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Invariant Theoretical Interpretation of Interaction
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Some systems of fields have been considered which are invariant under a certain group of transformations
depending on e parameters. A general rule is obtained for introducing a new field in a definite way with a
definite type of interaction with the original fields by postulating the invariance of these systems under a
wider group derived by replacing the parameters of the original group with a set of arbitrary functions.
The transformation character of this new field under the wider group is determined from the invariance
postulate. The possible types of the equations of the new fields can be also derived, giving rise to a certain
conservation law owing to the invariance. As examples, the electromagnetic, the gravitational and the
Yang-Mills Gelds are reconsidered following this line of approach.

The gauge invariance of this system is easily veriied in
virtue of the combinations of Q, Q, and A„ in (1), if
this system is invariant under the phase transformation

Q-+e' Q, Q*-+Q*e '", n= const. (2)

Reversing the argument, the combination (1) can be
uniquely introduced by the following line of reasoning.
In the first place, let us suppose that the Lagrangian
1.(Q,Q, „) is invariant under the constant phase trans-
formation (2). Let us replace this phase transformation
with the wider one (gauge transformation) having the
phase factor n(x) instead of the constant n. In order to
make the Lagrangian still invariant under this wider
transformation it is necessary to introduce the electro-
magnetic 6eld through the combination (1). This
combination and the transformation character of A„
under the gauge transformation can be uniquely deter-
mined from the gauge invariance postulate of the
Lagrangian I.(Q,Q, „,A„).

This approach was taken by Yang and Mills' to
introduce their new 6eld B„which interacts with 6elds
having nonvanishing isotopic spins. The gravitational
interaction also can be introduced in this fashion.

It may be worthwhile to investigate this approach
for a more general case, for if there is a system of
6elds Q"(x) which is invariant under some transfor-
mation group depending on parameters e~, eg,

*On leave of absence from the University of Osaka, Osaka,
Japan.' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954}.

INTRODUCTION

HE form of the interactions between some well
known 6elds can be determined by postulating

invariance under a certain group of transformations.
For example, let us consider the electromagnetic inter-
action of a charged Geld Q(x), Q*(x). The electro-
magnetic interaction appears in the Lagrangian through
the expressions

ctQ pe
i eA „Q or — +ieA „Q*

then according to the aforementioned viewpoint we
may have the possibility of introducing a new field,
say A (x), in a definite way. In addition, the transfor-
mation character of this new Geld and the interaction
form with the Q's can be determined uniquely.

Let us tentatively call a family of the interactions
derived in this way "the interactions of the erst class, "
while other types of interactions are denoted as "the
interactions of the second class. "The electromagnetic,
gravitational and B„-Geld interactions belong to the
erst class and the meson-nucleon interaction to the
second class, at least at the present stage.

The main purpose of the present paper is to investi-
gate the following problem. Let us consider a system of
6elds Q"(x), which is invariant under some transfor-
mation group G depending on parameters e1, c2,
Suppose that the aforementioned parameter-group 6
is replaced by a wider group 6', derived by replacing
the parameters e's by a set of arbitrary functions e(x)'s,
and that the system considered is invariant under this
wider group O'. Then, can we answer the following
questions by using only the postulate of invariance
stated above? (1) What kind of 6eld, A (x), is introduced
on account of the invariance? (2) How is this new 6eld
A transformed under O'? (3) What form does the
interaction between the Geld A and the original Geld Q
take? (4) How can we determine the new Lagrangian
I.'(Q,A) from the original one 1.(Q)? (5) What type of
6eld equations for A are allowable?

The solution of these problems will be stated in Sec. 1.
In Secs. 2, 3, and 4 the well-known examples of the
interactions of the irst class will be reconsidered
following the line of reasoning of Sec. 1.We shall 6nd an
analogy between the transformation characters of the
electromagnetic Geld A„, the Yang-Mills Geld 8„, and
Christo8el's amenity I'„„"in the theory of the general
relativity. Furthermore we shall understand the reason
why in the Yang-Mills 6eM strength the quadratic
term, B„XB„appears which is quite similar to that
occurring in the Riemann-ChristoQ'el tensor E"„„„
namely, to the term IT—Fl in E.

In the usual textbooks of general relativity the
covariant derivative of any tensor is introduced by
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using the concept of parallel displacement. On the
other hand, we shall see in Sec. 4 that the covariant
derivative of any tensor or spinor can be derived from
the postulate of invariance under the "generalized
Lorentz transformations" derived by replacing the six
parameters of the usual Lorentz group with a set of six
arbitrary functions of x. In deriving such covariant
derivatives it is unnecessary to use explicitly the notion
of parallel displacement.

Now the above stated classification of the interactions
has only a tentative meaning. Some of the interactions
of the second class might be translated to the first class
if we could find a transformation group by means of
which we can derive that interaction following the
general scheme in Sec. 1.For example, if the interaction
between mesons and nucleons could be reinterpreted
in a fashion analogous to those of the first class, then
one might presumably be able to get a wider viewpoint
for interpreting the interactions between the new
unstable particles and the nucleons.

1. GENERAL THEORY

Let us consider a set of f(elds QA (x), (A = 1, 2, 1V),
with the Lagrangian density

Now from the invariant character of I under the
transformation (1.1) and from the fact that this
invariance is always preserved for an arbitrary domain
0, we have the invariance of the Lagrangian density
itself. Namely we have

gI= gQA+ gQA —
O

gQA gQA
(1.4)

The symbol =—means that 81, must vanish at any
world point and further that this relation does not
depend on the behavior of QA and Q",„.Substituting
(1.1) into (1.4) we get

Bli BIA

T(a), BQ +
gQA gQA

~(a) B Q

(a=1, 2, I) (1.5)

since the e's are independent of each other. These e
identities are the necessary and sufhcient conditions for
the invariance of I under G.

If we take into account the field equation for QA,
we obtain from (1.5) the following n conservation laws:

I (QA QA ) QA gQA/g~c ()J ./BX'0, =J .= T(.), ABQ .
A

(1.6)

Now let us postulate that the action integral referred
to some arbitrary four-dimensional domain 0,

I= t Ld4x,

This is so because (1.5) can be rewritten as follows:

BL 8 ( BL ) 8
I
+"+ ~Q" —=O.

()QA ()g. t, ()QA $ g~, gQA

)()QA, vanishes on account of the

Q A~QA+ ()QA

(1Q"(&)=&(.). B &'(&) Q

T( ), ~~= constant,
(c)Q = T(a), B & QB&

(1.1)
4a=infinitesimal parameter (a=1, 2, I),

4 (x) = infinitesimal arbitrary function,
T( ) ~~= constant coefficient.

is invariant under the following infinitesimal transfor- Th«rst «rm, j
mation: field equation.

Now let us consider the following transformation:

In addition, the transformation (1.1) is assumed to be
a Lie group G depending on the e parameters e .

Thus there must be a set of constants f4, called the
"structure constants, "which are defined by

LT(a), (()$"B= (a), "C' (() B— (() "O T(a)
or

()L=—{(1.5)), ea(x)+
gQA

86
2'(.).'B Q'

Bx&

instead of (1.1). In this case 6L does not vanish but
becomes

= fa 4 &(c), B (1 2)
(1I— T A QB

&QA, „BXc (1.5)'

These constants, f), „have the following important
properties:

fa b fm c+fb c fm a+fc a fm b=oq
(1.3)

b b

by virtue of the identity (1.5).
In order to preserve the invariance of the Lagrangian

under (1.1)', it is necessary to introduce a new field

A'~(x), 7=1,2, .M,

The relations (1.3) can be easily obtained from Jacobi s in such a way tha, t the right-hand side of (1.5) can be
identity and the definition (1.2). cancelled with the contribution from this new field A'~.
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Now let us denote the new Lagrangian by

I y (QA QA. A yz)

or

T A QBAa (1.10)

and consider the following transformation:

BQA T( ) AB QB 6a(g)
By using A „ in place of A'J, the transformation
character of A turns into

BA „=S(,) „,"t A'„e'(x)+Be /Bxs,(1.7)
where

BAy~= U(,)~Jr A'~ e (x)+C~, s

katy~

$(c) 'p, "5=C y, J U(c) x' C

Now the new I agrangian must have the form

Ly(QA. QA Aa )—Lyy(QA V QA)

Therefore we have the relations

gL/ gL// gL//

BQ" BQ" {)=- ~ BV Q {)=- ~

+(a) g A p

aL/ aL' BL/
BL'(~)=— BQ"+ hQ", „+ BA'~=—0.

BQ" BQ~ BA'~
aL/ aL//

where the coefFicients U and C are unknown constants
which will be determined later. In addition, let us
propose that the new action integral I' is invariant
under the transformation (1.7).

Our problem is to answer the Ave questions listed in
the Introduction.

From the invariance postulate we get the following
identity:

Inserting (1.7) into the above and taking account of
the arbitrariness of choosing e' and Be /Bxa, we see
that each coefficient of t and Bt/Bx must vanish
independently. Namely, we have the identities

aA/J

gL//

T(t), BQ + y, J.
BVyQ @=const

By using these relations, (1.8) becomesQL ~ BL.
T(), BQ + T(), BQ

BQA BQA
gL//

T(a) B Q + T(a) B VsQ
BVsQ o=const

gL11

BL
+ p( ) J& Ay&=0 (1 g) BQ vg=const

BL BL
T A QB+ QJs =0

BQA
(1.9)

+ Q A y(LT(a) T(&)) B B s
BVsQ Q=const

—~(.)'s. "t T(~)."B}=—o (112)
Now, in order to be able to determine uniquely the

A'J-dependence of L', the number of the components
of A'~ should be equal to the number of Eqs. (1.9),
namely,

should hold. In addition, the matrix CJ, & must be
nonsingular. Thus there is the inverse of C defined by

CJ lt C—la gJ C—la CJ v ga gv

Then (1.9) can be rewritten as

aL/ aL/
+— T(.)."BQ =0y

BAa BQ"

If we put'
L«(Qz V Qa) L(Qg V Qg)

namely, put L" to be what is obtained by replacing
BQ~/Bxa in the original Lagrangian L with the "co-
variant derivative, " V„Q", then on account of the
identity (1.5), the first and the second terms in (1.12)
cancel each other. The remaining terms of (1.12) can
be rewritten in the following way owing to the group
character (1.2):

BL
Q A y(fa"& B"s ~( )"au "t)T(&), 'B.=0

BVyyQ {) const

Therefore we can determine the unknown coefFicient 5
as follows:

where we have put ~(a) 'v, & rafa& (1.13)

C—sa

V QA= T A QBg—la &A
J'

Thus A'J should be contained in L' only through the
combination

Using this expression for 5, we can easily show the
covariant character of the derivative V'„Q", i.e.,

BV„Q~=T(.), "B~ (x) V„QB. (1.14)
2 This particular choice of L" is due to the requirement that

when the Geld 2 is assumed to vanish, we must have the original
Lagrangian 1..
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Now let us investigate the possible type of the From these relations and (1.16), we have
Lagrangian for the free A-field. Let it be denoted by

BLp

L{)(A'»,A „,„), A'„„=BA'„/Bx". =—0.
Ada F const

BLp BLp
f«», A'„+ f«, A'„. .„=—0,

BA'„ BA'„,„
(1.20)BF „„=c«(x)f«, P' „.

BLp BLp

e invariance ostulate for Lp under the transfor-
Namely Lp must be a function of E alone and must

mation (1.11) leads to
satisfy the identity (1.19).

As may easily be seen, the transformation character
(1,1$) of F is given by

+ f,', A'„=0, —
BA „BA~,, „

BLp BLp
+ =—0.

BA „,„BA „,„

(1.16)

(1.17)

Equation (1.20) can be verified by using the relation
(1.3).

Now let us define a set of matrices, 3f(~), &~2),
~ 3f(„~, in the following way:

I

({«,b)-element of M(.)=3E(»)'—«= f'«,
From (1.17) we see that the derivative of A should be
contained in Lp through the combination

B B
Aa = Aa —— Aa

BS~ Bx"

(a, f), c=1, 2, I).
Then these matrices are a representation of degree e
for the generators of the Lie group G, since the relation
(1.3) can be written as

Thus (1.16) can be written as f~(a))~(«)5»= f)) « ~(m), ».

Therefore (1.20) shows that n quantities, p'„„, Fi„„,
~ E"„„aretransformed cogradiently to the transfor-
mation of Q.

So far we have not used the field equations of A and Q.
The variation of the total Lagrangian density

BLo
f;b A'„.

BLp

BA „BA'),, „)
(1.16)'

(1.16)' means that the derivative of A appears in L«,
only through the particular combination

Lr Lo (F)+L (Q——,VQ)
BA

F» = — 'f«» (A—' -A' —A' A' ). (1.18) can be rewritten as
Bx~ BS"

Finally, substituting (1.16) into the first term of (1.15),
we get

I BLp
(f:«A«(, »)+2(f~'« f'.

2 BE vp

BLr BLr B
BQ&+

BQ" 8A „Bx»)BA»&

BL BLo bLr
+- &Q"+

Bx» BV»Q BP»»» 8A»„
e' =0, (1.21)

where the following abbreviations have been used:

or by virtue of (1.3) we have

BLp
f «P 0

2 BFa„v
Now let us choose the arbitrary function e (x) in such
a way that the values of all the e's and Be/Bx's vanish
on the boundary surface of the integration domain Q.
Then the integration of (1.21) over the domain 0
becomes

(See Appendix I.) Since L«must have the form

Lp(A, BA/Bx) =Lp'(A'„,F'„,), —

we have the relations

BLr BLr B ( BLr ) BL~ BLr B ( BL~ p

(1 19) &Q BQ Bx" (BQ .») BA'„BA'» Bx» { BA»» „p

BLp BLp'
Xd'x—=0, (1.22)

QAa &&aA=const BE gav A const~

BLp'BLpBLp f' A'
&Aa AP&

p, BA/Bx const BA y F=const B~ pv A const

with the abbreviation

BLr BL& B phL&qK= BQ~+ f«'o, «A»
8Q" bA'» Bx» (BA»)
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because the integration of the divergence term in (1.21)
vanishes on account of our special choice of the e's.
Since the e's can be chosen arbitrarily within 0, E
must vanish at every point in 0, as is easily seen from
(1.22).

Consequently the identity (1.21) are separated into
the following two relations:

2. PHASE TRANSFORMATION GROUP AND THE
ELECTROMAGNETIC FIELD

Let us consider a charged field Q and Q*. The La-
grangian of this system is assumed to be invariant
under the phase transformation

hQ =inQ", BQ"*=—mQ *, n=a real constant.

and

E=—0, (1.23)

8 BL BLp SLY
BQA+ 5A',+ p' =0. (1.24)

Bx~ BV„Q" BF „. bA „

Since this one-parameter group is commutative, the
structure constant, of course, vanishes. By replacing
the constant a with a scalar function X(x), a vector
field A„(x) is introduced. The transformation character
of A„(x) is given by

hA„= Q,/Bx",
From (1.24), we have

8 BL BLp SLY
T(.) "BQB+ f~b, A'.+ — —=0, (1.25)

Bx~ BV„QA BFb„„BA'„

following the general formula (1.11). The new La-
grangian L' has the form

L'= L(Q,Q*,V„Q,V„Q*),

and

Put

BL aLo
A QB+ f b Ae+

BV.Q" BF~„„

BLp BLp

BIi'„„BIi„„

BLz —=0, (1.26)
BA

where V„Q and V'„Q* are given by

BQA BQAW

V QA — &A QA V QA4 +&A QAo
8$» Bx»

because in the present case

2'AB jBAB for QA 2'AB gAB for QA+

J" = BLr/BA „.
Then (1.26) leads to

(1.2&) The Lagrangian Lp for the free A„-field is

Lp Lp(F„„), ——
where

BL BLp
T(.), "BQB+ f.', A '„!, (1.28)

&BV„QA
' BFb„„'' ") '

and (1.25) becomes The current J& can be obtained from the two diferent
expressions

BJ», 8 5Lp

Bx» Bx» 8A
(1.29) BL

QA
I, BV QA

BL
QA4

BV„Q"* )
If we use the Geld equation

SLY/BA '„=0,

then we have the conservation of the "current, " i.e.,

BJ&,/Bx&=0 ((b=1, 2, n). (1.30)

Thus we have obtained a general rule for introducing
a new Geld A in a deGnite way when there exists some
conservation law such as (1.6) or there is a hie group
depending upon some parameters under which the
system is invariant.

In the following sections we shall consider the
following groups as examples of the original I ie group'.

(1) the phase transformation of a charged ield, (2) the
rotation group in the isotopic spin space, and (3) the
I orentz group.

3. ROTATION GROUP IN ISOTOPIC SPIN SPACE
AND THE YANG-MILLS FIELD

As an example let us consider a system of proton and
neutron Gelds;

(g'~ t' proton )
(neutron]

The lagrangian in the charge-independent theory is
invariant under the rotation in the three-dimensional
isotopic spin space:

3 3

~0"=&2 "~(.) B4' B4-=—&2 "6«.)'-, (3 1)
c=l

where v~~~, v(2~, and v.t@ are the usual isotopic spin
matrices.
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(~, P=1, 2)

Ec=1,2, 3)

In this case the general notation T in Sec. 2 corre-
sponds to v as follows

~(c), B~7(.c), P)
where

ds'= g* g dx' dx~=g dl» du"

The square of the invariant length of the infinitesimal
line element is given by

By replacing the parameters, e, with a set of func-
tions, e (x), the Yang-Mills field

and

g ].y g 22 g 33 g 44 i g

8'„(x) (c=1,2, 3)

is introduced, and this appears in the Lagrangian
through the combination [see (1.10))

ax' ax~

g"(u) = g*'b
BQ BN

Let us introduce two sets of functions defined by
V„p = Bf /Bx~ i 7 (,), t) p—8'„. (3 2)

The variation of 8'„ is given by [see (1.10) and (1.13)]
h"„(u)= Bx"/Bu~,

hb (u) =()u /Bx'.
(4.1)

86
SB4„=f:,e(x) Bb„+

Bx»
where f,'b is defined by

L''() ' ())=f: & ()~

(3 3) Then we have the following relations:

(3 4)

g*b) hb„h', =g„„(u), g„„hb"hi" ——g*bi, hb& h'„= h'g„

gb) h gr. h v —guv(u) gyv hb hl gb)4c h p hb

det(g„„)=g= —h'=——[det(h"„))'.

The variations of V„P and F'„.are as follows:

and
~VA"=&~'~(), )) VA'

8F „.=e' f. bF'„,.
(3.6)

As was stated in Sec. 1, F „„is transformed under the
rotation group as a vector, namely, the isotopic spin of
this 8-field is unity. The expression for the "current"
has the form [see (1.25) and (1.24)):

BI. 81.0
~(.). sf' — f:b &''

BV~Q F „„

The derivative of 8 „can appear only through the
combination [see (1.18))

BB „ BB „ i
F~ = — fp (—Bb—8'. Bb, 8' ). —(3.5)

Bx» Bx" 2

Raising or lowering of both kinds of suKces can be
done by means of f,„„, g&" or g*&& and g~'*. The geo-
metrical meaning of the sets of h~„and A'~&, is obvious.
The introduction of the four-world vector' h~, h2, h3,
and h4& assigns respectively a local Lorentz frame to
every world point. Of course, the local frames at every
world point are transformed in the same way under any
Lorentz transformation, i.e.,

x"~x'+e')x'

hb~~hb~+bh;,

On account of this-geometrical meaning of the h's,
we can transform the world tensor into the corre-
sponding local tensor defined with respect to the local
frame, or vice versa, using h~& or h~„. For example,

Qb(u)=hb„(u) Q (u), Q (u) =h (u) Q'(u),

where the abbreviation4. LORENTZ GROUP AND THE GRAVITATIONAL
FIELD

Q"(u) =Q'(x(u) }
Let us consider a system of fields Q" (x) being defined

with respect to some Lorentz frame. In addition, let us In this way we can rewrite the action integral as
assume that the action integral follows:

L(QA QA „)d4x
I= P(Q~(u), Q~, „(u),h'„(u))d4u,

is invariant under any Lorentz transformation.
Now besides the x-system, let us introduce an arbi-

trary system of the curvilinear coordinates u" ()4= 1, 2,
3, 4). In what follows, the Latin and Greek indices
represent quantities defined with respect to the x-
system (or the local Lorentz frame) and to the u-

system respectively.

where 8 is defined by

=L(Q"(u), hb~(u.) Q~, „(u)) h,

and Q", „stands for
BQ~ (u)/Bu&

(4.2)

3 The world vector means a vector which is dered with respect
to the u-system.
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are assumed to be transformed asThe reason for the fact that the Q" in (4.2) is not
transformed into the corresponding world quantity
is tha. t if Q" is a spinor this rewriting is not possible,
because the spinor can be well defined only with
respect to a Lorentz frame.

Now I is invariant under the following two kinds of
transformations4 ':

(1) The Lorentz transformation

f)QA & kl (u) P „A. QB

5hk„= e'l(u) Jl'„.
(4.6)

Then, in order to retain the invariance of I under the
transformation (4.6), it is necessary to introduce a new
field

A"' (u)= —A" (u)
phd ~(J(: hl

gQA 2' „A. QB kl

u"=unchanged, 86
8+kl tf kl eak(u) g ka +

BN&
where T(kl), AB is the (A,B)-element of the XXSmatrix
T(~~) which is the representation of the generator of the
Lorentz group. The matrix Tt~~) satisfies the relation g~kl—ek gml +el +km +

BN~
(4.7)

f2 (kl)y2 (ma) j , sfkl, ma 2(ak)y 2 (ke 2 (lk) ~

(2) The general point transformation

u':ua+Xa(u) =u'a,

Xa(u) =an arbitrary function of u,

Furthermore the new Lagrangian is given by

~(Q",~.Q",&'.) =hi(Q", (hk" ~.Q")} (4 g)
where'

(4 3) which has the following transformation character
according to (1.11):

~Q'(u) —=Q"(u') —Q"(u) =0,

(4.4)

gQA — QA
BNI'

Now our Lagrangian (4.2) has the suitable form for
the application of the general method stated in I, if the
given functions, h~„, are regarded as a set of field
quantities satisfying the condition:

c)h' /f)u"= Bh' /c)u (4.5)

and having the transformation character (4.3) under
the Lorentz group. Though we will omit the condition
(4.5), the invariance of I under the transformations
(4.3) and (4.4) still holds. The only role of (4.5) is to
guarantee the possibility of ending the simplest and
most convenient system of coordinates (x', . , x'). In
fact if we replace the parameters, c'~, with a set of
arbitrary functions, e'"(u), after the Lorentz transfor-
mation depending on such e(u)'s, the relation (4.5) is
destroyed.

The condition (4.5) is inconsistent with the applica-
tion of the general procedure of Sec. 1 to the present
problem. Accordingly we shall consider the h's as a set
of N independent given functions.

Now following the prescription of Sec. 1, let us con-
sider the "generalized Lorentz transformation" depend-
ing upon a set of arbitrary functions e'k(u) instead of the
parameters e'k. Under this transformation, QA and hk„

4 R. Utiyama, Progr Theoret Phy. s. (Japa.n) 2, 38 (1947).
s L. Rosenfeld, Ann. Physik 5, 113 (1930).

8 ~ 1
q QA gkl 2' A QB

BN~ 2
(4.9)

and the affine connection

(~gas ~g"& ~ga&
p X —1ghr

~

L au" qua au &

Accordingly we would expect that there exists some
relationship between A ~'„and h~„.

In order to obtain this relationship let us consider,
as an example, the local tensor

Then from (4.9) we have

+km Q l Jim Qk

'F. J. Belinfante, Physica 7, 305 (1940); K. Husimi, Proc.
National Research Council of Japan 4, 81 (1943).

Lsee (1.10)j.
The factors sr in (4.9) and kr in (4.7) are necessary

because in summing up the terms in these expressions
with respect to the dummy suSces the same contribu-
tions are counted twice or four times.

Because of the "general Lorentz transformation, "
under which each local frame at each world point is
transformed differently, the relation (4.5) was aban-
doned. Since this relation is satisfied only when the
basic world is fIat, we are forced to take as our basic
space-time some Riemannian space with the metric

gav(u)=)S a hkv)
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By using h, this can be rewritten as then we can solve (4.13) for I".The solution is

g Qkv +km Q v+pv v Qkp (4.10)

or

(Bgrp Bgvv Bgpv I

+
t. au au BN i

where Qm" and I" are deGned by

Qkv —h v Qkm

and where

hip
BNt'

Bhl„—Ap„, „=l'„„p, (4.14)

Bhl„
~'„„p=hlp —hap hl, A~L„.

BNP
(4.11)

In general, the following relation is easily derived from
(49):

p n~Jg L ~ ~ ~ pty o ~ ~ fg l e ~ e py' o ~ ~

Qlt ~ ~ ~ QP o ~ ~ Quake ~ o Qtso ~ ~

BN~

Ap„„=hpp hl„A", „.

(4.14) is just the relation desired.
Now from (4.14) we see that A p„,„ is a world tensor

of the third rank under the general point transformation
(4.4) because the inhomogeneous term

89p

gk. Qil ~ ~,pr ~ ~ pl. Qki ~ ~,pr. ~ ~

Qkt ~ ~ ~,pr .
S +g s Qkl ~ ~ ~ .pr ~ ~ .

S +. . .

vI p flkl ~ ~ p)o ~ ~ ~ ~ naL",PX".
)p Qge ~ ~ &Po ~ o ~L. gP, QLk ~ ~ ~ tXp o ~ o

+. . . p XQkl ~ ~ ~,pr ~ ~

P X Qkl ~ ~ ~,pr ~ ~ ~ . . . (4 12)

This relation is nothing but the usual covariant deriva-
tive with the exception that for the I atin indices the
A~L, „must be inserted in place of the usual afFinity F,
and for the Greek indices our I" must be used instead
of the I'. Therefore for the world tensor Qp""' our
"covariant derivative" agrees with the usual covariant
derivative with the amenity I'. Namely, if we use the
symbol 8„ for the usual covariant derivative, we get

BQ"Bs~

arising from bF is cancelled out in virtue of the term
8(bc)It/8N). Consequently the Akt„ is a covariant world
vector under the tt-transformation (4.4). Then it is
easily seen that our "covariant derivative" V'„ is in
fact covariant under both kinds of transformations,
namely, under any "general Lorentz transformation"
and any tt-transformation (4.4).

Thus we have obtained the general expression for
the covariant derivative without using the concept of
parallel displacement. For example, if the Q~ were the
spinor Geld f, we have

8
~A =- —-~"'p LVk, Vibes,

gap 4

PP

g Qpv +pv p Qvv+pv v Qpr=g Qpv

The relationship between A and h can be derived from
the following consideration:

q gklk Akl ALIt; 0

hk hl 'IP gpv hk hl g ~pr

From this expression we have

gpv
QgP IP

+I".„p g'"+I".„"g~=0. (4.13)

If we assume that'
PI p Pl p

r In general (4.13) gives the following expression for P', if the
symmetry j."„„"=F'„„"is not assumed:

P'pvP =Ppve —(BPp, v+B'v, p)+Bpv v,
where I' is the Christoffel affinity, while 8 is an arbitrary tensor
with the symmetry character B„„,p = B»,p. /See E. Schroding—er,
SPece time Structure (Ca-mbridge University Press, Cambridge,
1950),p. 66.$ Therefore our new tield A k'„(or Ap„,„=hkp h,„g»„}

where the y~'s are the usual Dirac y matrices.
Now let us consider the Lagragian Bs of the free

A-6eld:
0 (hk Akt BAkt /Ctlv)

where the h~„ is necessary to raise or lower both kinds
of tensor suKces.

From the invariance postulate for Qs under the
"general Lorentz transformation, "we see that Ps must
have the form

P Pgk Pkt )
can be represented in the following way in terms of h, Bh/Bu and B:

ahl,
Apfpltt htP

g y ~t'P P+~Ptp @++PI I' ~I'P PBQ"

The right-hand side of the above expression is antisymmetric in
p and v because of the fact that

(
Bh'„ Bgprrhl„„——P», p +(v and P interchanged)= „—P„»—I'p„, ,=0.
gu" 8u"

Therefore the antisymmetry of A p,,„in p and v does not give any
restriction to the symmetry character of 8. Now if 8 is assumed
to vanish, we obtain the relation (4.14). On the",other hand, if
the basic space-time is Rat, then A takes the form App, p, +pp p
+Bp„,v-B», » on account of the relation Bh'v/sup=eh'„/au",
or, equivalen~tly, hip sh'v/ ju"=P» p
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where F is defined by

BA ~'„BA~'„
+Akb Ai Akb (4.15)

BA ~' BA ~'„
f kl (Anb Amn Aab ANin )

BQp BN" 4
BBr

BQ"+ Bh'„=—0,
BQ~ Bh'„

(4.18)

where K~ is
(B/Be~)gP~=—0, (4.19)

Now corresponding to (1.23) and (1.24) we have the
following identities:

(4.15) can be rewritten formally as follows:
K~=F"„„=V„A"'„V',A"—„A"'„—A'b. +A"'.A'b„, (4.15)'

BP
8Q"+ Bh'

BVQ" Bh', , „

Pkl jul) jgk Ra (4.16)

where R is the Riemann-ChristoGel curvature. tensor:

R k„„—— — +I'k„~ FP„—I"g„~FP„. (4.17)

Though h~„ is contained in our Lagrangian as well as
A and BA/Be, we can still prove that A"'„appears in
8p only through the combination F.

So far we have assumed that h~„ is a given function.
The behavior of h „ in general relativity is defined by
the field equation derived by the variational principle.

The total Lagrangian density is now given by

Pr (Q~,V„Q",)'bk„,Bhk„/Be",B'hk„/Be"Be")
—Q(QA V QA )'bk )+Q (/gk Fki )

The Geld equations for Q and h are'

BP/bQ~=0

where V'„A~'„does not behave like a local tensor of
the second rank, but is a covariant world tensor as the
suflices e and i show. Using the expression (4.15)' we
can prove the following relation (see Appendix II)

Bh p py

B (Wr)
(4.20)

Be" &Bh', , „,&

BPr
h;p =—0.

hk

BPr
hap-

p, u~Bk 'P
Pbi

Thus K& becomes

K~ ', e='%-t~;k,

gPuik g(ik)BQ,
BV„Q~

BBr BQr B ( BQr )+ h~i+ hk, „——

~
~hkp

Bh'p, „Bh',„. , , Be" (Bh'p, „„J

—(k and s interchanged}

Inserting this expression into (4.19), we have
trivial result

Accordingly, the coeKcient of B'e/Be' in (4.19) identi-
cally vanishes;

and BK"k/Be"—=0 (4.21)

&Br BQr B ( BBr ) B' ( BQr )
I+

Bk s Bh s Be" KBh ~ „~ Be"Be EBB s „k)

with the abbreviations

)s p, y= Bk s/Be i h s, pi= B h s/Be Be

'If the B„„,p is taken into account, the Rieinann-Christoffel
tensor 1Pb» is the same function as (4.17) but P' must be inserted
in place of 1' in (4.17). Here 1"' is the affinity given in reference 7.
In this case, in addition to the equations for the Q and h fields,
we have the following equation:

Bgg 1 89 BA 'p 1 8/0 gF '~P

88py, g 2 BA p 88py, ), 4 BP ~P BBpp, )
1 8 8Q0 BF ~P
4 BN l3F ~P t9+pp, g

Bup

Of course, in all these equations for the Q, h, and 8 6elds, the
affinity 1" must be used instead of 1'. (4.18) and (4.19) also hold
in this case, since 8 is invariant under the "general Lorentz
transformations. " Consequently this 8 Geld is of no use in
avoiding the trivial result: PQ";I,=O.

Since the Eulerian derivative 81/BA appeared in (1.24),
the nonvanishing "current" could be derived in the
general theory in Sec. 1.In the present case, however, we
have no Eulerian derivatives in K. Thus the field
equations do not play any role in deriving the "current. "

Now the usual equation for the gravitational field is
derived by taking a particular Lagrangian

Qp ——hR,

where R is defined as follows:

R—gu R~ hl'hl F ~ R~ R ~)

Taking the variation with regard to h, we get

—+ =0.
sh'„sh'„
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where'

&Co &Co
bh'„=—

bh'„bgp„
8 eigo

h, v bh'„+ --
h~v 8h'. ,

cIu" Bgp, „

b9o/Sg, .= h(R—v' ', gv—R—)= Qv'—.

Thus we have

The following relation is now easily verided: For example,
&a, lvv= fa m. fl b ~ av

is transformed contragradiently to F „„,for bE, , „„is

8K., „„=f.'„fl b 8Iib„.

—f l fm fb„Pk

By taking into account the relation (1.3), the above
expression becomes

with

or we have

Kv = —88/6h'

po po

&&a, av= fa m(fk l fb j+fl j fb k) ~"av e '.

Using (1.3) again, we can rewrite the first term of this
expression as follows:

Here Z is the symmetric energy-momentum-tensor
density of the original field Q. The symmetry character
of can be proved in the following way.

Since the Lagrangian P for the Q-field is also invariant
under the "general Lorentz transformation, " we have
an identity similar to (4.18):

~+a, av= fk l(fj a fm b+ fa b fm j) +"ave

fm fl fb, Pk

Since the second term is cancelled with the last term,
we have

&&a, av= e'fj a fmb fi k&"av= e'fj a&m, av

8Q"+ 6h' —=0.
gQA ghi

+ik hka hva +ki ~

bh'„bh~„ h fb'. = ej(f; k fb'. —f;"b fk'. f,", fb k—),

Now let us call F „„acontravariant vector, and E „„
a covariant vector with regard to the transformation
(1.20). In addition, let us propose that fba, is contra-

Inserting the field equation for the Q-field into this variant with respect to the suffix a and covariant with
identity, we get respect to b and c. Then we see that fb', is a constant

and invariant tensor owing to the following fact that

From this relation,

»v=h'ah"v Z =g»
can be easily derived.
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APPENDIX I. CONDITION (1.19)

Here we shall show how to construct an invariant
in terms of F „„.

Consider a quantity 6, the transformation character
of which is contragradient to that of F'„, under the
transformation (1.20).

Since
GaF pv

is invariant by definition, bG, is given by

BG,= —e' f.' Gb.

9 W. Pauli, Encyklopaedie der Mathematischen Wissenschaf ten
(B. G. Tenbner, Leipzig, 1904—1922), Vol. 5, Chap. 19, p. 621.

and its inverse g ~, we can easily construct a tensor
algebra similar to that used in the theory of relativity.
For example, we have invariants

~&","=g.~ F "F'"=II",".
In the case of the rotation group in three-dimensional
isotopic spin space (see Sec. 3), fb, has the following
values:

fl 2= fo i= f2 3=
f k= —fk",.otherwise f=0

Therefore, we have

and
gag= 2bas,

H„,, p =2b,gF „„F~p,.

Another familiar example is the case of the Lorentz
group. Here we have

atb 4' cd
4Jj19, cd Jab, Lm g jl g km g jmg klan

which vanishes in virtue of the relation (1.3). Hence
this proposal concerning the transformation character
of fb', is compatible with the covariant character of
Ea pva

Using the quantity

gaib Ja m f l b gba
fl rm
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1
&pv, pc F pv fpk, cd fab, tva &™pc

24

= 2F"pv F'"p. g*~i g*a~= gF",v F~I, p..

where 8„ is the usual covariant derivative with the
Christoffel amenity.

A p, „ is by virtue of (4.14) rewritten as
vapo'

—goX g p~

If I.b is a function of the invariant IIp„, p, alone, we
can easily prove the identity

BLp
f:e Fbp.=0. —

BF „„

Namely, the left-hand side can be written as

1 BLO BHpo, ~p

48H„, p BF „,

(1.19)
If we suppose h'q as a simple covariant world vector
and ignore the local suKx l, then the factor in the
parenthesis in the above expression is just the usual
covariant derivative of h'q. Therefore we get

=g "hd'~ h

On the other hand from (4.14) we have the relation

BLo
p ~cpv(gad fc b+ gab fc d) Thus we have

4 ~Hpo, pv

b,h'), ——A' „h ),.

S„A;„=g"b„(hpb h'„)

(A.3)

b A" =g'h&pb 6 h'& —A"&„A'I, „h ~ h".

Inserting this expression into (A.1) with (A.2), we have

The factor in the bracket vanishes on account of the By using (A.3) this becomes
relation (1.3). Consequently there exists, in fact, a
family of invariant Lagrangians, Lo, which are functions
of F' pal noe and satisfy the condition (1.19).

APPENDIX II. PROOF OF THE RELATION
E~' „=h'&h~ R ),„„

F~'„„is given by

Pkl —g gkl P /k' /kb gl +gkb gl (A 1)

Now according to the general rule (4.12)

(A.2)

Fk'p, =h'b(ban. —8,8p) hkb.

As is well known, the Riemann-Christoffel tensor is
defined by

for an arbitrary covariant vector Vp.
Thus we get

Fkl hlh hir, go.


