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Exact Quanttmin Theory Solution for the Damped Harmonic Oscillator*
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It is shown that the perturbation theory solution previously given for the damped harmonic oscillator
is exact. The expression given for the conductance is also exact.

' N an earlier paper, ' hereinafter to be denoted by A,
-- the Hamiltonian of a harmonic oscillator coupled
to a resistance was taken as

3C= l (P'+~'V')+&z+ (PQ/V'C).

In (1), Htt is the unperturbed Hamiltonian of the
resistance, tl and p are the coordinate and momentum
of the oscillator, and Q is a function of the coordinates
and momenta of the resistance. C is a constant which
is the capacity of the oscillator if it is an electrical
oscillator.

If the oscillator is in an eigenstate of its unperturbed
Hamiltonian with energy Ep, then using 6rst-order
perturbation theory, the transition probability can be
written
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In (2), p(Ett+j't&o) is the density in energy of the
quantum states of the resistance in the vicinity of
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squared matrix elements are squares of absolute values.
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2 It is assumed that the dissipative element has a dense distri-

bution of eigenstates, that the perturbation expansion converges,
and that the expression (2) does not vanish.

Ett+Aoo. to is the natural frequency of the harmonic
oscillator.

Let us consider the higher order perturbation theory
approximations to (2). Suppose the original eigenstate
of the harmonic oscillator is P and the original eigen-
state of the resistance is p„.

Because of the linear nature of the interaction term
PQ/gC, the only harmonic oscillator matrix elements
which are not zero are those to states P +t. This means
that if the oscillator is in the state P, the ortly two
states to which it can go are P +r, and P ~. The higher
order approximations all involve the two adjacent
states as intermediate states. If the oscillator is in the
state f, it must pass through either the state f +t or
the state f & before going to any other state. The
calculation of the statistical exchange of energy includes
all higher approximations by considering only the two
adjacent states, and therefore (2) is exact for this
purpose.

The remainder of A was concerned with statistical
averaging of expressions obtained from (2) for a
resistance in equilibrium with a heat bath at a temper-
ature T. The result for the energy of a harmonic
oscillator which is coupled to a resistance at temperature
T, at time t=0, is
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In (3) G is the conductance function' defined in A by

( Itco )G=7rco 1—expl I J p(+&+ "co)
uT) &„

&& l(~EIQI& +&~) I'p(& )f(& )d& (4)

Expressions (3) and (4) are exact for the Hamiltonian

(1), and describe the approach to equilibrium of an
oscillator which is coupled to a resistance in equilibrium
with a heat bath at temperature T, and which has
energy Uo at time 1=0.

It remains to be shown that expression (4) is the
same as the classical frequency dependent conductance
measured by the response of the conductance to har-
monic driving forces. For an ensemble of oscillators
consisting of an inductance I; capacity C, and con-
ductance G, (co), the classical expression for the energy

3 The conductance is the reciprocal of the resistance if there is
no series reactance associated with the resistance.

U as a function of time is

2 Rel G, (&ai))~= Uo exp—
c(1+~'/I ~i I')—

In (5), coi is the complex natural frequency of the
damped oscillator, co is the natural frequency of the
undamped oscillator, and ReG, (cot) is the real part of
the conductance G, evaluated for the complex co1. We
wish to show that G, (co) =G(co), where G(co) is defined

by (4). Comparing (3) with (5), we see that

2 ReG, (coi)
—,=G(~)

1+co / I
col

I

(6)

Now in (5) imagine C to become very large and I. to
become very small such that the undamped frequency
co remains the same. Then it is clear that co1~co. Since
G, (co) is real, it then follows from (6) that

G, (co) =G(co). (7)
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The Quctuation dissipation theorem (Nyquist formula) is shown to be exact and a number of generaliza-
tions of it are given, including a four-dimensional formulation which is useful in the quantum theory of fields.
The more general theorem can be used to calculate vacuum expectation values of field operators, and to
deduce covariant commutation relations for the fields. For a four-potential field, the vacuum expectation
values for operators at two space-time points x and x' are

(A.()A.("».=-' '""*""'d-,
40

~here d„~ is a dissipation tensor.
The covariant commutation relations are

Pd„(LE—x'g, ~) —d „(Lx'—xg, co) g

s CV

A well-defined cut-oft procedure is given for calculating observable fluctuations in cases where the theorem
gives infinite results.

For measurements with a linear device which has energy E= Ace„ the observable Quctuations of the vacuum
electromagnetic fields are given by the exact expression

&c
(V') =— E(co)coda).

INTRODUCTION

]t'YQUIST' first deduced the Auctuation dissipation
theorem, using classical statistics. His work was

prompted by Johnson's experiments on electrical noise.
The Nyquist formula, applicable to linear electrical
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networks, states that the mean squared Quctuation
voltage in an angular frequency interval des is given by

(V') = 2IsTR(co)dco/sr.

In (1), R(co) is the real part of the impedance function.
Later Callen and Welton' gave a quantum-theoretical

deduction of (1) and showed that it was applicable to a

' H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951}.


