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Some consequences of the construction of potentials from phase shifts are derived. The question of select-
ing a unique potential by asymptotic requirements, and the connection with analyticity of the S-matrix is
discussed. An expression for the variational derivative of the potential with respect to the phase shift is
derived. A simple exact relation between the value of the potential at the origin and the erst moment of
the phase shift emerges as a result. The variational derivative is made the basis of a "phase-shift perturba-
tion method. " One "unperturbed" S-matrix suggests itself naturally, and is here called the "intrinsic"
S-matrix of the bound state. The "intrinsic" potential is discussed. Variational derivatives of one phase
shift with respect to another, as well as an extension of the phase-shift perturbation method near the in-
trinsic S-matrix to the presence of a tensor force, are given.

INTRODUCTION

'N a number of recent papers'' the complete pro-
~ ~ cedure has been established for obtaining all po-
tentials that cause a given phase shift (of one angular
momentum, as a function of the energy) and given
bound states. It is the purpose of the present note to
discuss some consequences of that construction, which
are obtained by varying the quantities that determine
the potential.

In the first part we outline the Gel'fand-Levitan
method and discuss the consequences of a variation of
the parameters C, upon which the potential depends
in the presence of bound states. ' The result shows that
in certain cases a requirement on the asymptotic decay
of the potential can serve to select the latter uniquely,
even in the presence of bound states; in other cases it
cannot. It is shown that no finite piece of the phase
shift allows a decision on whether the potential decays
exponentially or not.

In the second section, we perform infinitesimal varia-
tions of the phase shift and derive an expression for the
variational derivative of potential and wave function
with respect to it. As a consequence we obtain the
main new result of the present paper: a simple, exact
relation between the value of the potential at the origin
and the first moment of the phase shift.

In Sec. III the variational derivative is made the
basis of a "phase-shift perturbation method. "A special
case is the inversion of the Born approximation, while
others include the possibility of bound states. A special
"unperturbed" phase shift suggests itself naturally,
and is here called the "intrinsic" phase shift of the
bound state. The set of "intrinsic" potentials is
discussed.

Since the phase shift of one angular momentum (plus

the bound states and normalizations there) already
uniquely determines a central potential, all other
phase shifts of the latter are functionals of the former.
That fact is used in Sec. IV to derive an expression for
the variational derivative of one phase shift with re-
spect to another. Two phase shifts are found to be most
sensitive to one another's small local variations at equal
energies, except when they differ by an odd integral
multiple of w/4.

Section V, finally, generalizes the phase-shift per-
turbation method near the intrinsic 5-matrix to the
case of the presence of a tensor force, allowing for
variations of two phase shifts and the "mixture angle. "
There is an appendix containing the proof of a special
sufhcient condition for exponential decay of the
asymptotic potential.

I. CHANGES IN THE PARAMETER C

We recall the essentials of the Gel'fand I,evitan"
method. Let $(E,r) be a regular radial wave function
of the angular momentum l whose r-dependence near
the origin is independent of E such that

(2l+1)!!limr t'+'&P(Z, r) =1,
r~O

and whose spectral function (weight function in the
completeness relation) is p(E). Corresponding to an
arbitrary change in the spectral function, hp(E), there
is a function

a(sr) = dt) p(~)4(~, s)4 (&r),

which is used both as kernel and inhomogeneity in the
Fredholm equation

E:(s,r)+g(s, r)+ dt g(s, t)E(t,r) =0.
Jo

*This work was done under the auspices of the U. S. Atomic
Energy Commission, at the Radiation Laboratory of the Uni-
versity of California, Berkeley, California.

'R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 27, No. 9 (1953);also previous papers by R. Jost
and W. Kohn, Phys. Rev. 87, 977 (1952); 88, 382 (1952).' Generalization to the tensor force: R. G. Newton and R. Jost
Nuovo cimento 1, 590 (1955); R. G. Newton, Phys. Rev. 100
4&a (&9ss).

This integral equation always has a unique solution

II. M. Gel'fand and B. M. Levitan, Doklady Akad. Nauk.
S.S.S.R. Ser. 77, 557 (1951), and Isvest. A!cad. Naulc. S.S.S.R.
15, 309 (1951).
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E(s,r), which yields the change in the wave function,

ay(E, r) = chal(E, i)E(t,r),

and the change in the potential,

AV (r) =2 E(r—,r).
dr

The lth eigenvalue of the 5-matrix can be written
(uniquely) as

S(k)=j(k)/f( —k),

where f(k) is analytic in the lower half-plane, has
(simple) zeros there only at a number of discrete points
on the negative imaginary axis, each corresponding to a
bound state, 4 and tends in that half-plane to unity at
infinity. Then the spectral function is given (with k'= E)
by

~p(E) ~ 'k"+'If(k)
I

'

dE Q„C„5(E+E„),, E&0.

The non-negative numbers E„are the bound-state
energies, and the positive numbers C„are the reciprocal
normalizations of the bound-state wave functions, '

C„-'= ~ dr@'(—E„,r).
~0

Both E„and C„are independent of the S-matrix. (The
eormalized bound state wave function, C„(r), satisfies
the relation: (2t+1)!!limr &'+"C„(r)=C &, as r —+0.)

The result of a (finite) change in one of the nor-
malization parameters C„, say in C, was derived by
Jost and Kohns:

d2

aV(r) = 2 log 1+aC„ I —dy—s(i) .
dr'

The asymptotic behavior of this potential change is

EV(r)~constXexp( —2E„r), E„'=E .
It follows that if there is one potential with given phase
shift and given binding energies E„, and with the
property that

limV(r)e'x"=0, E'=maxE„,

then this potential is the only one with that property.
Furthermore, it follows that if there is one potential
with the property that

limP (r)e'x" E'=minE„,

4 "Points corresponding to the bound states" is always meant in
the sense: &ZE, if the binding energy is I .

s See reference 1, (2.9).

does not exist, then every potential with the same phase
shift and bound states has it. In the first instance there
is a natural possibility of selecting a meiqne potential
out of the family of those equivalent with respect to
both phase shift and binding energies.

As is well known, it follows from (5) that the S-
matrix is analytic in a strip of width E above the real
axis, except for a number of poles there on the imaginary
axis corresponding to all the bound states. ' Therefore,
it is a necessary condition for the existence of a Neiqle
potential Lin the sense of (5)j that the S-matrix is in
fact analytic in a strip above the real axis which con-
tains all the bound states except for the points corre-
sponding to the latter, so that all of them are recog-
nizable as poles and no poles are "redundant. " YVhat

additional criteria are smgcietsi for the existence of such
a unique potential is not known.

Among the family of Bargmannv potentials, i.e.,
those for which the (lth eigenvalue of the) S-matrix is a
rational function of k, it is sufhcient for exponential de-

cay of the potential that near k=0, f(k) —f(0)=O(k").'
In that case lim V(r) Xexp(2nr), as r-+~, exists for all a
smaller than or equal to the imaginary part of the point
in the upper half-plane at which the 5-matrix has its
closest pole to the real axis, and for one potential n can,
in fact, go as high as the imaginary part of the first pole
that does not correspond to a bound state. One may then
conjecture the following general theorem: A sufhcient
criterion for the existence of a potential V(r) for which

V(r) expI 2(ct—e)rj is integrable at inanity for all e)0
is the analyticity of the S-matrix in a strip of width n

above the real axis, except for simple poles correspond-
ing to the bound states, together with uniform ap-
proach to unity at infinity in that strip and f(k) —f(0)
=O(k") near k=0. The author has not, however, suc-

ceeded as yet in proving this conjecture.
It is clear from the fact that analyticity of the

5-matrix is necessary for exponential decay of the
potential, that no finite piece of the phase shift can
render information about whether the potential de-
creases asymptotically like an exponential. In fact, the
smallest "kink" in the phase shift at high energies can
destroy that analyticity and thereby radically change
the asymptotic behavior of the potential.

IL CHANGES IN THE PHASE SHIFT

Instead of varying the parameter C, we shall now

perform in6nitesimal variations of the spectral function
in the region of positive energies. Then, clearly, the

' See reference 1, Sec. 3.
i V. Bargmann (unpublished). The author is greatly indebted

to Professor Bargmann for showing him his manuscript of the
explicit construction of all potentials for which the /th eigenvalue
of the. S-matrix is a rational function of k.

This theorem was erst proved by Dr. Thomas Fulton. A proof,
diBerent from his, can be found in the appendix.
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first order in the variation,

K(s,r) = g(s—,r) = — @(E,s)g(E,r)dip(E),

and the corresponding 6rst variation of the potential,

5V(r) = —2— y'(E,r)dip(E)
dr~

The variation in the spectral function which we are
contemplating is due to a small change in the phase
shift. Now, in the presence of bound states with energies
E„'we can write

Green's function:

g(E,', s,r)
""dp(E)

4(E s)4(Er)„E'—E
""dp(E) 4-(s)4-(r)

4(E,s)0(Er)+ZC-J, (7)

SV(r)

8q(k)

4 d @„'(r)= —-k—g(E; r,r) gC—„
mdr ~ E+E

and that of the wave function,

The variational derivative of the potential at r with
respect to the phase shift at k can therefore be written

where

f(k) =e""'fr(k) = If(k) IexpiL'(k)+nr(k)3,

&(k) =2 +„tan —'(K„/k)

Sy(E',r)

8g(k)
(6)

2
= —-k dig(E', t)

@„(i)y„(r)-
X g(E;i,r) —PC. . (~)

is the "intrinsic phase shift" associated with the bound
states, and in the lower half-plane f&(k) isagain analytic,
tends to unity as lkl - -, and does not vanish any-
where. Therefore its logarithm is analytic in the lower
half-plane and

1 p" dk'gr(k')
»glf(k) I

=»glfr(k)
I

= —-& '

1 p" dk'k'gr(k')
= ——(p

k"—k'

The Green's function g(E; s,r) vanishes at s=0 for
arbitrary r and is symmetric in the two variables. It
can therefore also be written

g(E; sr) = y(E,s)P(E,r), s&r,

P(E,r)P(E, ,s) s)r,
where P(E,r) is an "irregular" solution of the Schrod-
inger equation whose Wronskian with $(E,r) is unity':

L&;&j=1.

5V(r) 4 dl '-'()——= ——k—' P(k'r)P(k'r) —PC„, (10)
6q(k) vr drl - k'+E„

and
'I f(k) I

1 "dk'k'g(k')

lf(k) I

Sy(E',r) fP

= —-k dy(E', i)
X ~0

if gr(k) is defined as an odd function of k, and P indi- We therefore have

cates the Cauchy principal value. Variations in the
phase shift will, of course, be such as not to change the
"intrinsic" one, and therefore

The variation of the spectral function concomitant
with that in the phase shift is then, for E)0,

dp(E) = —(2/~)k"+'~lf(k) I/If(k) I'

dp(E) 2 p" dk'k'8g(k')r
dE 7l „E—E

and zero for 8&0. Therefore, after an interchange in
the order of integration,

2 p" r
" dp(E)

K(s,r) = ——
I dk'k'5g(k')(P y(E,s)g(E,r).

Q E E

'-(i)~-().
X $(k,st)P(ks, r) —P C„

The "irregular" solutiong(E, r) is, sofar, notuniquely
determined. We obtain it by expressing p(Es) in (7),
for s&r, in terms of f(k) and f(k,s):

g(E,s) =(2i) 'k &'+'&I-(—1)'f(k)f(—k, s) —f(—k)f(k,s)].
Then

i p" dk'k"+' f(k', s)
q(E; s,r) = ay(k', r—)

vr ~ „k'—k" f(k')
'-(s)e. (r)

+PC„
E+E~

'The bracket symbol is used for the Wronskian:
V/e now recognize the second integral as part of a
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The path of integration can be supplemented by a large
semicircle in the lower half-plane, whose contribution
vanishes with increasing radius because (@i (k)

—('+'&

exp(Imkr) as ~k~ ~ pp, and s)r. The value of the
integral is therefore 2m.i times the sum of the residues
in the lower half-plane, plus mi times the sum of the
residues on the real axis. The former just cancel the
bound state terms, and the remainder, divided by
y(E,r), is

f(k,s) f( k,s) — f(k,s)
P(E,s) = ——',k' + (—1)' = —k' Re

— f(k) f( k) ~ — f(k)

The variation of the potential with respect to the
phase shift can therefore also be expressed as

5V(r) 2 d=-—ImL5'(k)f'( —k )3
farl(k) pr dr

It is worth emphasizing that this is not an approxima-
tion in any sense, but an exact result.

In general, however, the first moment of the phase
shift will not exist. Since

1
limkq(k) = —— ' dr U(r), (16)

if both sides exist, the finiteness of the right-hand side
of (15) implies that the integral of the potential is zero.
If it is not zero, then we can conclude from (14) merely
that if V and t/0 have the same bound states, then

8
V(0) Vp(0) = dk kL~i(k) —~i(P) (k)].

7r(21+1)"p

We can readily construct, by the Bargmann~ pro-
cedure, a simple potential Vp(r) whose phase shift
g&&p)(k) asymptotically approaches p&(k). The phase
shift

(12)
rt~&" (k) =tan '(p/k) —tan '(n/k) +2 g„tan ' (E,~/k),

The variation of the wave function on the other hand,
can be somewhat simplified by the use of the identity

r"
Le(E;);e(E'r)3=(E E') ' -«e(E,&)e(E',&),

0

which is readily proved from the Schrodinger equation
and the boundary condition of P(E,r). Thus,

8y (E',r) 2
LING)

(E',r); y (k',r)]= ——k P(k', r)
8g (k) pr E'—k'

4m ' dkLk tan '(p/k) —g= —p'.

From this it follows that

U(0) =
oo Oo

pr(23+1)" p 2~ p

where n and P are positive constants, and the bound
states with energies E„~——E„~', belong to a potential
Vp(r) whose value at the origin is

Vp(0) = (~' P')—/(~+ p)

It is, however easily checked that

(k'+E )' + Z E-~ (15')
2)+1 n

The first observation is that (12) again shows that a
small change in the phase shift at high energies may in
general change the asymptotic behavior of the potential
completely. Equations (10) or (12) can, however, not
be used to determine that asymptotic behavior in any
simple way (such as by replacing f or f by their
asymptotic values). Parts of the k-integrand which are
asymptotically (in r) negligible, may yield dominant
contributions to the integral.

Equation (10) has one very simple consequence.
Since, near r=0,

0 (E, )- '+'/(2~+1) ', 0 (E, )-— '( ~—1) ",
we obtain directly

8 V(0)/8g ~ (k) = 4k/pr (21+1). (14)

If V(0) and Jp"dk kg~(k) both exist, and there are no
bound states, then it follows immediately that

8
dkfkrl &(k) lim k'g( (k')—$

pr(21+1)"p
Jgr-+oo

+
23+1 ~

" dk kgb(k).
pr (2l+1) p

(15) ah=2 limkrl~(k).V(0) =

if both sides exist. Equation (15') is again an exact
result, and not an approximation.

It is well known that for potentials with finite
2(l+1)th moment, the phase shifts of increasing l are
asymptotically equal and decrease near E=O (as E&').
Equation (15') shows that nevertheless, in the absence
of bound states, their first moments (after subtraction
of their asymptotic values) increase as (2l+1). This
indicates that the maxima of the phase shifts move to
higher energies with increasing l.

The case of a square well potential aQ'ords a simple
illustration. The two parameters, depth a and range b,
are directly obtainable as
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om nt) since the value oI the

pp oxlmatlon will therefore not be f
physical interest

e o muc

in the presence of b

trinsic" to the b' d'
p hift the one "jn

o e in ing energies, given b 6. In
case of a single bound t t
44' ' ' ))

s ate o bindin ener---'" ph-. h f ~ 6

k cot/(k) = ——',K+-,'k'K '.

Fxo. 1. Potentials "intrinsic" to a sin le b
momentum zero in units of the b' d'

lt't '"th'""" fth bsize o t e Oound state. "

In general, the numbers c and b ma be iy " p
ep an range.

~oo

V(r) = —— dkq(k) —Im u '(kr),
~~o dr

(17)

provided that the right-h d d- an si e exists. ~Other
one must again subtract hrac t e asymptotic value an

orn approximation and is in principle obtainabl
is is very easily checked. ) Just

in icates the fact that the Born a ro .

becomes exact in th l' ' ' '
thin e imit of high energies ~in the

irst, one can use the small phase-shift a roxim
also in the presen f b dnce o ound states:

4r" d
V (r) = Vp(r)+ dkg(—k)—-J. "

d.

X Imfp'( —k r)+2k+ C
k'+E„

where Uo, ,&o andfp, @p belong to the bound states E
and normalizations C

n

C„, and with sero phase shift. Th
can be constructed ex licitl

s 1 . ey
xp icltly by the Bargmann method. '

e sense of the existence of the second

III. A PHASE-SHIFT PERTURBAT ION METHOD

Equations (10) or (12) can b~ can e used as the basis for a
p ase-s l t perturbation theor ." Ifp

a es, one obtains the sm
approximation

b small phase-shif t

In other words, the "shape-independent a roxi
or is p ase shift. The onl uanti

...=.-d ..=E-' "'"'""'"'"'"""
Potentials anan" wave function corres ondin

are readily constructed b B
spon ing to (6)

c e y argmann's method. It ma
e o interest to see what the famil of o

lo a sing e ound state of an ular m

e potentials in
o t"e inding energy, then the "intrinsic"

tentials are (see Fig. 1)
e intrinsic" po-

d2

Vi, (x)= —8 log/1+ii(sinhx —x
dx

)

(x=2Kr, Vi, =K 'Vr, X=C/2KP). Vx varus e
wi e s ope —8), has a minimum which sh f

toward the ori in'g' an becomes deeper with
c s its

i e origin)a a point which shifts toward th
maximum of increasing hei ht whi

owar t e origin and finally goes asymptotically as
16xe ~, i.e., positive and independent of X. (The last
aspect aGords an illustration of th to e statements followin

( ); since the asymptotic dec
'

l itecay is s ower than e it
must be independent f X do, an vice versa. As

quence of 16 th
As a conse-

, t e area under the potential is —8
independently of X.

)

An alternative desescription of these potentials is this:
they have a repulsive center an att t'

a ivey weak repulsive tail. In s ite f h f

or arge iand weak) by varying li. It is, in rinci

ma e t e re ulsivp sive core stronger and ossibl o
eliminate the repulsive tail.

10 If, as an illustration, one wanted to app y
sic p ase shift would not by

potent"1 '" the t"pl't stat' ls onl

7

"Th tf td
the xp ri t 1 ph se h'ft d th e "m rinsic" phase shift differ

P o o 5'
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IV. DEPENDENCE OF ONE PHASE SHIFT
UPON ANOTHER

The inverse of (10) is the variation of the phase shift
with respect to the potential. A simple expression for
that quantity is a well-known result of perturbation
theory:

V. GENERALIZATION OF THE PHASE SHIFT
PERTURBATION METHOD TO THE

TENSOR FORCE CASE

In the presence of the tensor force we shall limit
ourselves from the start to variations near the "in-
trinsic" quantities, "for which"

Bqg(k) y((k, r) '
$2l+1

SV(r)
= —k '!Ci(k,r)!', (18)

F~(k)F(—k) = l.

g[PT(k)F( k)] HAFT(k)FT l(k)+F—-1( k)hF( k)
where C~(k,r) is the solution which is asymptotic to
sin(kr+g& ——,'s.l) at infinity.

The two variations, (10) and (18), can now be com-
bined into the variational derivative of one phase shift
with respect to another, via the existence of a central
potential that causes them both. Thus,

hag(k) t
" 8r))(k) 8V(r) 4 k'k"+'

dr dryP(k, r)
ht)1, (k ) jp 8V(r) 8rlz(k ) 7l If&(k) I'"s

4~'(r)
X—y, (k', r)P, (k',r) PC„—. (19)

dr!
' ' - "k +Z„

Naturally it must be true that for /=L,

bg((k)
=-',P (k—k') —8(k+k')]= k sgnk'5(k' —k").

br) ((k')

In order to isolate the 8-function part of (19), we sub-
tract from the integrand its asymptotic value and
integrate it separately. The result is

bing(k) = (—1)'+1k sgnk'8(k' —k") cos2L q)(k) —qt, (k)]
baal, (k')

sin2Lq~(k)+pl. (k')]—(—1)'+is.-'(k'/k)
k+k'

+ (—1)z(s.k) ' sin2r)g(k')

00 d
+2(sk) ' ' dr LIm)t~(k, r)]'—

dr

yr, „'(r)
X Im(x, (k', r))' —2k' P (:.

k"+F.„

2 " dk'k'
LF-'(k') 8F (k') —F-'(—k')8F( —k')]„

im ~p k"—k'

where the subscript s denotes the symmetric part.
On the other hand

F-'(k)SS(k)F (—k) =F-'(k)SF (k) —F-'(—k)SF(—k)

and for the "intrinsic" quantities the left-hand side is

F&( k)SS(k)F(—k), —

and therefore clearly symmetric since 8S(k) must be so.
Ke can thus drop the s in the integral above and write, "
for the variation of the derivative of the spectral
function,

dP(E) 4 t" dk'k' k
=—(p ~i

—Ti(k)RM (k') Ii(k), E)0
dE x ~p k"—k'x

where
hM(k') =—(2i) 'Fr( —k')8S(k')F( —k').

I et us write the S-matrix in the following form:

where
S=UsU ',

( cose sine q

(—sine cose )

(21)

(22)

The erst term is analytic in the lower half-plane and the
second, in the upper. Therefore

6LFr(k)F( —k)]

1 t" dk'
= ——(P $8F (k')F '(k') —F '(—k')8F( —k')

+2k'( —1)~ sinsLkr+q ( (k) ——',s.l]

Xcos2Lk'r+pl, (k )] ~ (20)

and
(exp (2irl~)

0
!

0

exp (2ir)~+s) ) (23)

Except when g& and g& differ by an odd integral
multiple of s/4, q~(k) is therefore most sensitive to
small local changes in pl. at the same energy, O'. Equa-
tions (19) or (20) can again be used as a basis of a
phase shift perturbation method which directly deter-
mines one phase shift from another, if they are both
caused by the same central potential.

"The reason is not so much that variations near the intrinsic
quantities are believed to be the only interesting ones, but general
variations present, in the matrix case, difhculties due to the lack
of commutativity of the functions involved. The "intrinsic" case
happens to be simpler in that respect, and it may have applications
by itself.

'~ The notation is the same here as in references 2. The super-
script T stands for the transpose: P(k) is the tnatrix generalization
oi f(k).

"Tg(k)=k'('Ozl); in the second paper of reference 2, T~(k) was
called X~(k).
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The quantities g~, y~2, and t. are the "eigenphase and
shifts" and the "mixture angle, " respectively, U being
the transformation to the "eigenstates of the scatter-
ing ""Then

BUU '=Be ",
t'

& —1 0)

BS=BUU 'S SB—UU '+UbsU ', Since the matrix commutes with U, we obtain

BS=U{( s—s )Bs+Bs)U '

( 2ibri1 exp(2iri1)

EBsC exp(2iri~s) —exp(2is)1) j
Be/exp (2irl &+s)

—exp (2i)i))J )
2$Bri1~s exp(2i'g1+s)

(24)

COS eP=!
E —sine cosa

—Slue COSe'i

sin e

fO Oy= Uz(& P)Uz '—
,

EO 1)
where tan& is the asymptotic ratio of the two com-
ponents of the bound state wave function. The function

&1(k)= 2 tan —'(E/k)

For the "intrinsic" quantities we have, in the presence
of only a single bound state,

l k+iEq
Fz(k) =1 Po+Po!—

&k—iE) '

(k+iK~ '
Sz(k) = & —Po+Po!

Ek—iE)
The projection I'p is de6ned by

This can now not be written in the form of a Green's
function, but it can be evaluated just as before, for
s&r, by closing the k'-contour in the lower half-plane.
In contrast to the scalar case, a contribution also arises
from k'=0, after G, (k",r) has been expressed in terms
of F(k', r) and F( k', r). The—result is, for one bound
state with energy Ep, for s(r,

E(s r) = —4or ' dkk{G, (k' s)BM(k)H(k' r)
dp

—k 'Gr(0, s) QF, (0,r)By(k)

—(k'+Ep) 'G, (—Ep,s)BM(k)C'G, (—Ep,r)),

where" the irregular solution is

H(ks, r) = —-'k tF- (k)F(k r)+(—1)'F-'(—k)F(—k,r)$
= —k' Re[F '(k)F(k, r) j,

and By(k) is obtained from

is the "intrinsic" eigenphase shift. For variations near
the "intrinsic" S-matrix for one bound state we then
have as

~0 11
(j.—P)BM(k) (1—2Pp)P—= —QBy(k), Q=!

(0 0) '

( Bs)1

BM(k) = Uz!(—Bs sin$t

Bt)1(k)

—Be sing, )
!U

B'g 1+2

Bs(k)—
k'+E'

(25)

2kK
By(k) =-', LB)i1(k)+B)lc1.s(k)'j sin2e+ Be(k). (26)

k'+E'

The potential associated with an S-matrix that is
not very diQ'erent from the "intrinsic" S-matrix of the
one bound state of binding energy E'=Ep, is therefore

2k'—Bc(k)
k'+E'

In terms of the solution

Brims(k)

G, (k',r) =—To(k)G(k', r),
we obtain for the operator E(s,r)

E(s,r) = — ' Gr(E,s)BdP(E)G(E,r)

1 "dk'k""+"
dkk —(P

k"—k'

)&G (k")s)BM(k)G, (k" r).
' See, for example, J.M. Blatt and V. F. %'eissk opf, Theoreticu

Xgclear Physics (John Wiley and Sons, Inc. , New York, 1952)
p. 111.

B)i1(k) 0

BMo(k) = Uz 2kE Uz '.
Bs (k) — 0

k'+E'
(28)

C'=To r(—ego)CTp '(—iKp)) if C is one of the matrixes C~
of reference 2.

Sd
V(r) = Vz(r) —i' dkk{G.zr(k')r)BM(k)Hz(k' r)

x droop

—k 'Gz(0, r)QF,z(0,r)By(k)
—c(k'+Eo) 'G, z (—Eo,r)BMp(k)G, z(—Ep,r)). (27)

We have here made use of the fact that in this special
"intrinsic" case of one bound state, C' must be a
multiple of Pp,

C'= cPo,
and therefore
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fP 1

Vi(r) = —2—Q~(r)C' I+ dt's&rs(t)C' U~(r)
dr 0

r -—1

G,z( Ep,—r) = I+ dt1II&'(t)C' Ua(r),
0

P
—(~+1)

G, r( k',r) =k &'+'& tt (kr) — f'tt (kr); llew (r)j
k'+Ep

where"

pr ——i
XC' I+ dtlI&r'(t)C' li~(t),

p

The "intrinsic" quantities are readily explicitly
calculated as

We must therefore show that (A.4) is suf6cient for
exponential decay of the potential.

Now, as Bargmann has shown, the potential belong-
ing to f(k) of (A.2) is the following:

V(~) = —2(d/«)'»g&(~), &= Ilx-oil,

x.s ——[V&s', U 'j/(&s' —p'),
(A.s)

where the determinant is indicated by the double ver-
tical bars. The asymptotically leading term in X, in
the sense that the remainder vanishes exponentially
with respect to it, is

X-e= [U' e', -&-'3l( ' P), —(A 6)

which can be written

( Ui&
"&(r)

1Ii& (v') =
I

0

0
!—K'Vlr&'+'& (r) )

I'=«xp[z(p —~)r3, ~= Ils-ell

s t&
——(p —o.) '(k pk —(p+&s) 'fk p, kj}, .

k (r) =e~"U '(r). (A.7)
and

I&'e&(kr) 0
!e(kr) =

I

0 u&+s(kr) ) Since k (r) is a polynomial in r-, so is Z. In order that
the potential be exponentially decreasing at inhnity it
must therefore be shown that Z is in fact constant.

The function k (r) is a polynomial in (o.r) ' of
degree t, and [k t&, k )/(a+P) is a polynomial in r-'
whose coefficients are homogeneous polynomials in 0. '

P '. Since

The functions Hl(ks, r) and Fr(—k)FI(k, r) are obtained
from G.r by replacing" s&&(kr) and sti+s(kr) by k'+'vi(kr)

k'+'t& ~s(kr), k"+'w i(kr) and k"+'to i+s(kr), re-

spectively.
APPENDIX

(A.S)

2l—1

and
The purpose of this appendix is to prove the following

theorem: A sufhcient condition for a central potential
to be asymptotically exponentially decreasing is that
for the tth angular momentum, f(k) be a rational
function of k which, near 0=0 behaves as follows:

f(k) —f(0) =O(k"). (A.1)
s t&= (P—n) '+P r " P A;;n 'P ', i)1,j)1. (A.9)

n=1 i+j=n+1

[In addition, of course, f(k) must have all the properties
previously given. )

Proof.—Let us write

v (k s&s&')

f(k) =II = 1+i Q R; (k iP;) ',—
(k —iP )

If we mean by IIA; &,C, II
the sum of all the deter-

minants obtained by 'replacing one row (column) of A

by one of 8, another row (column) of A by one of C,
etc. , then we readily see that a sufFicient condition for

(A 2) Z to be constant is that

where'~

(A.3)

~ —1 ~ ~—nI m1 ~—n2 y . . . ~—nl, Z,

=0, I=1, ~ ~, v —1;n;+v&st&2l. (A.10)

In order to prove that it follows from (A.4) that
Clearly, then the first 2t 1derivatives of f—(k) at k=0 (A.10) is satisfied, we require the following levant&vsu:

vanish, and therefore (A.1) is satisfied, if and only if

C„=—Q RP, "=0, m=2, 3,21. (A.4)
(A.11)

"The notation is as follows: x&(x)=xj&(x), v&(x)=xn&(x), n»(x)
= (—1)'+&xh&&'&(x), V~ "&(& )= (—t)'+&(tn& )g&(~)= ( t)'+'~&(t«—),
where j, e, and h(') are the customary spherical Bessel functions,
spherical Neumann functions, and spherical Hankel functions,
respectively.

'7 The prime on the product sign indicates that the term with
1=j is missing.

The proof of this lemma consists simply in considering
the left-hand side as a rational function of, say, p1.
The residues at the apparent poles all vanish, and the
value at y1—— is i. The function must therefore be
identically equal to unity.
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Furthermore, we need the fact that

ll(P- )-'ll= (—1): (-')ll(;—-)II(P;-P )

XII(p)—;)-', (A.»)

which is readily proved by induction on v and develop-
ment of the determinant after the jth column. If
llAll;; is the (ij) subdeterminant of llz4[l (without the
sign factor), then

ll(P —~) 'II=K(—1)'+'(P —~') 'll(P —~) 'll'

Similarly,

( 1)i+j+)v+l '

)
P «— "P" ()"P' ' )z«'"~) "P;"Pi' P o—( ')„;i

rI{p;--,»
II'(p;-p, ) p; II'(P -p,)

1 II(p,—n;)—Zp' ' II'('-, ) '"(p;— )(p,- )

p( 1)i+)'+$(v-t) (v-2) (p. &)—(

x II (p.—P,) rI (-.—-,) II {p.—.,)

~
—Qk ~

—
~ Q —Qk

XE-
Qk —

Q& Qk &
—Qk P

—Qk
k&1,
k, le k&l

k, )gal
kgj

lpga

II (p.-p) rr ("-.)
II(p- )

II(p;— )
kgj

. ( 1)&(~))(v-2)

Q Qk Q

In the same manner in which the lemma was proved,
one sees that the last sum equals

(-1)-'II'(P;-P )/II(P; — ),

which proves {A.12).
We now proceed as in the above proof of (A.12):

ll{p—~) '~ "P™Ii=2(—1)"'~' "»™ll(p—~) 'll'

rr(p. —-;)

i

p —n

n—1

Cm+n1+s yC v+v+1 -s+y- —
y 1 s

—C C

Cvn+ n+z yC s+r i+—1 z+y )— —
II(Pe—~') 1

s (+2 I E, l
(C~ m*—C.+.+ —.+

x I s Q-—Q Q-

~)+, ,C.+, ~„)
II(P.—~') 1 II(P.—~~) 1

y z (+~~l ~"'-' E ' II'( — ) ') & ' II'( — ) *)

X(Cm w, yC,+

C +n nm+1+8 yCs+r z+)—z+y)— — —

II(pe —~') 1

+P P l (Cm+n —1+z yCs+r i+—2—z+y— .— ) ' II'( '—.) "&

—Q

=ll(P- )-'ll c~.+Bc~,
j~l

II(p.— )

Q '—Q's ~j 1

again by the use of partial fractions and the lemma.
Therefore, if, C;=0 for i & P2( m)v+e+s+r) j, then

1 1 1
n

&vzPm +rPs

Because of {A.4), then, certainly

i i
X

- ' II'(~~ —~') ~*." '+'-
@ for

p + &npm &rps
=0

by the use of partial fractions on cx; "(P;—a;) ' and the
lemma. Equations (A.4), and therefore (A.1), imply,
consequently, that

ll (p—)- —p ll =0, 2 (~+ (2l.

n+m&2l,
y+s& 21.

The other cases are proved similarly and the details
are left to the reader.


