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Excitation of Electrons in Metals by Primary Electrons*

E. M. BARooDY
Battelle Memorial Institute, Columbus, Ohio

(Received September 29, 1955)

The excitation of conduction electrons represented by Bloch wave functions through Coulomb interaction
with a medium-fast primary is discussed. It is brought out that when the excitation energy is much smaller
than the primary energy, the probabilities of transitions in which momentum is exchanged with the lattice
(umltlapp processes) are proportional to the corresponding probabilities for excitation by light (as was
shown by Rudberg and Slater), and that the excitation rate varies roughly as the reciprocal of the primary
energy. For cubic metals, the number of transitions per unit primary path with excitation energy in a
differential range near a= hv proves to be a simple factor multiplied by the photoelectric absorbing power
for light of frequency v. Using this relationship, and accepting Butcher s interpretation of their optical
properties, a rather detailed picture is obtained of the umklapp processes which might be of importance
for secondary emission from several alkali metals. The contribution of such transitions appears to be small,
but not entirely negligible, in comparison with what would be expected from a free-electron gas. Some
remarks are made on the possibility that innershell electrons make an important contribution to secondary
emission.

1. INTRODUCTION

HEN an electron with energy in the range
several hundred to several thousand electron

volts traverses a metal, a significant part of the
energy which it loses is transferred to the conduction
electrons. Although numerous papers have appeared
which have a bearing on this process, workers interested
in secondary electron emission long gave special atten-
tion to those of Frohlich' and Wooldridge, ' regarding
the second paper as an extension and correction of the
first. Both authors described the metal electrons by
Bloch wave functions, treated the effect of the primary
by perturbation theory, and placed great emphasis on
those transitions in which the interacting pair of
electrons exchange momentum with the lattice as a
whole. In such transitions, sometimes referred to as
"umklapp processes, " the unreduced wave vector k of
the metal electron may change by a large amount even
though the wave vector change of the primary is
extremely small. The major difference between the
results of the two papers concerned the dependence of
the number of such transitions per unit primary path
upon the primary energy, Wooldridge finding very little
dependence on primary energy for a substantial range
of energies. Actually, this result is a consequence of an
erroneous approximation which was introduced by
Wooldridge. This fact, overlooked for a long time, was
noticed independently by NrarshalP and Baroody in

1952, but no adequate discussion of the point was
published at that time. When the error is corrected,
the status of the umklapp processes is substantially
altered. The transitions per unit primary path are
roughly proportional to the reciprocal of the primary

*This work was supported by the U. S. Army Signal Corps
and the U. S. Air Force.

' H. Frohlich, Ann. Physik 1B, 229 (1932).' D. E. Wooldridge, Phys. Rev. 56, 562 (1939).' J. F. Marshall, Phys. Rev. 88, 416 (1952).' E. M. Baroody, Phys. Rev. 89, 910 (1953).

energy, and the close relationship between excitation
by electrons and by light, which had been obscured
before, becomes prominent. One is, in fact brought
back to earlier results, particularly to those of Rudberg
and Slater' who emphasized that the transition proba-
bilities which they calculated became proportional to
optical transition probabilities when the energy of the
incident electron was large compared to the excitation
energy.

The present paper is mainly devoted to a treatment
of the most probable umklapp processes, including a
calculation of their distribution in energy. The work
was guided in part by discussions of the absorption of
light, particularly those of Fan' and Butcher, ~ and
leads to a relationship which yields considerable infor-
mation about the place of umklapp processes in electron
scattering from experimental data on optical properties.
As derived here, the relationship depends upon the use
of one-electron wave functions of the Bloch form for
the metal electrons, but does not require further
assumptions concerning these wave functions. In an
earlier version of the work, ' essentially the same
relationship was derived using the approximation of
nearly free electrons.

Because of their simplicity, and because their optical
properties are better understood than those of other
metals, the theory is applied to several of the alkalis.
The last section of the paper considers the relative
importance of various types of excitation for secondary
emission. It compares the number of umklapp processes
involving excitation to the second Brillouin zone with
a rough estimate of the number of transitions to the
same energy range which would be expected if the
conduction electrons were completely free, and also
calls attention to the need for more information about
the excitation of innershell electrons.

' E. Rudberg and J. C. Slater, Phys. Rev. 50, 150 (1936).
s H. Y. Fan, Phys. Rev. 68, 43 (1945).
7 P. N. Butcher, Proc. Phys. Soc. (London) A64, 765 (1951).
8 E. M. Baroody, Phys. Rev. 96, 837 (1954).
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Before turning to the calculations, it must be empha-
sized that the paper is limited to the one-electron
approximation in which the incident electron interacts
with individual metal electrons through an unscreened
Coulomb Geld. A clear understanding of the implications
of this type theory appears to be indispensable, even
though an entirely satisfactory treatment may require
taking into account the collective description of electron
interactions which has been developed by Bohm, Pines,
and others. '

2. DEPENDENCE OF EXCITATION RATE UPON THE
MOMENTUM CHANGE OF THE PRIMARY

The excitations to be considered involve the transfer
of a few electron volts to a conduction electron from a
relatively fast primary, and will be regarded as caused
by an unscreened Coulomb interaction between the
two electrons. The initial state of the interacting
electrons may be described by the following wave
function:

exp(iK R)zza(r) exp(zk r)

The first factor is a plane wave, normalized to represent
one incident electron per unit volume, or a current
density 5K/m. The remaining factors constitute lt &(r),
the Bloch wave function for an electron of energy E(k),
and it is understood that this function is also normalized
for unit volume. As a result of the interaction, there is
a certain probability per unit distance along its path
that the incident electron will make a transition to a
new state of wave vector K', lying in the solid angle
dQ', a metal electron simultaneously jumping from k
to k'. The perturbation calculation leading to this
quantity has been summarized by Dekker and van der
Ziel."It will be sufFicient here to state the result:

I'(Kk~K'k')dn'= (4zzz'e'K'/Iz'q'K)
~
I~'dQ' (1)

where" q= K—K' is the change in the wave vector of

9 Understanding of electron interactions in metals has been
greatly enriched by theories which treat the metal as a plasma,
and studies of their bearing on the excitation of valence electrons
by relatively fast incident electrons are of considerable value,
However, the significance of calculations using specific modifica-
tions of the Coulomb interaction is not clear at present. For
example, J. Neufeld and R. H. Ritchie (Phys. Rev. 98, 1632
(1955)j have concluded that a screening formula of the Debye
type is not applicable when the velocity of the incident electron
is large compared to the root mean square velocity of the plasma
electrons, and have questioned the application of a potential of
this type to the excitation of secondary electrons. A similar
objection has been made by H. Frohlich )Proc. Phys. Soc. (Lon-
don) 868, 657 (1955)j, who states that the use of a screening
radius which is independent of energy is wrong for the range
50 ev to 1000 ev.

This work of Frohlich has an important bearing on the present
paper, since, using a quite difterent approach, he also develops a
relation between eÃects produced by primary electrons and by
light. However, the very recent date of Frohlich's paper, and the
number of questions requiring examination, make a discussion of
the connections between the two papers impracticable at this
time.' A. J. Dekker and A. van der Ziel, Phys. Rev. 86, 1'55 (1952).
Van der Ziel has also considered the generalization of Eq. (1)
which applies for a screened Coulomb interaction )Phys. Rev.
92, 35 (1953)j."In references 2 and 3 this vector is denoted by S.

the primary electron, and

I= fata. exp(iq r)dr (2)

lf a (r+G) =Pa (r) exp (ik G), (4)

where G is a lattice vector. Inserting Eq. (4) into Eq.
(2), one obtains the following:

I=Is Po expLi(k k'+—q) Gj.
Here Is is the integral of Eq. (2) extended over the
unit cell at the origin. A nonvanishing transition prob-
ability is obtained only when the terms in the sum
over the lattice points are in phase. That is, one must
have

k'=k+ q+2zrH,

where H is a reciprocal lattice vector. When this
selection rule is satisfied, the sum is just g, the number
of cells per unit volume.

For transitions with H=O (ordinary transitions),
the integral may be obtained at once in either of two
special cases. If the electrons are free, so that fa
=exp(ik r), one obtains I=1 for all values of q. On
the other hand, if the departure of fk(r) from a plane
wave is large, one still obtains I= 1, provided q is small
compared to k. These are, of course, familiar results
and it is well known that they lead to a contribution
to primary energy loss which varies roughly as the
reciprocal of the primary energy.

Transitions with HWO (umklapp processes) arise only
because the functions fa(r) are not plane waves, and
very little is known about l=EIO for general values of
q. In the case of small g, adequate information is not
obtained by simply placing q=o in the integral Io.
Because of the orthogonality of the wave functions,
this would simply give I0=0. However, since the inte-
gral is over a unit cell, one may obtain a useful higher
approximation provided q/2zr is small compared to the
smallest nonvanishing vector of the reciprocal lattice. "
One may then use the approximation exp(iq. r)=1
+iq. r, obtaining the following:

1

It is important to notice that no special assumption
about lf &(r) is required here. The approximation applies

"The conditions under which specific knowledge of Io is
needed only for such small q are discussed after Eq. (14).

The integral is over unit volume and it is understood
that the energy law,

(3)

is satisfied.
Because they are solutions of the Schrodinger equa-

tion for a periodic potential, the wave functions lt a(r)
satisfy the relation
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when the electrons are nearly free, as well as when they
are tightly bound.

When Eq. (7) is used in Eq. (1), one obtains a
transition probability per unit solid angle which is
proportional to q ', whereas the Wooldridge method led
to q-4. A brief comment on the source of this discrepancy
will suf5ce, since this aspect of the problem was empha-
sized by Marshall. Kooldridge expressed the factor
N~(r) of the Bloch wave function as a Fourier expansion
with coefficients a (k), where (for a cubic crystal) m is
a vector whose components are integers. He then
obtained a transition probability proportional to q-4

multiplied by the square of a double sum involving
products of the type a (k)a,*(k'). In dealing with the
sum, he considered only a few terms and gave no
emphasis to the dependence of the coefficients u, (k')
on k' and therefore on q. When one proceeds in this
way, it is easy to overlook. the consequences of the
orthogonality of the wave functions, and treat the sum
as though it approaches a 6nite limit as q approaches
zero. Finally, it should be noticed that the distinction
between the cases H=O and HAO which appeared
above is not that suggested by Marshall in the next to
last paragraph of reference 3. One may be interested
in q near zero in either case, but is led to an integral
of the product of orthogonal functions only in the
second case.

3. VARIATION OF EXCITATION RATE WITH
PRIMARY ENERGY

We next consider the integral of Eq. (1) over solid
angle for the case HWO. Letting 8 denote the angle
between K' and K, one has

q' —(K K')'= 2—KK'(1 cos8) =K—'8' (8)

where the approximation holds for the numerous colli-
sions in which 0 is very small. On the other hand, from
Eq. (3) one may obtain

From Eq. (12) one sees that there will be a range of

q to which Eq. (14) applies, provided

E~&)&0.26'/~II.

For the small H which are of interest here, ~H 1 A ',
and (as will be discussed later) the bulk of the transi-
tions correspond to ~&10 ev. Thus, for E„&500 ev,
Eq. (14) may be applied when q is near its minimum.
Although little is known about IQ when q is not small,
it presumably reaches a maximum for q ~II (q; K)&.

Thus, a reasonable approximation to the integral over
angle may be obtained by using Eq. (14) up to q= (q;„K)&, and neglecting the small contributions from
larger values of q. In this way one 6nds

This evaluation is quite rough, but gives an essentially
correct view of the dependence upon primary energy,
and shows that the number of transitions per unit
primary path varies approximately as the reciprocal of
the primary energy. This result may be contrasted
with that which would follow if it were true that IQ

approached a nonzero value as q approached zero. In
that case I'

j IO i'q 'dq would have been proportional to
q;„', or proportional to E„.The transition rate would
then have been independent of the primary energy, as
was found by Wooldridge.

4, DETAILED CALCULATION OF THE EXCITATION
RATE

In this section, the transitions with HWO will be
considered in more detail, an expression Q(e) being
derived which is defined so that Q(e)de is the number
of transitions with excitation energy in the range de
near e. For this study it is convenient to postpone the
assumption that q is small, and begin with

(K K') = (nze/Kh—') (1+g)=Ke/2E„

where E„=li'K2/2m is the primary energy,

(9)
Io= ~fifi, *exp(iil r)dr, (17)

e= E(k+2m. H) —E(k), (10)

and g, which is of the order q/mH, is neglected in the
6nal expression. Thus, to the same approximation as
Eq. (7), one has

where

Ai
Io I (d——ivj) exp(iq r)dr,

E(k') —E(k) ~
(18)

where k'=k+i1+2mH, and integration is over a unit
cell. Since Pq and Pq are solutions of the same wave
equation, Eq. (17) may be transformed to

q;„=(me'/2E, h') &=0.26'/E„&, (12) where

j= (I'i/2tni) (Pi, *gradfq —P~ grad/~ *). (19)energies being in electron volts and distances in ang-
stroms. Using Eq. (11), one obtains the following
approximation for the element of solid angle:

Then, having in mind that the vector j exp(iq r) has
the exact periodicity of the lattice, one may obtain the
following:

Aq
IQ= 'j exp(iq r)dr.

E(k') —E(k) &
(20)

do'= qdq~/K'. (13)

Using Eqs. (13) and (7) in Eq. (1), one finds

I'do'
( I, t 'dq/E, q 'dq/E„q (14).
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EdQ'= (2fPe'/mEnes) I
q' A I

'q sdq~ (22)

For small q, this reduces to

I,= (k'/gems) q A(H, k), (21)

where A(H, k) is the coeKcient of exp(2~iH r) in the
Fourier expansion of the function Ni,+2 H* gradli„and
e is the excitation energy as given in Eq. (10).

Using Eqs. (1), (13), and (21), one obtains the
following:

the corresponding point for optical excitation was
emphasized by Butcher.

S. RELATIONSHIP TO PHOTOELECTRIC ABSORPTION

Equation (20) of Butcher's paper gives his result for
the photoelectric contribution to the absorbing power'4
of a cubic metal. When written in our notation, and
restricted to transitions to the second Brillouin zone of
a body-centered cubic metal, this equation becomes

This expression refers to the probability of excitation
of a single metal electron from k to k+2pxH. For the
required summation over initial states, one may intro-
duce the volume element

e'hs t IAI'dS
t7~ M

px'm'~"
I
grad~el

On combining Eqs. (27) and (28), one obtains

(28)

dk =dSd e/ I grad~e I, (23) Q(e) = (2e' m/AE~ e) ln(2E„/e)o. „(cp), (29)

where dS is an element of area in a surface of constant
e. On introducing the density of states in k-space, one
then has the following contribution to Q(e):

is'e' q lq AI'dSdq~

E2pxsmE, e')
I gradate I

q'
(24)

We next consider the summation over H, confining
attention to cubic metals, since results for these are
essentially simpler than for metals of lower symmetry.
Moreover, we will make explicit statements for the
body-centered cubic case, which is of immediate inter-
est, and only indicate the minor changes which are
required to cover the face-centered case. The first set
of reciprocal lattice vectors corresponding to non-
vanishing values of A are given by H=n/a, where a is
the lattice constant, and n is one of the twelve vectors
with integer components for which e'=2. One way of
carrying out the summation over these vectors is
suggested by Butcher's treatment of the, corresponding
point in his work on photoelectric absorption. " It
becomes apparent that P is equivalent to 4xg~, where
R represents one of the 48 operations of the cubic group.
Also, for any pair of vectors, such as q and A,

pal q RAI'=16qsl AI' (25)

Summing Eq. (24) over H with these results in mind,
one finds

( 2A'e'
y IAI'dSdqdg

E~'mE„e')
I
grad, el q

Integration then yields

2A'e4 (2E~) t.
I
Al'dS

Q(e) = ln
~smE„es E ~ & ~ Igrad, el

(26)

(27)

One notices that there is no dependence of Q(e) upon
the orientation of the crystal with respect to the
primary beam. This point appears to have been missed
in previous treatments of the scattering problem, but

'P See especially Eqs. (2), (3), and (5), and Sec. 4 of reference I.

where cp= e/A. This equation applies to all cubic metals.
For the face-centered case the first set of reciprocal
lattice vectors are the eight for which e'=3. To be
applicable to these transitions, Eqs. (27) and (28)
would have to be modified by the introduction of an
additional factor ss on the right, while Eq. (29) would
remain unchanged.

6. APPLICATION TO SEVERAL ALKALI METALS

For sodium, potassium, and rubidium, Butcher has
shown that the optical data of Ives and Briggs for the
visible and near ultraviolet spectrum may be ade-
quately interpreted by ascribing most, of the absorption
to photoelectric excitation of conduction electrons
which are nearly free." Butcher's expression for the
photoelectric absorbing power, given in Eq. (26) of
reference 7, is

o.,(~)= (v2mae /4~'ke)
I y~s I s(~—~p) (ppx

—o)o-s. (30)

Inserting this into our Eq. (29) yields

Q(e) = (m'ae'/v2xx k'En)
I
1'„sI'

)(ln(2E&/e) (e—ep) (ex—e)e (31).
In these equations,

I V~sl is the Fourier coefficient of
the lattice potential for n=v2, while ep

—Pi~p and-
&~=M~, are minimum and maximum values of the
excitation energy. When the free-electron equation for
energy is used, these limiting energies are given by
(4e-sk'/ma')(1Wy), where y=kpa/prv2, kp being the
radius of the Fermi sphere. For an electron density
2/a' (that is, one electron per atom) kpa= (6r')i, and
p= 0.8773. This corresponds to ep= 0.64Ep and
=9.76Ep, where Ep ——k'kp'/2m is the maximum Fermi
energy.

In accounting for the observed optical data for each

'4 The absorbing power is so defined that multiplication by the
mean square electric 6eld gives the mean rate of absorption of
electromagnetic energy per unit volume.

"For cesium, the nearly free electron model was not satis-
factory. This has no bearing on the applicability of Eq. (29),
but does mean that cesium is a less convenient metal to use in
illustrating the theory than are the metals considered.
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of the three alkalis, Butcher had only the parameter

I V~sl at his disposal. The required values proved to
be 0.323 ev (Na), 0.305 ev (K), and 0.350 ev (Rb),
which are quite reasonable. In the case of sodium,
Howarth and Jones" have remarked that their theo-
retical value for the energy gap at the center of a face
of the Brillouin zone (0.65 ev) is just twice Butcher' s
value of I V~sl, as it should be in the approximation.
of nearly free electrons.

In view of Butcher's success with Eq. (30) for o „(tp),
it is reasonable to give serious attention to the impli-
cations of the corresponding expression for Q(e). Turn-
ing to Eq. (31), one notices that the logarithmic factor
varies relatively slowly with ~, while the product of the
remaining factors varies rapidly and has a maximum
at &=1.3eo. Accordingly, no significant error is made if
e is replaced by eo in the logarithm. For the total
number of umklapp processes per unit primary path
which leave the excited electron in the second Brillouin
zone, one then obtains

dX t
" pV2nPase4) apl V~sls /2E~)

I (32)
dX &.p (6 4' PE) (1—y')' & ep 4

YVhen numerical values are inserted and the logarithm
converted to the base 10, Eq. (32) becomes

dlV, /dX=0. 033a'I U~sl'Er 'log(2E„/ep), (33)
where energies are in electron volts and lengths in
angstroms. Taking rubidium, with a= 5.62 A and

I V~s
I
=0.350 ev, as an example, one obtains

dE./dX= (0.72/E~) log(1.7E~). (34)

For E„=500 ev, this gives an excitation rate of 4.2 per
1000 A. For sodium and potassium, the excitation rates
are somewhat smaller, being 1.5 and 2.7 per 1000A,
respectively, at the same primary energy.

The distribution in energy of the transitions is
determined by the function

(35)

The rise from the threshold at ~0 is rapid, the maximum
of the distribution being reached at 1.3ep, and 80%
of all transitions falling below &=3&0. The average
excitation energy turns out to be 2.35&0, which is sub-
stantially smaller than some of the rough estimates
which have been made in the past. For rubidium,
co=1.17 ev, and the corresponding rate of energy loss
for a 500-ev primary is only 12 ev per 1000 A. In order
of magnitude, this is probably 10'%%u& of the contribution
of the conduction electrons to the energy loss, and one
percent of the total energy loss.

V. IMPORTANCE OF VARIOUS TYPES OF EXCITATION
FOR SECONDARY EMISSION

The results presented above indicate that for the
alkalis the umklapp processes are of no importance for

'P D. J. Howarth and H. Jones, Proc. Phys. Soc. (London) A65,
355 (1952).

112+Is (K K&)2 q2+12 (q K&)2 (37)

Now, because of the momentum and energy laws,
q. K'=q k. Hence, if the angle between K' and K is
again denoted by 8, Eq. (37) implies

E' sin'8= q' —(q k/E')s. (38)

This is an exact relationship which is simplified when
the primary energy is much larger than the energy of
the metal electrons and the excitation energy. One may
then neglect the last term on the right, and obtain
the approximation EO= q which corresponds to

dQ'= 2wqdq/E'. (39)

Inserting Eq. (39) into Eq. (36), and also introducing
the primary energy, one has

PdQ'= (4rrme'/O'E„) q 'dq. (40)

This equation gives the diGerential cross section for
scattering involving a momentum transfer in the range
Mq near kq, and can, of course, be obtained by classical
methods. In fact, the classical approach to the problem
formed the basis of the author's 1950paper on secondary
emission, "and Eq. (4) of that paper differs from Eq.
(40) above only in notation.

"E.M. Baroody, Phys. Rev. 78, 78Q (195Q).More recent studies
of secondary emission theory which treat the conduction electrons
as free have been made by P. A. Wolff [Phys. Rev. 95, 56 (1954)P
and W. Brauer (O. Hachenberg and W. Brauer, Fortschr. Physik
1, 439 (1954)g. However, these authors deal mainly with such

primary energy loss, and suggest that they are of minor
importance for secondary electron emission. For ex-
ample, in rubidium a 500-ev primary might have a
range of about 100 A, and cause two or three umklapp
processes. Keeping in mind that only a fraction of the
excited electrons start out in a favorable direction and
with sufhcient energy for emission, and that they are
likely to lose most of their energy in a distance sub-
stantially smaller than the primary range, it would
appear optimistic to expect an emission of the order of
0.1 secondary per primary from this source. On the
other hand, the measured emission coefficient for
rubidium at the assumed primary energy has been
reported to be about 0.9.

In spite of the above remarks, one would not be
justified in neglecting the umklapp processes in treating
secondary emission from the alkalis unless other
processes had been shown to be much more productive.
Thus, further information concerning transitions with
H=O is important. In order to reach rough estimates
one may ignore the periodic field in the metal and
treat the conduction electrons as though they were
completely free. In view of the remarks following
Eq. (6) one may then place I= 1 in Eq. (1), obtaining

Pd Q' = (4m'e4E'/54q'K) dQ' (36)

To arrive at a suitable approximation for dQ', consider
the following equation, which may easily be verified
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3.0Ep'/Eo (p' —1) (43)

energies being in electron volts and distances in ang-
stroms. On the other hand, if energies are estimated
using the free-electron formula, the lowest state in the
second Brillouin zone of the body-centered cubic metals
falls at 1.30EO. Thus, a rough estimate of the number
of collisions with 8=0 per unit primary path in which

the metal electron receives at least enough energy to
reach the second Brillouin zone is 10Ep~/Eo. For Eo
=500 ev, this gives 35, 28, and 27 excitations per
1000 A for sodium, potassium, and rubidium, respec-
tively. These numbers are substantially larger than the
corresponding results for 8&0, but the difference is
not great enough to justify neglecting the umklapp
processes. Another important point must also be
mentioned. The estimates of the total production of
secondaries by collisions of both types are somewhat

processes as the diffusion, slowing down, and multiplication of
the internal secondaries, rather than with the questions which
are of principal concern in the present paper.

' See page 758 of reference 10. Their dehnition of 8 is not the
same as that used here and appears to be the source of the difter-
ence discussed in the foregoing.

It is important to recognize that the approximatioris
leading to Eq. (40) depend only on Ebei'ng large
compared to k and k'. The assumption k«k' was not
introduced here, or in the 1950 paper. One may then
ask why our result differs from that of Dekker and
van der Ziel" except in the limiting case k=0. In our
judgment, the disagreement arises because Dekker and
van der Ziel use an expression for dQ' which is correct
only for k«k'. To make this clear, one may introduce
q'=k" —2k q —ks into Eq. (38), obtaining

E' sin 0=k"—2k q
—k' —(q k/K')'. (41)

For a fast primary and k(&k', Eq. (41) reduces to
Eg= k' which yields

dQ'= 2ork'dk'/E'. (42)

This is the result of Dekker and van der Ziel, and it is
evidently less general than Eq. (39).

In reference 17, the production of secondaries per
unit primary path with final energy exceeding p Ep
was found to be

lower than would appear to be required by experi-
mental emission coefficients. Since this statement is
not the result of a complete analysis of the emission
process, it should not be taken too seriously. However,
it is a reminder that there may be important contri-
butions from innershell electrons. In rubidium, for
example, the ionization potential for the six 4p electrons
of the free atom is 20 volts. Thus, the corresponding
energy band in the solid is not so far below the con-
duction band and may make a significant contribution
to secondary emission caused by a 500-ev primary.

In an eGort to reach some conclusions concerning
the inner electrons, one may use the approximate cross
section for ionization of a free atom by loss of an
electron from the shell nl, which was originally derived
by Bethe':

e'c qZ„q (4E )
C„,=

" "in(
JE„,[E, (C„,&

(44)

In this equation, Z„& is the number of electrons in the
shell, (E„~~ is its ionization potential, and C ~ jE ~(.
The coefficients c„&were listed by Bethe and range from
0.05 to 0.3. To apply Eq. (44) here, one may multiply
by the density of atoms in the solid, take Co&= jEoi~,
and sum over all shells for which ~E ~~ (E„=500ev.
In this way, one obtains 3.3, 5.0, and 3.6 ionization
per 1000 A in sodium, potassium, and rubidium respec-
tively. These numbers, being rough indications at best,
and having turned out neither very large nor very
small, do not permit a conclusion concerning the
importance of the inner shells. However, they suggest
that the inner electrons are important and should be
considered in theories of secondary emission.
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