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Equation
number
(DC55)

0—1
1-1
2—1
3-1
4—1
5—2
6-3

Direct value

0.00&3.00
3.50+3.78
4.00+0.45—2.30+2.29

11.10&1.31
13.50&1.10—5.60+8.16

Indirect value

2.45%1.53
3.19+8.66
0.76m 2.83—1.77&1.86

12.08+2.24
12.47&2.32
8.30+1.48

indicates to what extent the output value of a given
function is determined by the indirect implications of
that other data.

The direct input values and the indirect least squares
values are presented in Table IX. From this table we
see for example that the indirect value of 0-1 (the
conversion factor from x-units to milliangstroms) is
somewhat more accurate than the direct value. On the
other hand item 1—1 (the Siegbahn-Avogadro number,
E,'=Eh') is given .much more accurately by the direct

TABLE G. Direct and indirect values. Each indirect value is the
result of a least-squares solution from which the direct measure-
ment has been omitted and hence represents the value of the
quantity which may be inferred from the totality of other
measurements.

data than by the indirect. That this was so has been
established previously in more cumbersome ways. 4

The directly measured value of item 2—1 (fine-
structure splitting in deuterium) is more than six times
as accurate, giving it almost forty times as much weight,
as the indirect value. This demonstrates forcibly how
important Dayho8, Triebwasser, and Lamb's measure-
ment of the fine-structure constant is in providing a
crucial datum for the values of the atomic constants.
On the other hand, the situation is reversed with respect
to the h/e determinations, (6—3); in this case the indirect
value is much more accurate than the direct measure-
ment. If the direct measurement were omitted from
the analysis, the weight assignable to the value of )'s/e

would be changed only slightly and the output value
would be altered by less than half the probable error.
The need for further measurements of the short-
wavelength limit of the continuous x-ray spectrum has
of course been previously emphasized. "

4 J. W. M. DuMond and E. R. Cohen, Phys. Rev. 94, 1790
(1954); E. R. Cohen and J. W. M. DuMond, Phys. Rev. 98, 1128
(1955).

~ J. A. Bearden and J. S. Thomsen, "A Survey of Atomic
Constants, " The Johns Hopkins University, Baltimore, 1955
(unpublished).
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A theoretical calculation of the magnetic field dependence of
the elements of the conductivity tensor has been performed for a
crystal with a general electronic energy band structure. It was
assumed that the Boltzmann equation is valid, and that an energy-
dependent relaxation time exists. The results are the same as would
be given by a superposition of electron gases, whose cyclotron
frequencies are related harmonically. The strengths of the har-

monies depend upon the energy band structure; in particular,
there are certain relations among them which are required by
symmetry. The diagonal elements of the conductivity tensor are
found to be monotonically decreasing functions of the magnetic
field strength. Extension of the calculation to alternating electric
fields reveals harmonics in the cyclotron resonance.

I. INTRODUCTION

'UTIL recently, calculations of the magnetic Geld

dependence of the Hall eGect and magnetore-
sistivity have been confined to materials with simple
ellipsoidal band structures. ' For general band structures,
the limiting cases of very weak Gelds' and very strong
fields' have been studied. Zeiger has reported a calcula-
tion based on a particular (nonellipsoidal) model for the
band structure of p-type germanium. ' This paper con-

*Permanent address: Department of Physics, University of
Oregon, Eugene, Oregon.' See, for instance, H. Jones, Proc. Roy. Soc. (London) A155, 653
(1936);B. Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954);and
M. Shibuya, Phys. Rev. 95, 1385 (1954).

'H. Jones and C. Zener, Proc. Roy. Soc. (London) A145, 268
(1934}.' J. A. Swanson, Ph'ys. Rev. 98, 1534 (1955); 99, 1799 (1955).

4 H. J. Zeiger, Phys. Rev. 98, 1560 (1955).

sists of a calculation which applies, under restrictions
which are discussed below, at all field strengths to
general band structures. We show that certain new
features found by Zeiger are to be expected in general.

In materials which contain more than one type of
carrier, the Geld dependence of the Hall effect and
magnetoresistivity may be used to separate the eGects
of the difterent carriers, and to obtain concentrations
and mobilities for each type. Such analyses have been
carried out for p-type germanium, in which the two
carriers are light and heavy holes. ~ The separation was
accomplished by fitting the experimental data to theo-
retical formulas derived on the basis of spherical energy
surfaces. To make a similar analysis on a material with

' Willardson, Harmon, and Beer, Phys. Rev. 96, 1512 (1954).
'Adams, Davis, and Goldberg, Phys. Rev. 99, 625 (1955).
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a more complicated band structure (or to correct the
germanium analysis), it is necessary to know the general
form of the Hall effect and magnetoresistivity as func-
tions of magnetic Geld strength for a general band
structure. A desire to carry out such a program for
graphite' was the principle motivation of the present
work.

We discuss here only the magnetoconductuctivity
tensor, as the components of this tensor are simpler
theoretically than the measured quantities. The mag-
netoresistance and Hall constant can easily be deduced
from the conductivity tensor and vice versa.

2. GENERAL FORM OF THE MAGNETO-
CONDUCTIVITY TENSOR

We now present the solution of the transport equation
and obtain a form for the Geld dependence of the
conductivity tensor. The Boltzmann equation in the
presence of uniform electric and magnetic fields, and
assuming the existence of a relaxation time, is

(e/A)$8+vXH/cf V/, f+.(fo f)/r=—0, (2 1)

where the notation is the same as in Wilson's book.
The general solution of this equation has been given by
Shockley' and by Wilson. "We Gnd it useful to present
the solution here, using a diferent notation.

First, let us follow Wilson and write the distribution
function as

f= fo 4Bfo/BE, — (2.2)

where @ is a function which is proportional to the electric
Geld strength. "The Boltzmann equation now becomes
to first order in 8,

—(e/Ac)vXH ~/P+g/r+eS v=0. (2.3)

' The field dependence of the Hall effect and magnetoresistance
in graphite at low temperatures is remarkable, see G. H. Kinchin,
Proc. Roy. Soc. (London) A217, 9 (1953).

8A. H. Wilson, The Theory of MeteLs (The University Press,
Cambridge, 1953), second edition, p. 196.' W. Shocirley, Phys. Rev. 79, 191 (1950).There is a misprint in
his Eq. (4). The lower limit of the second integral should read 8
instead of 0.

"Reference 8, p. 224."It is clearly sufIicient to solve Eq. (2.1) to Grst order in the
electric field, as such a solution gives a current proportional to the
electric field (i.e., Ohm's law is obeyed).

In obtaining (2.3), use has been made of the fact that
(1/is) V/, E=v, and that the operator (v XH) V'o applied
to a function of energy alone gives zero.

The first term in (2.3) is the derivative along a path in
k space (called the hodograph) which is formed by the
intersection of a plane perpendicular to the magnetic
field with a constant energy surface (see Fig. 1). To
describe the position along the hodograph, it is con-
venient to introduce a new variable s, such that Bk/Bs
= —(e/Ac)vXH. Thus, s(k) represents the time at
which an electron, precessing around the hodograph
when there is. no electric field, would be at the point k.

FIG. 1. Illustration of a hodograph in the k k„plane. The case
shown is for E increasing away from the origin, so that the
representative point precesses around the hodograph in the
positive direction.

In terms of the new variable, (2.3) becomes

B$/Bs+$/r+e8 v=0. (2.4)

r 2/ = tA/ep}gdk/v„, = (2.6)

where the integration is around the hodograph, dk is an
element of arc length on the hodograph, and v„ is the
component of the velocity perpendicular to the magnetic
Geld.

We now make the assumption that the relaxation
time is constant on the hodograph, "and make use of the
periodicity in s to write v as a Fourier series,

v= Q v(m) exp/imo~sj, (2.7)

where the reality of v requires that v( —m)=v*(m).
Substituting (2.7) into (2.5) and remembering that we
are now assuming that 7- is independent of s, we find

e8 v(m) expr imcos)/(1+imros). (2.8)

We now have two tasks: to compute the current with
the distribution function associated with (2.8) and to

"Though the integral can still be performed for a general relax-
ation time, the dependence of the result upon the magnetic Geld is
not the same. Thus, success in explaining the experimental results
with the simple form found in this section may be evidence that
the relaxation time is constant on the hodograph.

Equation (2.4) is a 6rst-order linear differential
equation in one variable and is easily solved. The
general solution is

p8 8

ds'e8 v(s') exp — ' ds"/r(s"), (2.5)
8'

where r is a constant which is determined by the
boundary condition. The condition on g is that it must
be a single-valued function of k; which means that it
must be a periodic function of s, with a period equal to
the time (T) for the particle to go completely around the
hodograph once. It is obvious that v and 7 are also
periodic in s with the same period. Application of the
periodicity to (2.5) yields the result that r= —~.

The time 7 and the angular frequency (cyclotron
frequency) associated with it are given by
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6nd the coeKcients v(m) which appear in (2.'/). We
proceed first to the calculation of the current.

The current due to a single band is given by the
familiar expression

j=L
—e/(2~)q d'Svf = L

—e/(2~)']

X t d'hvar( 8fp/—8F), (2.9)

where the integration is over the basic Brillouin zone.
The total current density is given by the sum of
contributions like (2.9) from each band. In expression
(2.9), we may replace the integrand at any point in k

space with the average over the hodograph which passes
through the point. Such rewriting does not change the
value of the integral as integration over the Brillouin
zone includes integration around each'hodograph. The
current may then be'written

where
j=fe2/(2v')'3 ' d'0( afolaE)&M (2 10a)

M = —( /2 e )fdsyv. (2.10b)

The integral in (2.10b) is over one period.
Substituting expression (2.8) for P into (2.10b), and

using the orthogonality of the functions exp(i~s], we
obtain

M=+ LS v(m) jv(—m)/(1+imcor). (2.11)

Expression (2.11), when substituted into (2.10a), will

give the current and thus allow us to calculate the
conductivity.

Let us erst de6ne a tensor S such that M = S 8. We
shall choose the magnetic field to be parallel to the s
axis and examine the components of S (each of which

gives rise to a corresponding component in the con-
ductivity tensor). The easiest component to discuss is
S which ls

(
v.(m) j' 2 [ v, (m) i'

S„= Q = P — . (2.12)
1+irmr =i 1+(m(or)2

In writing (2.12), we have used the reality condition,
and the fact that v, (0)=0." It is seen that S„is a
positive, monotonically decreasing function of the mag-
netic field (all dependence upon the magnetic field

strength is contained in the cyclotron frequency co,

which is linear in the magnetic Geld).
The expressions for the other components of S are

given by

v. (m)v„(—m)+v. (—m) v„(m)
S,„=

m=1 1+(mco7)'

i V —nS V„m —e m n~ —m nuo7-

+ — (2.13)
1+(mcus)' I

"This result, which is proved in Appendix A, means that. the
orbits of electrons, in the absence of an electric field, do not drift in
a direction perpendicular to the magnetic field.

2I v, (m) ('
S.,= v,'(0)+ P

~=& 1+(m(or) ~
(2.14)

The expression for S» is similar to that for S, and
those for S„and S„,are similar to that for S,„(with the
important difference that the relations among the
Fourier coeKcients of the velocities are different). The
components of S obey the general symmetry require-
ment that S;;(H) =5;;(—H)."Note that S„is the only
component which approaches a finite limit as the
magnetic field becomes infinite. The first term in S,„
remains finite when the magnetic field is zero. If such a
term is nonzero, it means that the zero magnetic-field
conductivity is anisotropic. The term will be zero if the
hodograph possesses sufhcient symmetry. The second
term in S,„,which is odd in the magnetic field strength,
is responsible for the normal Hall effect.

To find the conductivity, we must integrate S over
the zone, obtaining

0=(e/(2v) j ~d k( —Bfg/BE)7S. (2.15)

If one considers a case in which degenerate statistics
apply, the quantity Bfo/BE is appreciable only for
values of E near the Fermi energy. In that case, e may
be expressed as an integral over the Fermi surface. In
the fortunate case that cur is constant over the Fermi
surface, the form of o would be the same as that of S. If
the variation of co~ over the Fermi surface were small, e
could be approximated by an expression of the same
form, using appropriate average values of coT. If
Boltzmann statistics were applicable, the variation
would probably be greater, as the conductivity will be a
combination of S's corresponding to diferent energies.

' M. Kohler, Ann. Phys. (5), 40, 601 (1941)."If the relaxation time is a function of energy alone, then the
variation of car. over the Fermi surface is due to that of ~.

3. AMPLITUDES OF THE HARMONICS

We shall begin our discussion of the Fourier coef6-
cients using cylindrical coordinates in k-space, and then
transform to the variable s. Let 8 be the azimuthal angle
about the s-axis (9=0 being the direction of the x-axis)
and let p be the distance in k-space from the s-axis. A
given hodograph can be described by k, =constant,
p=p(8). We may write the energy in a Fourier series,

E=Q„E„(p,k,) expLi&), (3.1)

where the reality of E requires that E =E„*.Other
restrictions on the E„'s may result from symmetry
requirements. If the k,k, plane is a mirror plane, then
E„ is real. If the symmetry operations include a p fold-
rotation about the s-axis, then E„is zero unless m is an
integral multiple of p.

The components of the velocity are found by taking
appropriate gradients of the energy,
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Second, if the hodograph is simply connected and is
invariant under threefold rotation about the s-axis [as in
Fig. 2(b)], we have

cvr82(0) 2(ur82( —3)

1+((ur) 1+(2orr) 2

4(or 8'(3)
+ . (3.8a)

1+(4~r)'
FIG. 2. Possible forms for hodographs.

v, = (1/A)g„[E„' cos8—(I/p)E„si 8n] exp[ie8), (3.2a)
In this same case, S, can be written

v„= (1/A) P [E„'sine+ (e/p) E„cos8]exp[in8), (3.2b)

where the prime denotes the derivative with respect to
p. We rewrite these expressions as follows:

8'(0) 8'(—3) 8'(3)
5, = + + + .. (3.8b)

1+(cur)' 1+(2~r)' 1+(4a&r) '

"=(1/~~) (g+g*),

v.= (i/~2) (g—g*),

(3.3a) Note that the third-order harmonics are missing in both
expressions, and that the neth order term in 5 „is equal
to the mth order term in S times &mar (signs
alternating) "

We next consider another possible band structure
with threefold symmetry; one composed of three
hodographs, each with mirror symmetry, arranged as
shown in Fig. 2 (c).We may, in this case, take S to be the
average of the contributions from each hodograph. We
then 6nd

(3.3b)
where

g=g„(1/v2A)[E ' —(n/p)E ]exp[i(v+1)8]. (3.3c)

We need to write v, and ~„as functions of s. To do this,
we must take the p, which appears in (3.3c) (both
explicitly and as the argument of E„) to be a periodic
function of 0, and take 8 to be a function of s (H=cos
+periodic function of s). If this were done, we would
have ~~[8'(—2) —8'(0))

1+((or) 'g=+„8(e)exp[i(n+1)(us) (3.4) S,„=

2(us [8'(—3)—8'(1))
1+(2~x)'

3(o7 [ 8'(—4) —8'(2)]+ (3.9a)
1+(3(ur)'

We shall make use of the form (3.4), but not attempt to
calculate the 8's here. It can be shown, however, by
tracing through the steps outlined in the foregoing, that
if certain of the E„'sare zero by symmetry, then the cor-
responding 8(e)'s are also zero.

In terms of the 8's, the desired Fourier coefficients of
the velocities are

v, (m) = (1/v2)[8(m 1)+8—*( m 1)—), —(3.5a)

v„(m) = (i/v2) [—8(m —1)+8*(—m —1)]. (3.5b)

and

8'(—2)+8'(o) 8'(—3)+8'(1)

Using these expressions, we may work out the combina-
tions of velocity components which appear in (2.13),

(van) v„(—m)+v, (—m) v„(m)
= —i[8(m —1)8(—m —1)

—8*(m—1)8*(—m —1)], (3.6a)

i[v, (m)v„( m) v,—( m—)v„(m—)]
= —[f

8(nz —1)('—[8(—m —1)f'). (3.6b)

We now consider several special cases. First, if the
k,k, plane is a mirror plane [see Fig. 2(a)] then all the
8's are real and (3.6a) vanishes. This result is in
agreement with the expectation that if the k,k, plane is
a mirror plane, then the xy part of the zero-magnetic-
6eld conductivity should be diagonal in the k,k„
coordinates. For 5,„in this case, we have

1+ (&u7.)' 1+(2(u~)

82(—4)+82(2)
+ . . (3.9b)

1+(3(o7)'

Note that all the harmonics are now present. The mth
term in 5,„is equal to mo7 times a quantity which may
be positive or negative, but the magnitude of which is
less than, or equal to, the mth term in 5„.

If, in the case just discussed, there is the additional
symmetry of a twofold axis through the center of each
hodograph and parallel to the s-axis, then the 8's with
odd indices vanish. Thus, the even harmonics in S„and
S,„would vanish.

For a hodograph with fourfold symmetry [analogous
to the one in Fig. 2(b)), only 8 s with indices which are

From Eq. (2.6), it is seen that co is positive if the energy in-
creases going away from the center of the hodograph, and is
negative if the energy decreases. Thus, the leading term in (3.8a}
is negative for electrons, and is positive for holes, in agreement
with the traditional result:.
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multiples of four will be nonzero. It follows that only odd
harmonics appear in S, and S,„and that the mth term
in S,„is given by &tmov times the mth term in 5„.If
four hodographs having Inirror symmetry are arranged
in a cross [analogous to Fig. 2(c)), the resultant ex-
pression is the same as (3.9). The foregoing discussion
applies when the magnetic field is parallel to a fourfold
[100]axis. There are also threefold axes [111]in cubic
crystals, and the discussion of threefold symmetry
already given applies. We shall not discuss other sym-
metries here.

It is to be emphasized that if the hodograph is
elliptical, all 8's are zero except B(0). In such a case,
there would be no harmonics, in agreement with previ-
ous work. '

4. FREQUENCY DEPENDENCE OF THE
MAGNETO CONDUCTIVITY

The results obtained in Sec. 2 can easily be generalized
to apply when the electric field is alternating in time, To
do so, it is only necessary to replace 1/r by ice,+1/r,
where co, is the angular frequency of the applied electric
Geld. Note that the substitution must be made before
the quantity v is factored out in the definition of S. The
expression obtained for S is

S=Q v(vs) v (—v)s)/[1+i(vto)+o), )r]. (4.1)

Boltzmann equation, which neglects orbital quantiza-
tion in the presence of the magnetic Geld."It is known
that the orbital quantization gives rise to the de Haas-
van Alphen type oscillations in the conductivity as a
function of magnetic field.

If the experimental data could be accurately repre-
sented by the formulas derived here (or their necessary
generalizations), not only could the concentrations and
mobilities of the carriers be determined, but information
about the band structure would be gained. For example,
the relative magnitudes of the harmonics could be used
to fix the parameters in a theoretical expression for the
electron energy as a function of wave number (such a
program was suggested by Shockley in reference 9).
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APPENDIX A

We wish to show that the I"ourier component v, (0)
vanishes. The component is given by

Since the above expression depends upon the Fourier
coeKcients of the velocities in the same way as the
static field S, the results of Sec. 3 still apply.

As is well known, the real part of S gives the con-
ductivity and the imaginary part gives the dielectric
constant. If (m(dr

~
is of the order of one, or greater, S

will have pronounced maxima in the neighborhood of
co,= ns'~. Such behavior is cyclotron resonance, with the
harmonics predicted by Zeiger. 4 A recent calculation by
t.uttinger and Goodman" of the cyclotron resonance
absorption in p-type germanium also reveals the
harmonics. The third harmonic in p-type germanium
has been observed experimentally by Dexter. " The
third harmonic disappears when the magnetic Geld is in
the [111]direction, in agreement with the conclusions
of Sec. 3.

S. CONCLUSIONS

In this paper we have studied the field dependence of
the magnetoconductivity for general band structures. In
doing so, we have made several assumptions. It would
be important to study the eGects of relaxing these
assumptions. Perhaps the most serious is the use of the

' J. M. Luttinger and R. R. Goodman, Phys. Rev. 100, 673
(1955)."R.N. Dexter, Phys. Rev. 98, 1560 (1955).

r.(0) = (a/2 )gdsv. . (A.1)

(A.2)

where i is a unit vector in the x direction and v~ is the
component of the velocity perpendicular to the mag-
netic field [v„=(v,'+v„')'*]. Now

dltv, /v „=dk XH/H, (A.3)

where dk is the vector change in k, going along the
hodograph. Thus, it follows that

v, (0)= (o)hc/2v. eH)
~

HX dk
~

i. (A.4)

But since (t"dk=0, we have proven that v, (0) is zero.
Obviously, the same proof holds for v„(0).

'~ The effect of orbital quantization on the transport properties
has been studied by S. Titeica LAnn. Phys. 22, 120 (1935)j and by
B. Davydov and I. Pomeranchuk [J. Phys. (U.S.S.R.) 2, 147
(1940)).

Let dk be the change in arc length (in k space) going
with ds. Then


