to consider the char-
acteristics to be associated with the direct luminescence
of a free exciton. A newly created exciton will have a
decay time of about 10 ' sec with respect to re-emission
of a photon. However, as has been discussed above,
the exciton will probably undergo phonon-induced
(nonradiative) transitions to other exciton states in
about 10 '4 sec. These latter states will almost invari-
ably fail to satisfy the wave-number selection rule or the
other selection rules (Sec. II) governing allowed optical
transitions. Consequently, in a perfect lattice direct
optical decay must be accompanied by the simultaneous
emission or absorption of one or more phonons. Since
interaction with optical phonons is strong, it is possible
that the decay time associated with such higher order
processes is not many orders of magnitude longer than
10 ' sec.

The energy of the direct luminescence may be con-
siderably lower than the energy of the first fundamental
absorption peak, since the excitation will be degraded
by phonon interactions to within kT of the lowest
exciton state prior to radiative decay. The long-wave-
length tail observed in the fundamental absorption of
many crystals may possibly be attributed to low-lying
exciton bands which can be reached'via optical transi-
tions only with the simultaneous emission or absorption
of phonons. If, however, the lowest exciton band has
its minimum at the center of the Brillouin zone and
can be reached from the ground state by an allowed
optical transition, the direct luminescence will lie near
the edge of the fundamental absorption, and a long-
wavelength tail in the absorption may not occur. Other
mechanisms that might produce a tail in the funda-
mental absorption have been discussed by Seitz'6 with
regard to the silver halides.

It is very unlikely that the strong luminescence
observed in unactivated NaI by Van Sciver and
Hofstadter'~ arises from the decay of free excitons since
the energy of the radiation was about 1.5 ev lower than
that of the fundamental absorption edge whereas the
decay time was only 10 ' sec. If an emission process
characteristic of a pure crystal could occur so rapidly,
a corresponding strong-absorption process having about
the same energy would occur in the fundamental
absorption. For the case of CdS it is also very unlikely
that the edge luminescence observed by Klick" and
others is caused by free exciton decay, an interpretation

"F.Seitz, Revs. Modern Phys. 23, 328 (1951)."%.Van Sciver and R. Hofstadter, Phys. Rev. 97, 1181 {1955)."C. C. Klick, Phys. Rev. 89) 274 (1953)) L. R. Furlong,
Phys. Rev. 95, 1086 (1954).
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which has been suggested by Kroger and Meyer. "The
observed uniform sharpness and sparing of all the
vibrational components of the emission could not occur
if the structure were produced by multiple phonon
induced radiative decay of excitons, since phonons
having all frequencies of the vibration spectrum would
participate. The interpretation of the data proposed
by Furlong" in terms of localized luminescence centers
is probably correct. It seems likely that crystals having
a concentration of one part in Io" or less of active
impurities or other imperfections are necessary if
luminescent decay of free excitons is to. compete
favorably with other processes.

We have described how the first, or primary, exciton
coniguration gives rise to 72 exciton bands. Wannier'
has shown (in his paper establishing effective mass
theory) that an electron and hole in a rigid lattice can
be associated with one another in a way analogous to a
hydrogen atom, or better to positronium. An entire
spectrum of exciton levels results, extending in energy
to a series or "ionization" limit beyond which a free
electron and free hole description is appropriate. The
theory is accurate only for states in which the mean
separation of the electron and hole is large compared
to a lattice constant. Consequently the states described
by the theory will be higher than those of the primary
configuration and will be relatively closely spaced.
When interaction with phonons is considered, these
levels may be expected to be largely obscured by the
broadening resulting from their short. lifetime. The
mean free path of the electron or hole may be small or
comparable to their separation. Under such circum-
stances it is dificult to anticipate the manner and
extent of the manifestation of these levels in optical
absorption spectra. Sharp absorption lines in the funda-
mental region of Cu20 have been attributed to such
levels. "

In the following section we shall analyze and classify
the exciton bands arising from the primary con6gur-
ation. In Sec. III we shall construct wave functions for
the states of the primary exciton multiplet, and in
Sec. IV we shall discuss the Hamiltonian matrix
relevant to this multiplet and the relative"'intensities
of the absorption components.

II. GROUP THEORETIC CLASSIFICATION OF STATES

There are 6ve irreducible representations F;, j= 1 to
5, of the cubic group containing 24 proper rotations.
Following the notation of Bethe,"I'j is the completely
symmetric representation, F2 is the other one-dimen-
sional representation, I'3 is the two-dimensional repre-
sentation, F4 is the three-dimensional representation
having the transformation properties (under proper

"F.A. Kroger and H. J. G. Meyer, Physics 20, 1149 (1954).
"M. Hayashi and K. Katsuki, J. Phys. Soc. Japan 7, 599

(1952); Gross, Zakharchenya, and Reinov, Doklady Akad. Nank
SSSR 90, '745 (1953);92, 265 (1953).

"H. A. Bethe, Ann. Physik 3, 133 (1929).

rotations) of the functions x, y, z, and Fs is the remaining
three-dimensional representation. The decomposition
of the product representations is as follows:

unprimed Xunprimed =unprimed,

primed Xprimed =unprimed,

primed Xunprimed= primed.

(2)

The spherical harmonics .decompose into cubic irre-
ducible representations as follows": s: Fr, p: F4', d:
r,+r„y:r,'+r, '+r, ', etc.

In order to classify the states that will occur in the
primary exciton configuration, consider a hole to be
localized on one Cl ion. The hole states (neglecting
spin) will belong to F4' since they are p states. The
excited electron can be in any of the six nearest neighbor
Na+ 3s states, which we can represent by the symbols
x, x', y, y', s, s', where x and x' are on opposite sides
of the Cl ion, etc. These six states will form a reducible
representation of the cubic group which can be reduced
by inspection. The appropriate basis functions, formed
from linear combinations of the foregoing six states are
as follows:

s= (x+x'+y+y'+z+z')/Q6,
I=Lz+z' ——', (x+x'+y+y') 1/V3,

n= (x+x' —(y+y') 1/2,

p = (x—x')/V2,

v= (y—y')/~
r = (z—z')/V2.

If we wish to Gnd the irreducible representations that

r,xr;=r;,
I'2XI'2= I'&,

I'2X~3= ~3,

I'2XI'4= F5,

I'2X I'g =~4,

FsXrs=rt+Fs+Fs,
FsXI'4= F4+Fs,
rsXrs=r4+rs,
r,xr,=r,+r,+r,+r„
r Xr,=r,+r,+r,+r„
FsXrs= Fr+rs+F4+Fs.

The full cubic group (48 elements) contains 24 addi-
tional symmetry operations (which are the same proper
rotations followed by an inversion) and has ten irre-
ducible representations I';, F, j= 1 to 5. The unprimed
representations have even parity and the primed repre-
sentations have odd parity. As a result of the fact that
the inversion operation commutes with proper rotations,
the above multiplication rules (I) still apply and the
parity can be considered separately as follows:



EXCITONS IN IONI C CRYSTALS 1707

will occur for the total wave functions, formed by
products of the hole state functions and the electron
functions (3) (continuing the neglect of spin), we need
only evaluate the following product using (1) and (2):

r, '&& (r,+r,+r,') =2r, '+r, 'yr, +r,+ r,+r, . (4)

Seven energy levels and six symmetry types occur.
If we consider spin and neglect any spin-orbit

interaction, the spin of the hole and electron will
couple to form either a singlet (5=0) or triplet (S=1)
state. Space wave functions of the symmetry types in
(4) may then be combined with a singlet spin function,
which has 1 & symmetry. The resulting symmetries are
given by

r,'x(r, +r,+r,') xr,
= 2r.'+r, '+ r,+r,+r,+ r, . (s)

If the space wave functions are combined with triplet
spin functions, which have 1'4 symmetry, the resulting
representations are given by

r,'x (r,+r3+r4 ) &(r4=2r '+I'2'+3ra'+3I'4'
+3r,'+r, +r,+2r,+4r,+3r,. (6)

There are a total of 23 triplet energy levels. A spin-orbit
interaction will mix the singlet and triplet energy levels
having the same symmetry. The sum of (5) and (6)
gives a total of 30 energy levels into which the 72
exciton states must collapse as a result of cubic sym-
metry:

2r, '+ r, '+3r, '+ sr, 'y4r, '

+2ry+rg+3ra+sri+4rg. (7)

This classiGcation will apply to the exciton states at
the center of the Brillouin zone." Although the wave
functions will be nonlocalized (see Sec. III), they will

have the same transformation properties under cubic
symmetry operations as the localized functions de-
scribed above.

As a result of the orthogonality of functions belonging
to diferent irreducible representations of a symmetry
group, " it is easy to derive selection rules governing
optical transitions. The integrand of the matrix element
for such a transition contains the ground-state wave
function (r& symmetry), the momentum operator (r&'

symmetry), and the final state wave function. Since
1&)(F4'——F4', only a final state having F4' symmetry
will yield a nonzero matrix element. Only 5 of the 30
energy levels in (7) have this symmetry, so that there
will be just 5 allowed transitions to the excited conigur-
ation. If there is no spin-orbit interaction, total spin
will be conserved during a transition. For this case,
only the singlet energy levels having F4' symmetry can
be excited. There are two such levels in (5).

The Cl ion in the CsC1 lattice has eight nearest
neighbor metal ions located in (1,1,1) type directions.
We shall denote the s-type valence electron wave

functions of the metal ions in each of the eight directions
by the following symbols: (1,1,1):a, (—1, —1, .

—1):a',
(—1,1, —1):b, (1,—1, 1):b', (—1, —1, 1):c, (1, 1, —1):
c', (1, —1, —1):d, (—1, 1, 1):d'. These eight states are
the basis functions of a reducible representation of the
cubic group. The appropriate linear combinations which
form the bases of the reduced representation are as
follows:

p /.

F4 ~

S= (a+a'+b+b'+c+c'+d+d')/+8,
T= (a a'+ b—b'+c—c'+d—d')/+—8,

P= (a+d+ b'+ c' b c—a'—d—')/g—8,

Q = (a+b+c'+d' c d —a'—b—')/g—8,
(8)

R= (a+c+b'+ d' b d—a—' —c')/+—8,

U = (a+d+ a'+ d' b —c —b' c')—/g8—,

V = (a+b+a'+ b' c d —c' —d')—/+8-,
W = (a+c+a'+ c' b d b—' —d')/—Q8—.

2r, '+2r, '+4r, '+ 6r,'+6r, '

+ 2r,+2r,+4r,+6r.+6r, .

We observe that the 96 possible exciton states collapse
into 40 energy levels. The number of times F4' appears
in (11) is six, so there will be six allowed transitions
from the ground state. Since r4' appears twice in (9),
there will be only two allowed transitions in the absence
of spin-orbit interaction.

III. CONSTRUCTION OF WAVE FUNCTIONS

In this section we shall construct the zeroth-order
exciton wave functions having wave number 4=0 and
belonging to the 14' representation of the cubic group.
In order to carry out this construction we must know
how to find a wave function p,~ belonging to r; if it is
formed from product functions g j„and &A,, „' belonging
to I"; and 1 &, respectively. The appropriate relationship
1s

j'ix= Qpv aixjpkvibjvvivkv ~ (12)

The coefficients a;»»„are the cubic symmetry analogs

Following the procedure used above for the NaCl
structure, the symmetries that the space part of the
exciton wave function can have are

r, '&& (r,+r,'+ r,'+r, )
= I','+r, '+2r, '+r '+I',+r,+r +2r . (9)

Combining this set of irreducible representations with
a singlet spin function yields the same set. For a
triplet spin function, one obtains

r.'&& (r,+r,'+r, '+r, )xr, =2r, '+r, '+3r, '

+4r, '+sr, 'yr, + 2r,+3r,+sr,y4r, . (10)

With spin-orbit coupling, the levels in (9) and (10)
which belong to the same representation will be mixed.
Our total list of levels is
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4'45 =4 14@,'; (13a)

rxr:
6=43%';

of the Clebsch-Gordan coeKcients" associated with the
irreducible representations of the rotation group. For
the cubic group, tables of these coefficients can be
constructed most easily by trial and error, especially if
one has Bethe's table of Kubic Harmonics" as a guide.
These coefficients have been determined for all of the
products (1) and yield the following basis functions of
the product representations:

rgXr;:

j 4Xr4'

4'1 (4 4A'4z +$4y4'4y +4'4zat14z )/~~~

/au= ( 4'4A 4z 4'4y4'4y +24 4z4'4z )/Q6y
Pa„= (44A14,

' 44—A4y')/v2,

4'4.= (—4t14 44'+44A4 )l~&

4 4,= (4 4A 4*' 4—4A 4*')/~&,

A.= (-e A, '+e A .')/~,
A (44y41'4* +4'444 )/4/2

fby (zt'4A'4z +4t'4z4'4z )/~y
A.= (AA 4y'+4 aye*')/~2;

r,Xr, :

(13i)

r2Xr3

A =@A.',
A.=434.';

r2X r4'.

45 =4344*',

4'by=4344, ',

fez tt'24'4z

r2Xrs.

(13c)

(13d)

A= (448 5*+41348sy +44z4 sz')/~3,

4a = (44As*' —Ayd sy')/'4,

$3.= (44A 5*'+AyAy' 20 4A—5*')/v'6,

4'4*= (4'4yeez +448'sy )/~&,

p4, = (4485.'+44AS ')/~&,

44.= (44AS.'+44y45*')/~2,

A.= (4 434 e*' 44A sy')/—~~,

A, = ( 44A 5*'+—44A 5*')/~~,

0'ez (4 4A'sy 0'4y4 sz )/~2 i

r5X rs.'

(13')

4x 2 5x )

4'4y =4 34 sy',

4z 2 Sz y

r3Xr3.
A= (4a 43 '+43A3. ')/V2,

ca= ( ~3A3, '+—~3A3.')/~&,

a.= (~.@.'-S A .')/~2,

A.= (-~.~.'-y A .')/~2;

r,Xr, :

a..= ( ~.~.'+~—&~.~ .')!2,
a,=( ~.~,' ~&~A, ')/2,

4'4*=4 3A 4.',

A*= ( ~&~3.~4.' ~3A4.')/2,

oe, = (~&e3.~4.' sa.v4, ')/2, —
4'sz =@3A4.',

r3Xr5..

&4*= (—4343 45.' —HAS*')/2,

6,= Y&~.~,'-~ A.,')/2,

4z 3v Sz y

ps*= (—@3 $5*'+v3$3 $5 )/2,

O,= (—e .~,' —~3~ A.,')/2,

fez= 43Asz';

(13e)

(13f)

(13g)

41 (4'ezra'Sz +4 Syg Sy +4'ezra bz )/~3p

fa = ( ps Qs —
411sypey +—2pszzf1sz )/Q6,

0'az (4t'SA'sz 4'sy4t'sy )/~y
44.= ( 4syd 5'+45Asy')—l~&,

44, = QSAS*' 45AS.')—/~2,

O.= (-~ A .'+~,~.')/~2,

0's.= (4 s 4 '+5&A ')5/~&,

6,= (~.A..'+~ A .')/~~,

4's. = (4 sA sy'+4t1syzt15*')/~~.

(13k)

Ke will also need to know how spin functions are to
be combined with space functions so as to yield wave
functions belonging to irreducible representations of
the cubic group. Since our crystal contains an even
number of electrons, it is not necessary to consider the
double valued representations" of the cubic group. It
is sufhcient to know the linear combinations of spin
functions for a two electron system which are basis
functions of (single valued) representations of the cubic
group. Let n(j) and p(j) be the usual spin-up and
spin-down functions, respectively, associated with elec-
tron j. For a pair of electrons one can construct spin
functions fox which S=O or 1. They are as follows:

5=0, I'1.. 0 = L43(1)P(2)—P(1)a(2))/v2,
~=1, 1":x=L— (1) (2)+P(1)p(2))/~»

(14)
~= t: (1) (2)+P(1)p(2))/~,
~=[ (1)P(2)+P(1) (2))/~.
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0 belongs to r&. It is readily verified that x, p, f trans-
form like x, y, s under proper rotations and belong
therefore to I'4. To observe this fact, one must make
use of the transformation properties of spin functions
under rotation operations. " It should be evident now
that wave functions of the type (14) can be combined
with space functions according to the rules presented
in (13).

We are now prepared to construct approximate
exciton wave functions. It is emphasized that this
construction should be considered in the spirit of the
Heitler-London and molecular orbital approximations
familiar in molecular problems. The resulting functions
can be expected to represent the energy levels only
somewhat crudely. They will, however, provide a
starting point for further refinement.

Let us represent the p-type functions associated with
the outermost shell of the halogen ions by C„C„,and
4,. We shall indicate the particular lattice cell under
consideration by adding a subscript I., and shall indicate
the spin state by the superscript + or —for spin-up
and spin-down, respectively. The wave function repre-
senting the state for which an electron is missing from
the state C,L, , for example, can be written

X +'=$(6X—1)!$ "MX +,

where XL,+ is the simple product function,

Xz+=C"z+(2)C',z+(3)C', z. (4)
X+. +(5)+. (6) rr 3,

I 'QI

Sl. being the product function for a closed-shell con-
figuration on the halogen ion in lattice cell I.'. M is
the antisymmetrization operator. It should be observed
that XI,+' belongs to 1 4' and is an eigenfunction of the
spin operator,

6N

S=g s(i),
2=2

with total spin —, and S,=—,'. Recalling the definitions,
(3) of the excited electron con6gurations and extending
the notation as above to include spin state and lattice
location, it follows from (13a) and (14) that the func-
tion,

Lsr+(1)Xz '—sz (1)Xz+'J/K2,

has total spin 0 and belongs to F4'. If we antisymmetrize
this function and take a linear combination of such
states for all E lattice cells so as to generate a running
wave solution with k=0, we obtain,

4', = $(6$)!g &E '*M p q(sl+Xz sl. XI+)/V2. (16—)

Ke have dropped the prime from the XI. , etc. , since
it is sufhcient to antisymmetrize only once. The wave
function (16) is that of an exciton with k =0 and which
belongs to the x component of I'4'.

In a similar manner we can construct all 72 of the
exciton wave functions for k=0. We shall present only

the 6ve functions belonging to the y component of F4'
which occur for the NaCl lattice. The corresponding x,
y, and s components will be degenerate, of course, and
only one of them is needed for calculating energies and
matrix elements. We have chosen to present the y
components for the trivial reason that they turn out to
be real, whereas the x and s components are sometimes
complex. Each of the Ave functions is labeled by its
parentage, the meaning of which should be clear from
the discussion of Sec. II. Letting $=(6N)! W ~M,
the functions are as follows:

(r,'xr, ~r, ') xr,~r,'
%@=S QL(SL YL —SL YL )/K2 q (17a)

(r,'xra r, ')&&r, r,'.
+„=8 Pz( —V3NI+Xz——~i+XI.——V3mz

—Xz+
—'Vz, Xi, —2'V ZII+2'Vz ZI, )/4. (17e)

These functions are mutually orthogonal and normal-
ized if and only if the atomic p functions on the Cl
ions and the atomic s functions on the Na+ ions are
all mutually orthogonal. Such orthogonality would
never obtain. It may be a fair approximation to consider
the various Na+ 3s functions to be mutually orthogonal
and the various Cl 3p functions also, but there is
certainly considerable overlap between Xa+ 3s functions
and nearest neighbor Cl 3p functions. Only one
overlap integral of this type occurs, namely that
between, say, a C I+ Cl function and the 3s function
on the nearest neighbor Na+ ion in the positive x
direction. If we call this overlap integral y, then a
straightforward calculation (but one involving con-
siderable mental exercise) yields the following matrix
related to the functions (17):

&'i = (+w' +vi)

I—77'
—K2y'

0
0
0

—W2y'

1—Sy'
0
0
0

0
0

1—17''/3
y'/W2

0

0
0

y'/v2
1—16''/3

0

0
0
0
0

1—6y'

(18)

The off-diagonal elements can occur between (17a) and
(17b) because they have the same space symmetry and
spin symmetry, and similarly for (17c) and (17d). All

(r,'&&r, r, ')&&r, r, '.
+y —(8 QL( +L YL ~~ dL YL ++L YL

+&3vz Yz+)/2%2—; (17b)

(r4'xr&~r4') xr4~r4'.
4„=$ Qz, (sl.+Xz +sz Xz—+

+sz+Zz+ sz Zz )/2;—(17c)

(r,'xr, r, ')xr, r, '.
+y @Ql ( +L XL +~~&L XL NL XL

+v3vz XI++2Nz+Zr+ 2el, Zl—, )/4; (17d)
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4„=$Qz(Sz+Yz —Sz, Yz+)/v2;

(r,'xr, r,')xr, r,'.
(19 )

%„=$Qg(Uz+Zz —Uz Zz+

+Wz+Xz —Wz Xz+)/2; (19b)

(r,'&&r, r, ')&&r, r,':
+„=SPz(Sz+Xz +Sz Xz+

+Sz+Zz+ Sz Zz )/2; —(19c)

(r4')(rn-+r4') xr4—+r4'.

+y + QL(VL ZL +WL YL +VL ZL

+Wz, Yz++ Uz+Yz++ Vz+Xr+
—Uz Yz —Vz Xz )/2%2; (19d)

(r.'xr, r~')xr4 r4'..

4„=SQz (Uz+Xz+ Wz+Zz+-

+Uz Xz, Wz, Zz, —)/2i; (19e)

(r4'x reer s') xr4~«'.
=,S QL(VL ZL WL YL +V—L ZL

—Wz Yz+—Uz+Yz++Vz+Xz+

+Uz Yz Vz Xz, )/2+2. (1——9f)—

If the matrix analogous to (18) is computed for these
functions, the only nonzero oG-diagonal elements will

be between (19a) and (19b) and between (19c) and
(19d).

In the foregoing development it appears that we
have failed to treat the excited electron and hole on an
equivalent basis, since prior to Eq. (16) the hole was
localized on a particular ion whereas the electron was
regarded as "revolving" about the hole on the nearest
neighbor ions. We could have proceeded by constructing
wave functions corresponding to the excited electron
being localized on a particular ion and the hole revolving
about it on its nearest neighbor ions. The two pro-
cedures are equivalent, however. The only difference
is that the alternative method would yieM exciton wave
functions that are linear combinations of (17). Since
the linear combinations corresponding to stationary
states of the system must be determined in either ca,se

other oG-diagonal matrix elements are necessarily zero,
as can be shown from the orthogonality theorem. "

The correct zeroth-order exciton functions will be
linear combinations of the five functions (17). The
proper linear combination is determined by a five by
five matrix equation and will be discussed briefIy in
the following section.

For the sake of completeness we shall present also
the six wave functions associated with the y component
of r4' for the CsC1 structure. Using the defnitions,
(8) and (15), and the rules for construction, (13) and
(14), the functions are found to be as follows:

(r,'&&r,~r, ') xr, r, ':

X/=X%', a; =El',a, , (21)

where 8 is the energy of the state whose wave function
is (t. The last equality is only an approximation as a
consequence of the crudeness of our starting wave
functions. The approximation results from the neglect
of other electronic configurations. If one forms the
inner product of Eq. (21) with 4;, the equation becomes,

(K;, Ep;;)(z; =0, — (22)

where X;, are the matrix elements of X in the space
defined by the functions (17) and p;; is the matrix (18).
This is a secular equation of order five, and it will have
five energy eigenvalues E" and five corresponding
eigenvectors (zz". The wave functions (20) determined

by these solutions are presumably the best representa-
tions of the exciton states neglecting configuration
interaction.

The major problem is the determination of the matrix
elements K;;.There are a number of contributions to K
which must be considered, some of which will acct
only the energy location of the entire multiplet and
others which will contribute also to the fine structure
of the multiplet. We shall consider a number of them
briefIy:

(a) Our wave functions have been constructed as
linear combinations of atomic orbitals. Consequently
a contribution to the energy difference between the
ground state and exciton configuration will arise from
the change that would occur if the electron were
transferred from a free CI ion to a remote Na+ ion.
This energy is the electron afFinity of a Cl atom minus
the ionization potential of a Na atom. It should be
appreciated that if overlap between 3p functions on
adjacent Cl ions is neglected and also between 3s
functions on adjacent Na+ ions, this term includes the
entire energy difference arising from the kinetic energy
operator of the system. This term also takes into
account the potential interaction with the Cl core and
the other five 3p electrons when the electron is on the
Cl ion, and it, includes the potential interaction with

by the solution of an eigenvalue equation, there is no
reason to prefer a particular set of basis functions.

IV. THE HAMILTONIAN MATRIX

A primary objective of the theory is the determination
from first principles of the relative positions and
intensities of the absorption lines. Needless to say such
a task is quite difFicult and has not yet been accom-
plished. We shall limit ourselves here to a qualitative
discussion and formulation of the problem.

The zeroth-order wave functions for exciton states
having symmetry corresponding to the y component
of I'4' will be linear combinations of the functions (17):

(20)

The index j is summed. from 1 to 5. If K is the Hamil-
tonian operator of the system, then
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)~p(r) V(r,8,y)d'r. (24)

(The ionic charge of a positive ion is a point charge
located at the nucleus. ) An harmonic expansion of the
charge density associated with a p function contains
only harmonics of order 0 and 2. Furthermore, since
the potential (23) has cubic symmetry, the terms of
the series for which /= 1, 2, 3 are all zero."Consequently
the only nonzero contribution to (24) will be from the
1=0 term of (23). We find the following:

t p(r)V(r, 8,$)d r=~ p(r)Gpp Vppdr= —3II.

If one makes the same analysis for the interaction of
a Na+ 3s state with the ionic potential, one can obtain
a value M only by neglecting the overlap of the 3s
function with the ionic charge on the six nearest neighbor
atoms. This overlap is appreciable, however, and will

give rise to a significant correction. Therefore the
contribution of the ionic field to the exciton energy is
not 2M, but 235—5, where

8= (6e'/R) — I p~(ri)p, (rp)d'rid'rp/rip.

In this expression p„ is the charge density associated
with six 3p electrons on a Cl ion and p, is the charge

"F.C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).

the Na core when the electron is on the Na+ ion. This
energy difference has a magnitude of one or two ev,
and does not contribute to the fine structure of the
multiplet.

(b) The potential energy of an electron at the
center of a Na+ ion arising from all of the other ions
is the Madelung potential, M. The corresponding
potential at the center of a Cl ion is —M. That part
of the energy of an exciton arising from the ionic
potential is at first sight 2M. One must consider the
fact that the electronic states involved are not localized
at the center of the ions concerned and that the ionic
potential is a rapidly varying function of position. The
ionic potential near a Cl ion arising from all other
ions can be expanded in a series,

V(r,8,y) =P i, „ai„Yi„(8,y)r', (23)

where F'i (8,@) are the spherical harmonics. This
expression is valid only at points in space where the
ionic charge density is zero, since it is a solution of
Laplace's equation. The Madelung potential is

M = eaooI"oo.

Since the charge density p(r) associated with a 3p state
of a Cl ion does not overlap the nearest neighbor Na+
nucleus, the potential energy of the charge distribution
1S~

density associated with one 3s electron on a nearest
neighbor Na+ ion, the distance of separation being E.

(c) The atomic orbitals will overlap the nearest
neighbor ion cores to some extent. The interaction of
Cl 3p functions with the outer-shell electrons of Na+
ions provides, for example, the repulsive forces which
prevent the lattice from collapsing. If g is the repulsive
energy of the crystal per molecule, an additional
amount of energy —g/6 is required to remove one
Cl 3p electron from its state. Similarly, an electron in
a Na+ 3s state will experience the overlap potential
with nearest neighbor ion cores. This term will include
the Coulomb interaction with the five 3p electrons on
each of the six neighboring Cl atoms. )The Coulomb
interaction with the sixth electron has already been
considered in (b) above. All exchange interactions
associated with the excited electron will be included
in (e) below. f

(d) Formation of an exciton causes a separation of
electric charge relative to the perfect crystal which will
induce electronic polarization of the surrounding
medium. This polarization energy has been calculated
by Klemm' for the state in which the electron and hole
are localized. Since electronic response is very rapid,
the calculation is probably still valid even if exciton
motion is taken into account. On the other hand, the
response of ionic polarization is suKciently slow com-
pared to the motion of an excitation wave that it
probably does not play an important role. The extent
to which this latter assumption is not valid is an
interesting theoretical question somewhat analogous to
the polaron problem.

The four interactions mentioned so far will contribute
a constant energy Eo to the multiplet and will not
split the levels of the multiplet at k=0. The matrix
K;, associated with these terms will be Sop;;. The two
remaining contributions will determine the 6ne struc-
ture of the multiplet.

(e) With the Coulomb and exchange interaction of
the electron and hole we shall include all other terms of
Coulombic origin which we have not already mentioned.
The only safe way to evaluate these interactions is to
determine the matrix elements of the function,

6N
—', 2 &/rpi, (26)

I8, L~I

between the exciton states (17) and to subtract from
them the expectation value of (26) for the ground state
multiplied by p;;. The physical origin of all terms must
be identified so that those already included in (a), (b),
(c) can be discarded. In addition those Coulomb inte-
grals which will be canceled by interactions of the
electrons with the nuclear charge, Se, on the Cl ions
must be discarded. Since (26) is invariant under cubic
symmetry operations and does not depend on spin
coordinates, it follows that the only nonzero oG-
diagonal elements will be between the states (17a)
and (17b) and between (17c) and (17d).
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e LC,+= —iC„—C

e.LC, = C',—+ iC—„,
o" LC „=iC,++iC

e LC,—= —iC„++C.+.

(27)

If 3'. is the total spin-orbit interaction operator, one
obtains the following for the NaC1 structure:

(f) Finally, we must consider the effect of spin-orbit
interaction on the structure of the multiplet. As a
consequence of the approximations we have made, the
only contribution from the spin-orbit coupling will be
associated with the hole in a Cl 3p state, and will be
related to the spin-orbit splitting of the Cl atom ground-
state configuration. If L and o are the orbital and spin
angular momentum operators, respectively, for a single
electron, the matrix of the total spin-orbit interaction
can be easily evaluated with the help of the following
relations applicable to atomic p states:

e LC +=C, +iC„+,
a LC„+=iC, i—C—.+,

to the same procedures described here for F4' symmetry.
The only diGerence will be that the order of the secular
equation will equal the number of times the symmetry
type under consideration appears in (7). For exciton
states having a wave vector that is not a symmetry
point of the Brillouin zone one will obtain a 72 by 72
secular equation, since such states have no symmetry
properties whatsoever.

The relative intensities of the exciton absorption
components can be computed very easily once the
eigenvectors of (22) are known. The absorption constant
of a cubic crystal is independent of crystal orientation
and the direction of polarization of the light. Consider,
then, light which is incident in the s direction and
which has electric polarization in the y direction. The
matrix element for the transition depends on the overlap
between Cl 3p functions, C„and Na+ 3s functions,
(y), and is proportional to an integral of the type,

(y)p„C.„d~,

.6.

0
0

2v2i
0
0

0
0
0

—V2i
+6i

where the matrix h is

—2v2i 0
0 v2i
—2 0
0 1
0 v3

0
—+6i

0
K3

(28)
where p„ is a momentum operator. Evaluating the
matrix element of the perturbing Hamiltonian (associ-
ated with the incident light) between the ground state
of the crystal and the exciton states (17), one readily
finds that the five matrix elements are proportional to,

1:V2:0:0:0.

Consequently the relative intensity of an absorption
line will be given by

The constant ) is here the magnitude of the spin-orbit
splitting of the halogen atom ground state. If the
spin-orbit coupling is large compared to the splitting
arising from Coulomb and exchange interactions, then
(28) can be used as an approximation for BC,; in (22),
and the solution of the resulting secular equation is
equivalent to the diagonalization of (29). This matrix
has double root, 2X/3, corresponding to a j=—', hole
state and a triple root, —X/3, corresponding to a
j=3/2 hole state.

The energy levels of the other exciton states at 4=0
having diGerent symmetry can be derived according

I=
~
a,yv2a, (' (30)

where ai and a2 are the first two coefficients in (20).
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