PHYSICAL REVIEW

VOLUME 101,

NUMBER 5§ MARCH 1, 1956

Invariant Theoretical Interpretation of Interaction

Ryoyu Utivama*
Institute for Advanced Study, Princeton, New Jersey

(Received July 7, 1955)

Some systems of fields have been considered which are invariant under a certain group of transformations
depending on # parameters. A general rule is obtained for introducing a new field in a definite way with a
definite type of interaction with the original fields by postulating the invariance of these systems under a
wider group derived by replacing the parameters of the original group with a set of arbitrary functions.
The transformation character of this new field under the wider group is determined from the invariance
postulate. The possible types of the equations of the new fields can be also derived, giving rise to a certain
conservation law owing to the invariance. As examples, the electromagnetic, the gravitational and the
Yang-Mills fields are reconsidered following this line of approach.

INTRODUCTION

HE form of the interactions between some well

known fields can be determined by postulating
invariance under a certain group of transformations.
For example, let us consider the electromagnetic inter-
action of a charged field Q(x), Q*(x). The electro-
magnetic interaction appears in the Lagrangian through
the expressions

9Q 0Q*
—ied,0Q or

+ied ,Q*. (1)
Jxw dxwe

The gauge invariance of this system is easily verified in
virtue of the combinations of Q, 0%, and 4, in (1), if
this system is invariant under the phase transformation

Qe Q, Q" —Q%ee,

Reversing the argument, the combination (1) can be
uniquely introduced by the following line of reasoning.
In the first place, let us suppose that the Lagrangian
L(Q,Q,,) is invariant under the constant phase trans-
formation (2). Let us replace this phase transformation
with the wider one (gauge transformation) having the
phase factor a(x) instead of the constant a. In order to
make the Lagrangian still invariant under this wider
transformation it is necessary to introduce the electro-
magnetic field through the combination (1). This
combination and the transformation character of 4,
under the gauge transformation can be uniquely deter-
mined from the gauge invariance postulate of the
Lagrangian L(Q,Q. x,4.)-

This approach was taken by Yang and Mills! to
introduce their new field B, which interacts with fields
having nonvanishing isotopic spins. The gravitational
interaction also can be introduced in this fashion.

It may be worthwhile to investigate this approach
for a more general case, for if there is a system of
fields Q4(x) which is invariant under some transfor-
mation group depending on parameters e, €z, - - €,

a=const. (2)

*On leave of absence from the University of Osaka, Osaka,
Japan.
1 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

then according to the aforementioned viewpoint we
may have the possibility of introducing a new field,
say A (x), in a definite way. In addition, the transfor-
mation character of this new field and the interaction
form with the Q’s can be determined uniquely.

Let us tentatively call a family of the interactions
derived in this way “the interactions of the first class,”
while other types of interactions are denoted as “the
interactions of the second class.” The electromagnetic,
gravitational and B,-field interactions belong to the
first class and the meson-nucleon interaction to the
second class, at least at the present stage.

The main purpose of the present paper is to investi-
gate the following problem. Let us consider a system of
fields Q4(x), which is invariant under some transfor-
mation group G depending on parameters e, €, - - -€p.
Suppose that the aforementioned parameter-group G
is replaced by a wider group G’, derived by replacing
the parameters €’s by a set of arbitrary functions e(x)’s,
and that the system considered is invariant under this
wider group G’. Then, can we answer the following
questions by using only the postulate of invariance
stated above? (1) What kind of field, 4 (), is introduced
on account of the invariance? (2) How is this new field
A4 transformed under G’? (3) What form does the
interaction between the field 4 and the original field Q
take? (4) How can we determine the new Lagrangian
L'(Q,4) from the original one L(Q)? (5) What type of
field equations for 4 are allowable?

The solution of these problems will be stated in Sec. 1.
In Secs. 2, 3, and 4 the well-known examples of the
interactions of the first class will be reconsidered
following the line of reasoning of Sec. 1. We shall find an
analogy between the transformation characters of the
electromagnetic field 4,, the Yang-Mills field B,, and
Christoffel’s affinity I',,* in the theory of the general
relativity. Furthermore we shall understand the reason
why in the Yang-Mills field strength the quadratic
term, B,XB,, appears which is quite similar to that
occurring in the Riemann-Christoffel tensor R*
namely, to the term I'T'—IT in R.

In the usual textbooks of general relativity the
covariant derivative of any tensor is introduced by
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using the concept of parallel displacement. On the
other hand, we shall see in Sec. 4 that the covariant
derivative of any tensor or spinor can be derived from
the postulate of invariance under the ‘‘generalized
Lorentz transformations” derived by replacing the six
parameters of the usual Lorentz group with a set of six
arbitrary functions of x. In deriving such covariant
derivatives it is unnecessary to use explicitly the notion
of parallel displacement.

Now the above stated classification of the interactions
has only a tentative meaning. Some of the interactions
of the second class might be translated to the first class
if we could find a transformation group by means of
which we can derive that interaction following the
general scheme in Sec. 1. For example, if the interaction
between mesons and nucleons could be reinterpreted
in a fashion analogous to those of the first class, then
one might presumably be able to get a wider viewpoint
for interpreting the interactions between the new
unstable particles and the nucleons.

1. GENERAL THEORY

Let us consider a set of fields Q4 (x), (4=1,2, ---N),
with the Lagrangian density

L(QAyQA, #)7 QA. = aQA/ax“

Now let us postulate that the action integral referred
to some arbitrary four-dimensional domain ©,

I= f Ld*x,
b

is invariant under the following infinitesimal transfor-
mation:

Q*-04-+00%,
3Q4=T(,"5 € s,
. (1.1)
e*=infinitesimal parameter (¢=1,2, ---n),
T (o, “5=constant coefficient.

In addition, the transformation (1.1) is assumed to be
a Lie group G depending on the 7 parameters e

Thus there must be a set of constants f,%, called the
“structure constants,” which are defined by

[Tw,Tw]*s=Tw *c Tty’s—Tw,*c T,

= fa% T'(e),“B.
These constants, f»%, have the following important
properties:

famb fmlc+fbmc fmla+fcma fmlbz 07
fa%=— fo%a.

The relations (1.3) can be easily obtained from Jacobi’s
identity and the definition (1.2).

(1.2)

(1.3)

RYOYU UTIYAMA

Now from the invariant character of I under the
transformation (1.1) and from the fact that this
invariance is always preserved for an arbitrary domain
2, we have the invariance of the Lagrangian density
itself. Namely we have

5 oL 5044 oL 04
= 0Q4, ,=0.
04 = a4, "

The symbol = means that 6L must vanish at any
world point and further that this relation does not
depend on the behavior of Q4 and Q4,,. Substituting
(1.1) into (1.4) we get

oL
—— T, 45 QB+

(14)

T, 8 QP ,=0,

904
(@=1,2, ---n) (L.5)

904, 4

since the €’s are independent of each other. These #
identities are the necessary and sufficient conditions for
the invariance of I under G.

If we take into account the field equation for Q4,
we obtain from (1.5) the following # conservation laws:

oL
3 b= Bo= A_ (OB
T r,/dx0=0, Jr, 204 Tw,*sQ%  (1.6)
This is so because (1.5) can be rewritten as follows:
oL 9 oL a1 aL
o e | Lm0
Q4 9xx\9Q4 , dxrLaQ4, ,

The first term, {
field equation.
Now let us consider the following transformation:

8Q4 (%) =T (0,5 *(x) QF,

T (@, “p=constant,

}6Q4, vanishes on account of the

1.1y
€%(x) =infinitesimal arbitrary function,

instead of (1.1). In this case 8L does not vanish but
becomes

SL={(1.5)}, e (x)+

L T 45 OF de®
(a)," B
Q4 , dxw

or
oL de®

oL= T, QF —,
dx+

(1.5)
004 x )
by virtue of the identity (1.5).

In order to preserve the invariance of the Lagrangian
under (1.1)’, it is necessary to introduce a new field

AIJ(x)7 j:17 2; o 'Ma

in such a way that the right-hand side of (1.5)’ can be
cancelled with the contribution from this new field 4'7.



INVARIANT INTERPRETATION OF INTERACTION

Now let us denote the new Lagrangian by
L'(Q4,04 wA"),
and consider the following transformation:
804=T,*5 Q" (),
8A =U @y g A'K e4(x)+C7, 4, i ,
Oxe

(1.7)

where the coefficients U and C are unknown constants
which will be determined later. In addition, let us
propose that the new action integral I’ is invariant
under the transformation (1.7).
Our problem is to answer the five questions listed in
the Introduction.
From the invariance postulate we get the following
identity:
5L () aL’ 5044 oL’ !
x)=—o0
Q4

8A4'7=0.

3
504 ,+
004, -~ " a4

Inserting (1.7) into the above and taking account of
the arbitrariness of choosing €* and de%/dx*, we see
that each coefficient of ¢ and d¢/dx must vanish
independently. Namely, we have the identities

oL’ aL’

T, 48 QP+ ——T @, 45 O,
Qs " 304, "
LI
+aA,JU<a>JK,A’KEO, (1.8)
oL oL
204 T(a),ABQB-l-aA,JCJ,“aEO. (1.9)
B

Now, in order to be able to determine uniquely the
A’7-dependence of L', the number of the components
of A’7 should be equal to the number of Egs. (1.9),
namely,

M=4n

should hold. In addition, the matrix C’ #, must be
nonsingular. Thus there is the inverse of C defined by

CJ, By C—la“’ K=5JK, C——-lal" 7 CJ' vb=6ab 511”'
Then (1.9) can be rewritten as
oL’

004, u

oL
a4e,

T(a),45 QF=0,

where we have put
Aa“=c—1a“' 7 A/J_

Thus A’7 should be contained in L’ only through the
combination
904

VuQAEa—— T(a, 48 QP C1o, s A",
ol
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or
Q4
ViQi=——T(s, 45 Q% A%
dx»

(1.10)

By using A%, in place of 4’7, the transformation
character of 4 turns into

BAa“—;S(c)a,M, "y Aby ec(x)_l_aea/axp’

S0 s=C"%, ;5 Uy x CE 7.

1.11
where ( )

Now the new Lagrangian -must have the form
L'(Q4,04 A% =L"(Q4,V,.04).

Therefore we have the relations

oL’ oL aL”

300 30 om0V lgreomn | A
oL’ aL"
304,  OV,04| gconsty

oL’ aL”

A7 0V g T

By using these relations, (1.8) becomes

oL ”
T(a), 4p QB+ T(a), AB \Y QB
aQA V@=const avﬂQA Q=const g
aLII
Q[T Ty &
GV“QA Q=const g
=S " T, 48}=0. (1.12)
If we put?

L (QA,V“QA) =L (QA,VIIQA) ’

namely, put L” to be what is obtained by replacing
dQ4/dx* in the original Lagrangian L with the “co-
variant derivative,” V,04, then on account of the
identity (1.5), the first and the second terms in (1.12)
cancel each other. The remaining terms of (1.12) can
be rewritten in the following way owing to the group
character (1.2):

dL
aquA Q=const

QB A% fu% 6"u— S ¥s "} T(ay, 25=0.

Therefore we can determine the unknown coefficient S
as follows:

S@u v=08"u fa‘. (1.13)
Using this expression for .S, we can easily show the
covariant character of the derivative V,04, i.e.,

V. Q4=T (), "5 €*(x) V,0B. (1.14)
2 This particular choice of L' is due to the requirement that

when the field 4 is assumed to vanish, we must have the original
Lagrangian L.
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Now let us investigate the possible type of the

Lagrangian for the free A-field. Let it be denoted by
LO(A a“’A au, v)y A ap, y= 94 ““/ax’.

The invariance postulate for Lo under the transfor-
mation (1.11) leads to

(9Lof Aot dL, oo A 0 (1.15)
ac c bac c',yE s .
ade" " " 4o, *
aLo 9L,
fae A5=0,  (1.16)
a4e, aA »
dL, 8Ly
=0. (1.17)
94, 04%,,

From (1.17) we see that the derivative of 4 should be
contained in Lo through the combination

d d
A, —
oxr ax?

Aoy =

Ae,.

Thus (1.16) can be written as

oLy
a4e,

dL,
aAc[v, ©l

fats AP, (1.16)’

(1.16)" means that the derivative of 4 appears in Lo,
only through the particular combination

9A4e, 949,
ax’

Fauv= _%fbac(Aby Acy__Aby Ac“). (118)

dxk

Finally, substituting (1.16) into the first term of (1.15),
we get

1 8L,
2 §Fs,,

{fcab Ab[”o M]+%(fdab fcde
_fdae fcdb) (Abv AB"_AL” A ",,)}EO’

or by virtue of (1.3) we have

1 9L,
- fcab FbquO- (119)
2 9Fs,,

(See Appendix I.) Since Lo must have the form

Lo(A4,04/0%)= Lo/ (4°:,F %),
we have the relations
L, dL¢
a-A av,y A=const aFuuv A=consty
9Ly aLy oLy
= - fabc A s
aA ﬂy dA[dxz=const aA u“ F=const an/.n' A=const

RYOYU UTIYAMA

From these relations and (1.16), we have

dLy
=0.

aA a“ F=const

Namely Lo, must be a function of F alone and must
satisfy the identity (1.19).

As may easily be seen, the transformation character
of F is given by

0F%,,=e(x) foo Fu.

Equation (1.20) can be verified by using the relation
(1.3).

Now let us define a set of matrices, My, M,
- M (ny, in the following way:

(a,b)-element of M (=M %= fc%,
(a,b,¢=1,2, .. .m).

(1.20)

Then these matrices are a representation of degree n
for the generators of the Lie group G, since the relation
(1.3) can be written as

[M @, M @y J'e= fa™s M (m, .

Therefore (1.20) shows that # quantities, F',,, F2,,,
-.F~,,, are transformed cogradiently to the transfor-
mation of Q.
So far we have not used the field equations of 4 and Q.
The variation of the total Lagrangian density

= Lo(F)+L(Q,VQ)
can be rewritten as
oLy QA f (5LT )
— %6 € €*
504  oxe\ode,
a oL dLg oLy
804+ ——6A“ 'EO, (1.21)
dxn | 9V,04 aFe,, °,

where the following abbreviations have been used:

6Ly OLp a3 ( oLy ) 6L 9Ly d ( OLr )
504 904 ows\aQ4,)’ sde, ade, aw\ods,,)
Now let us choose the arbitrary function e*(x) in such
a way that the values of all the ¢’s and de¢/9x’s vanish

on the boundary surface of the integration domain Q.
Then the integration of (1.21) over the domain @

becomes
de“xEO, (1.22)
e
with the abbreviation
X oL QA+ f b 4 0 (5LT
=—0 bet€ Cu— _“) €,
504 8de, AT
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because the integration of the divergence term in (1.21)
vanishes on account of our special choice of the é’s.
Since the €’s can be chosen arbitrarily within @, K
must vanish at every point in @, as is easily seen from
(1.22).

Consequently the identity (1.21) are separated into
the following two relations:

K=0, (1.23)
and
] oL dL, oLt
{ QA4 ——44,+ e"”EO. (1.24)
dxn| 9v,04 dFa,, 84,
From (1.24), we have
a oL T AQB—l—aLofbA +6LT} 0, (1.25)
— (a)," B acAC =0, (1.
dxn | 9V,04 oFY,, 84,
oL T 4 QB+aLofbA +3LT 0 (126)
aV“QA (a), " B an‘w ac v aAa“— y .
and
oLy 9L,
=0.
doFe,, OdFe,,
Put
JE,=0Lr/04,. (1.27)
Then (1.26) leads to
9L,

oL .
Joo=— (av QAT(,,), B Q + =

fabe A‘,), (1.28)
i »y
and (1.25) becomes

aJe, 0

8Ly
sde, |

(1.29)

dxr  OQxw

If we use the field equation
8Lr/64%,=0,
then we have the conservation of the “current,” i.e.,
aJ#,/0x*=0 (a=1,2, ---n). (1.30)

Thus we have obtained a general rule for introducing
a new field 4 in a definite way when there exists some
conservation law such as (1.6) or there is a Lie group
depending upon some parameters under which the
system is invariant.

In the following sections we shall consider the
following groups as examples of the original Lie group:
(1) the phase transformation of a charged field, (2) the
rotation group in the isotopic spin space, and (3) the
Lorentz group.
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2. PHASE TRANSFORMATION GROUP AND THE
ELECTROMAGNETIC FIELD

Let us consider a charged field Q and Q*. The La-
grangian of this system is assumed to be invariant
under the phase transformation

6QA = ’I:aQA,

Since this one-parameter group is commutative, the
structure constant, of course, vanishes. By replacing
the constant « with a scalar function A(x), a vector
field 4,(x) is introduced. The transformation character
of 4,(x) is given by

84,= 0N/ 9",

3Q4* = —iaQ4* a=a real constant.

following the general formula (1.11). The new La-
grangian L’ has the form

LI = L (Q?Q*!V”Q7VFQ*) )
where V,Q and V,Q* are given by
A a A%

Q
VMQA =—i4 uQA, VuQA*=
dxr oxw

+i4,04%,

because in the present case
T4p=134p for Q4, T4z=—id4p for Q4*.

The Lagrangian L, for the free 4 ,-field is

Lo=Lo(F ),
where
04, 94,
Fp=———".
dxr  Ix

The current J¥ can be obtained from the two different
expressions

dLr oL oL
Ju= =.__i( QA_ QA*).
94, v,04 9v,04*

3. ROTATION GROUP IN ISOTOPIC SPIN SPACE
AND THE YANG-MILLS FIELD

As an example let us consider a system of proton and
neutron fields;

Y proton
() (o)
Y2 neutron
The Lagrangian in the charge-independent theory is

invariant under the rotation in the three-dimensional
isotopic spin space:

3 3
opr=1 Zx € T ‘pﬂ’ Wa=—1 E:l € Yp "'(c)ﬁar (3-1)

where 7y, 7(», and 7 are the usual isotopic spin
matrices.
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In this case the general notation 7T in Sec. 2 corre-
sponds to 7 as follows

. @ B=1,2
T(o, 48170, %8y .
c=1,2,3

By replacing the parameters, €%, with a set of func-
tions, e*(x), the Yang-Mills field

Beu(x) (c=1,2,3)

is introduced, and this appears in the Lagrangian
through the combination [see (1.10)]
Vpr=0y*/dxr—it (), % Y B (3.2)

The variation of B¢, is given by [see (1.10) and (1.13)]

0B, = fu% €*(x) B®,+
where f.% is defined by

Jde
3.3
X

?
ox»
Lir@y ity )= fa% i7(a- (3.4)

The derivative of B¢, can appear only through the
combination [see (1.18)7]

aBe, 9B%, 1
_T__Efbac(Bb“ ch—‘Bby Bc“)_
xl’

Fa,,=

(3.5)

dxr
The variations of V@ and F¢,, are as follows:
OV pr=1€ 7(0), % Vip?

(3.6)
5Fa’w= P fcab Fb'““

and

As was stated in Sec. 1, F¢,, is transformed under the
rotation group as a vector, namely, the isotopic spin of
this B-field is unity. The expression for the ‘“current”
has the form [see (1.25) and (1.24)7:

dLrp oL dLo
Jro= =—1 T(e), 8 Yh—
dBe, Ve Fe,,

fcab Bbv»

4. LORENTZ GROUP AND THE GRAVITATIONAL
FIELD

Let us consider a systém of fields Q4 (x) being defined
with respect to some Lorentz frame. In addition, let us
assume that the action integral

1= [ 144,04 i

is invariant under any Lorentz transformation.

Now besides the x-system, let us introduce an arbi-
trary system of the curvilinear coordinates #* (u=1, 2,
3,4). In what follows, the Latin and Greek indices
represent quantities defined with respect to the x-
system (or the local Lorentz frame) and to the u-
system respectively.

RYOYU UTIYAMA

The square of the invariant length of the infinitesimal
line element is given by

ds?=g*y, dxt dak=g,, dur du’,

where
Fru=gru=g*n=—g*u=1, g*u=0 for ik,
and
dxt dxk
Gur(U)=— gir.
our ou’

Let us introduce two sets of functions defined by

e, () = 0x*/ dun,

and 4.1)
By () = us/dx®.
Then we have the following relations:
g Wru =gy (), guv li B =g% 1, ha* By=0"%,
gkl* hk” klv=guu(u), g;.w hk” hly= gkl*’ hk" hkv=6#v7

det(gu) =g=—h*=—[det(h*,) I

Raising or lowering of both kinds of suffices can be
done by means of g,,, g** or g*;; and g*¥*. The geo-
metrical meaning of the sets of %%, and %*, is obvious.
The introduction of the four-world vector?® z;#, ko, ks,
and %* assigns respectively a local Lorentz frame to
every world point. Of course, the local frames at every
world point are transformed in the same way under any
Lorentz transformation, i.e.,

P T
xF— x4kl
hitr—hit -0k,

Shit= — €l hit.

Fl= — ¢lk

On account of this geometrical meaning of the %’s,
we can transform the world tensor into the corre-
sponding local tensor defined with respect to the local
frame, or vice versa, using /;* or /*,. For example,

QF(u)=I*y(u) Q*(w),  Q*(u)=u*(u) Q*(u),

where the abbreviation

QF(u) = QH{x(u)}
has been used.
In this way we can rewrite the action integral as
follows:

1= 204,04 ) u ()i,

where { is defined by
R=L(Q4 (1)l (u) Q4 u(u)) 1,

and Q4 , stands for

(4.2)

Q4 (u)/ dur.

3 The world vector means a vector which is defined with respect
to the #-system.
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The reason for the fact that the Q4 in (4.2) is not
transformed into the corresponding world quantity
is that if Q4 is a spinor this rewriting is not possible,
because the spinor can be well defined only with
respect to a Lorentz frame.

Now I is invariant under the following two kinds of
transformations*®:

(1) The Lorentz transformation

5hku= ekz hl,,,
804=5Twn, "5 QF €,

u*=unchanged,

(4.3)

where Ty, 45 is the (4,B)-element of the N X N matrix
T p which is the representation of the generator of the
Lorentz group. The matrix Ty satisfies the relation

[T(kl)’T(m, n):l = %fkl, ubmn T(ab),

(2) The general point transformation

Tan=—Tan.

uu—)un—l—-)\#(u) = u'u,
A#(u)=an arbitrary function of #,

v

Shb = —— ik,
our (44)
3Q4(u)=Q*' (u") — Q4 (u) =0,
N’
304 y=——04,.
ur

Now our Lagrangian (4.2) has the suitable form for
the application of the general method stated in I, if the
given functions, %*,, are regarded as a set of field
quantities satisfying the condition:

Ah*,/duw = dh*,/du*, (4.5)

and having the transformation character (4.3) under
the Lorentz group. Though we will omit the condition
(4.5), the invariance of I under the transformations
(4.3) and (4.4) still holds. The only role of (4.5) is to
guarantee the possibility of finding the simplest and
most convenient system of coordinates (#!, ---, x%). In
fact if we replace the parameters, €*, with a set of
arbitrary functions, ¢*(u), after the Lorentz transfor-
mation depending on such e(#)’s, the relation (4.5) is
destroyed.

The condition (4.5) is inconsistent with the applica-
tion of the general procedure of Sec. 1 to the present
problem. Accordingly we shall consider the 7#’s as a set
of 16 independent given functions.

Now following the prescription of Sec. 1, let us con-
sider the “generalized Lorentz transformation” depend-
ing upon a set of arbitrary functions €™ («) instead of the
parameters e**. Under this transformation, Q4 and 4%,

4 R. Utiyama, Progr. Theoret. Phys. (Japan) 2, 38 (1947).
& L. Rosenfeld, Ann. Physik 5, 113 (1930).
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are assumed to be transformed as

3Q4=3¢""(u) Taun, 5 0F,

Sk, = &y (a1) I, (4.6)

Then, in order to retain the invariance of I under the

transformation (4.6), it is necessary to introduce a new
field
AR (u) = — A%, (u),

which has the following transformation character
according to (1.11):
F] 6kl
SAM, =1 fav, " 1g € (u) 41,4
dur
9 eIcl
= ¢k, Aml“_{_ €n Akm"_*_ (47)
dur
Furthermore the new Lagrangian is given by
(Q4,v,.04,1%,) =hL{Q4, (l» ViQ4)}  (4.8)
where®
a4 1
V Q4 =———=A", T, *5 QP. (4.9)
dur 2

[see (1.10)7.

The factors % in (4.9) and § in (4.7) are necessary
because in summing up the terms in these expressions
with respect to the dummy suffices the same contribu-
tions are counted twice or four times.

Because of the ‘“‘general Lorentz transformation,”
under which each local frame at each world point is
transformed differently, the relation (4.5) was aban-
doned. Since this relation is satisfied only when the
basic world is flat, we are forced to take as our basic
space-time some Riemannian space with the metric

Gur () =%y My,

and the affine connection

08w Ogu»
TRl )
ous  du’
Accordingly we would expect that there exists some
relationship between A%, and /%,.

In order to obtain this relationship let us consider,
as an example, the local tensor

Q¥ (u) (=0Q4).
Then from (4.9) we have

gon

on’

anl

V“le= 5 —A Icm“ le_Alm" ka.
U+

8 F. J. Belinfante, Physica 7, 305 (1940); K. Husimi, Proc.
National Research Council of Japan 4, 81 (1943).
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By using %, this can be rewritten as

kv
V#Qky= _Akmu va'l"r’puv Qkp, (4-10)
dur
where Q™ and I” are defined by
ka-_— hmv ka,
and
aht,
I'/'“p—_—hlp —hi? hy, Akl“- (4.11)
our

In general, the following relation is easily derived from
(4.9):

V“QM' TP beee, afeee =—“le' PRI b, afees
ur

— Ak, Qo s afe = AL QFF T L e
+Aia# le”""""’;b..., ap..."l—Aib,, le""‘w"'ai..., afeet ot
N NI Yo SR CIER N 0 L ST ST

d o =T M QR T e A

— T N QFL T e ahe— - e (4.12)
This relation is nothing but the usual covariant deriva-
tive with the exception that for the Latin indices the
A* , must be inserted in place of the usual affinity T,
and for the Greek indices our IV must be used instead
of the T. Therefore for the world tensor Q#* our
“covariant derivative” agrees with the usual covariant
derivative with the affinity I. Namely, if we use the
symbol §, for the usual covariant derivative, we get

Qe

V,.Qrr= +Tg,p Q”'*"I‘Iwu” Qrr=6, Qr*.

Qur

The relationship between 4 and /% can be derived from
the following consideration:

Vgt = — AR, — A%, =0
=h*, bty V,gP =k, ht, §,g°".
From this expression we have

agr?

Bﬂg‘w: +I"vup g"’—i—l",,.’ gW=0 (413)

u»

If we assume that’
P’w”: I"..,,",
7In general (4.13) gives the following expression for IV, if the
symmetry I'",,*=T",> is not assumed:
I"uv’= anp_ (Bpu, v+B’v,u)+Buv, F,
where T is the Christoffel affinity, while B is an arbitrary tensor
with the symmetry character By, ;= — By, ,. [See E. Schrodinger,

Space-time Structure (Cambridge University Press, Cambridge,
1950), p. 66.] Therefore our new field A*%, (or A p, u=hrp fiy A¥,)

‘RYOYU UTIYAMA

then we can solve (4.13) for I'. The solution is

, 9gou 908w  Ogus
I‘ “vp___%gpo‘ - EI‘"”P’
du’  dur ou°
or
oht,
he — A2, ,=T,,°, (4.14)
dur
where

AP""=hkP hl,, Akl, ue

(4.14) is just the relation desired.

Now from (4.14) we see that 47, , is a world tensor
of the third rank under the general point transformation
(4.4) because the inhomogeneous term

e

du’dur

arising from 6I' is cancelled out in virtue of the term
8(hoh/du). Consequently the 4%, is a covariant world
vector under the u-transformation (4.4). Then it is
easily seen that our ‘“covariant derivative” V, is in
fact covariant under both kinds of transformations,
namely, under any “general Lorentz transformation”
and any #-transformation (4.4).

Thus we have obtained the general expression for
the covariant derivative without using the concept of
parallel displacement. For example, if the Q4 were the
spinor field ¥, we have

o i
V#¢= P) —‘;A klll [’Yk)'Yl:]'ll/r

K

where the v,’s are the usual Dirac y matrices.
Now let us consider the Lagragian ¥ of the free
A-field:
go(hkmAklmaAklﬂ/auv);

where the /¥, is necessary to raise or lower both kinds
of tensor suffices.

From the invariance postulate for ¥, under the
“general Lorentz transformation,” we see that ¥ must
have the form

80 (hk,‘,pklw),

can be represented in the following way in terms of /, 8%4/0x and B :
L
Apu=hp 5‘;,‘;_ Ty, p+Bov,ptBou,v—Bup, p-

The right-hand side of the above expression is antisymmetric in
p and » because of the fact that

ont .
(hz,, 317’1— Ty, ,,) + (v and p interchanged)= %— Ty, p— Lo, »=0.

Therefore the antisymmetry of 4, , in p and » does not give any
restriction to the symmetry character of B. Now if B is assumed
to vanish, we obtain the relation (4.14). On thefother hand, if
the basic space-time is flat, then 4 takes the form A4, u=Boy,u

By, v—Byy,p, on account of the relation ok%/out=0kY/0u’,
or, equivalently, ki, dh',/du* =Ty, ,.
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where F is defined by

oAk, AR, 1
Fkly)c:__'—_‘—'_"fab, an(A ab" Amnv_Aaby Amn")
our our 4
A, 9AM,
= — + AR, ALy, — AR, AYy,. (4.15)
ou* ow”
(4.15) can be rewritten formally as follows:
FrL, =V, A", —V, Ak, — A%, Al + AR, Al (4.15)

where V,A4%, does not behave like a local tensor of
the second rank, but is a covariant world tensor as the
suffices p and » show. Using the expression (4.15)" we
can prove the following relation (see Appendix II)

Fkluv’:h”\ hka Ra)uw, (4.16)
where R is the Riemann-Christoffel curvature tensor:

aP)\va

+P)\“ﬂ Tg,2—TI'\A Tgue. (417)

our

Though %%, is contained in our Lagrangian as well as
A and dA4/0u, we can still prove that 4%, appears in
Lo only through the combination F.

So far we have assumed that %%, is a given function.
The behavior of 4%, in general relativity is defined by
the field equation derived by the variational principle.

The total Lagrangian density is now given by

R (Q4,V,04,7%,,01* ./ 0w’ 0 h%,,/ du du*)
= 8 (QA’V“QA’hk“) + 530 <hkkal;w) .

The field equations for Q and /% are®
0%/604=0

and
8¢r 9% 9L 92 L
ot gy (e
okt Ok, Ou’\okhi,, Aurour \ 9k,

with the abbreviations

hiy, =0k, ow’, hi, =0 ,/0uwdut.

81If the By, , is taken into account, the Riemann-Christoffel
tensor R\, is the same function as (4. 17) but IV must be inserted
in place of I' in (4.17). Here I' is the affinity given in reference 7.
In this case, in addition to the equations for the Q and % fields,
we have the following equation:

88 1 98 4%, 1 9% 0F¥,g
3Bun 204, 3B,y 46F"’agaB“,,)\
1.9 ( 8% Ft.p ) _
T4 0uP{ 9FF g a(aB,,,_ X)}*
ur

Of course, in all these equations for the Q, %, and B fields, the
affinity I must be used instead of I. (4.18) and (4.19) also hold
in this case, since B is invariant under the ‘“‘general Lorentz
transformations.” Consequently this B field is of no use in
avoiding the trivial result: IN¥;;=0.
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Now corresponding to (1.23) and (1.24) we have the
following identities:

o " o8y =0,
;Q: 8Q +——6 = (4.18)
and
(8/0ux)Ix=0, (4.19
where I+ is )
9L
M= QA+ <W,,
V.04 ok,
ar %
+—0k, ,—— ) oni,.  (4.20)
iy, ou \oh, .,

Accordingly, the coefficient of d%/d%? in (4.19) identi-
cally vanishes:

Ay 9Lr
- hk,,— hi,,EO
ah‘,,, By ahkp, uy
Thus 9?* becomes

Sm" = %eikgﬁ Biky

- 4% L 45 0
Pip= (ik), " B
av,04

A
lr i} ¢
kp+ N hkﬂ, v ( A )hkp l
iy o \ 9k, .,

%y
+H "
ath,#
—{k and interchanged}].

Inserting this expression into (4.19), we have the
trivial result

OMe s/ dur=0, (4.21)
as

Mea=0.

Since the Eulerian derivative §L/64 appeared in (1.24),
the nonvanishing “current” could be derived in the
general theory in Sec. 1. In the present case, however, we
have no Eulerian derivatives in . Thus the field
equations do not play any role in deriving the “current.”

Now the usual equation for the gravitational field is
derived by taking a particular Lagrangian

Lo=#hR,
where R is defined as follows:
R=gt Ry, =hi* by F*,,, Ru,=R .
Taking the variation with regard to %, we get
8% o8
o, ohi,
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- The following relation is now easily verified:

%

8% 8% .90
—oht,=—Ns, 5k, [
oh,

hip 6h%s ’ ,
08ou du
where®

0800, u

8%0/0g,0=—h(RP*—1gr"R) = — e,

Thus we have
hig @po=—Fr,
with
Try=—06/6h,,
or we have
Grr=—T.

Here & is the symmetric energy-momentum-tensor
density of the original field Q. The symmetry character
of T can be proved in the following way.

Since the Lagrangian & for the Q-field is also invariant
under the “general Lorentz transformation,” we have
an identity similar to (4.18):

585@4-}-58611" .
504 shi, =

Inserting the field equation for the Q-field into this
identity, we get
6% b3t
i,-k = "—,‘hku = _—hiuz ‘Lu-.
ohi, k

n
From this relation,

Tro=fir pre T, =Trr
can be easily derived.
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APPENDIX I. CONDITION (1.19)

Here we shall show how to construct an invariant
in terms of F,,.

Consider a quantity G, the transformation character
of which is contragradient to that of F¢,, under the
transformation (1.20).

Since

G.F,,

is invariant by definition, G, is given by

BGG= —€° fcba Gb.

9W. Pauli, Encyklopaedie der Mathematischen Wissenschaften
(B. G. Teubner, Leipzig, 1904-1922), Vol. 5, Chap. 19, p. 621.
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For example,
Ka,uv:falm. flmb anv

is transformed contragradiently to Fe,,, for 6K, ,, is
aKa, pr= falm flmb 5Fbp.v
= fatm fi"™ %% F¥pu €.

By taking into account the relation (1.3), the above
expression becomes

0K o, uv= fa'm([i%0 fo it 85 fo™) Frus €.

Using (1.3) again, we can rewrite the first term of this
expression as follows:

6Ka.uv=fkbl(fjma fmlb"l_famb fmlj) Fkuvej
— f&™ fatm fib5 F¥uy €.

Since the second term is cancelled with the last term,
we have

6Ka,uv: —¢ fjma fmlb flbk Fk;w: —él fjma Km, nye

Now let us call F¢,, a contravariant vector, and K, .,
a covariant vector with regard to the transformation
(1.20). In addition, let us propose that fu% is contra-
variant with respect to the suffix ¢ and covariant with
respect to b and ¢. Then we see that f,% is a constant
and invariant tensor owing to the following fact that

8 fu%c= €' (fi% foke— fi¥ [~ fi¥c o),

which vanishes in virtue of the relation (1.3). Hence
this proposal concerning the transformation character
of fu% is compatible with the covariant character of
Ko, uo.

Using the quantity

gab=falm flmb::gba

and its inverse g°® we can easily construct a tensor
algebra similar to that used in the theory of relativity.
For example, we have invariants

Ifl;w, po— gab Fauv Fbw:pr, nye

In the case of the rotation group in three-dimensional
isotopic spin space (see Sec. 3), f,% has the following

{f132= 321=f213= “1:

values:

fife=—fi4,

otherwise f=0.

Therefore, we have
Zab= Zaab;

Hyy, po=2800 O, FY,,.

and

Another familiar example is the case of the Lorentz
group. Here we have

1 — ok £ 3 X *
1 it e fab,*lm=g"j1 £ km— & im &1,
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and

Huv, p¢=;F1k;w fjlc, abcd fab, cdlm Flmpa

_17i % ok _ 11
=3Fik, F™ g% i1 g km=3F "%, F i, po.

If Lo is a function of the invariant H,, g alone, we
can easily prove the identity

9Ly
doFe,,

fcab Fby,vEO- (1.19)

Namely, the left-hand side can be written as

1 aLO 6Hpa-,aﬁ
- fcabeuv
40H,,, 5 OF%,,
O Poges St 159
=- F vF v 8ad b 8ab %)
40Hpw "

The factor in the bracket vanishes on account of the
relation (1.3). Consequently there exists, in fact, a
family of invariant Lagrangians, Lo, which are functions
of Fe,, alone and satisfy the condition (1.19).

APPENDIX II. PROOF OF THE RELATION
F¥,,, =hRE, R,

F*®,, is given by

F*l,, =V, AR, — VAR, — AR, Al L A%, AL, (A1)
Now according to the general rule (4.12)
V#Aklv = hkp hlv 5“14 7y, (AZ)
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where 8, is the usual covariant derivative with the
Christoffel affinity.
A*7 , is by virtue of (4.14) rewritten as

A =g Ay,

LN
=gv)\ hlp( —T e hla) .

o’

If we suppose %% as a simple covariant world vector
and ignore the local suffix /, then the factor in the
parenthesis in the above expression is just the usual
covariant derivative of 4%. Therefore we get

AP =g hyp §,hk.
On the other hand from (4.14) we have the relation
S =A%, , b, (A.3)

Thus we have

8,47 =g 8, (kP 8,h%).
By using (A.3) this becomes

8,477 =g by 8,8,k — A™, , Ay, B? B0,

Inserting this expression into (A.1) with (A.2), we have

Fr,, = RBN(§,8,—8,0,) .

As is well known, the Riemann-Christoffel tensor is

defined by
(5,_‘6,,"'6,;6,,) V)‘ :Rp)\nv Vp

for an arbitrary covariant vector V.

Thus we get
Fkl‘w: kl)\ hka Ra)\‘w'



